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Abstract

This work is dedicated to the stability analysis of time-delay systems with a single constant delay using the Lyapunov-Krasovskii
theorem. This approach has been widely used in the literature and numerous sufficient conditions of stability are proposed
and expressed as linear matrix inequalities (LMI). The main criticism of the method that is often pointed out is that these
LMI conditions are only sufficient, and there is the lack of information regarding the reduction of the conservatism. Recently,
scalable methods have been investigated using Bessel-Legendre inequality or orthogonal polynomial-based inequalities. The
interest of these methods relies on their hierarchical structure with a guarantee of reduction of the level of conservatism.
However, the convergence is still an open question that will be answered for the first time in this paper. The objective of this
paper is thus to prove that the stability of a time-delay system implies the feasibility of the scalable LMI provided in Seuret
et al., at a sufficiently large order of the Bessel-Legendre inequality. Moreover, the proposed method is even able to provide
an estimation of this order analytically, giving rise to necessary and sufficient LMI for the stability of time-delay systems.
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1 Introduction

Time-delay systems represent a wide class of dynamical
systems arising in many applications in electronics, biol-
ogy, transport, etc... Their interest in automatic control
is natural since they propose many challenging theoret-
ical problems related to their intrinsic infinite dimen-
sional nature [25,33]. In particular, their stability anal-
ysis has been at the heart of many research works for
several decades [8,15,21,30,37]. Thus, many methods to
establish their stability properties have been developed
and, among them, the use of Lyapunov-Krasovskii func-
tionals remains one of the most popular techniques be-
cause of their inherent robustness.
In the context of linear time-delay systems, several con-
ditions have been obtained over the last two decades by
application of the Lyapunov-Krasovskii theorem leading
generally to sum of square constraints [27,28,34] or to
linear matrix inequalities (LMI) [7,17,36]. These condi-
tions, combined with semi-definite convex optimization
programs, led to only sufficient conditions. This line of
research has given rise to numerous works, which all aim
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at reducing the inherent conservatism and at recovering
the necessity using, for instance, discretized function-
als [14,15] or delay partitioning methods [3,13]. Among
them, an approach based on state extension has been
proposed in [32]. The Lyapunov functional therein de-
pends directly on the projections of the state of the delay
system onto Legendre polynomials. This approach led
to LMI stability conditions, which benefit from a partic-
ular hierarchical structure, arising from the use of the
Bessel-Legendre inequality. Similar approach based on
orthogonal polynomials [22,26] and dissipative inequali-
ties [1,6] have been also considered in the literature. The
size of this LMI increases with the number of Legendre
polynomials n taken under consideration but their con-
servatism drastically reduces as n increases on example.
However, to the best of our knowledge, the proof of con-
vergence of the LMI to a necessary and sufficient LMI
condition of stability is still missing.
Towards this direction, as for linear finite dimensional
systems, there exists a converse Lyapunov-Krasovskii
theorem for linear systems with a constant delay. In-
deed, it is possible to build a Lyapunov-Krasovskii func-
tional for stable linear time-delay systems, see for in-
stance [21] for a larger overview on the problem. While
this method has been only seen as a theoretical contri-
butions, the authors of [23,24] paved the way to use the
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converse Lyapunov-Krasovskii theorem to derive not suf-
ficient but necessary stability conditions for time-delay
systems through approximation. Among them, the au-
thors of [5] provided a necessary stability conditions for
linear time-delay systems. This method was then ex-
tended to various classes of delay systems, see for in-
stance [10,11]. More interestingly, their methods have led
to necessary and sufficient stability conditions in [4,12].
The sufficiency part of their necessary condition has been
obtained by estimating an upper bound of the approxi-
mation error due to the discretization process of the Lya-
punov matrix. It is worth noting that these conditions
are not LMI but only a test of positive definiteness of a
given matrix, which makes their method efficient from
computational reasons. However, even though the neces-
sary condition of stability is simple to test, the sufficient
condition of stability is still numerically complicated to
verify, because the order assessing the sufficiency can be
very high.

The objective of the present paper follows the same spirit
of deriving necessary and sufficient stability conditions
of time-delay systems but with a different objective. In-
deed, the objective is here to use the approach developed
in [12,14] to demonstrate that the sufficient LMI con-
ditions arising from the Bessel-Legendre inequality are
asymptotically necessary. This corresponds to answer-
ing the following questions.

• If a time-delay system is stable, does there exist a min-
imal order N∗ from which some LMI stability condi-
tion is necessary satisfied?

• Is it possible to estimate this order N∗?

The paper is organized as follows. Section 2 formulates
the problem of stability analysis of linear time-delay sys-
tems. After presenting a brief summary of the properties
of Legendre polynomials, a sufficient scalable LMI con-
dition for time-delay systems is presented. Then, Sec-
tion 3 states the converse theorem of this first result,
which ensures the existence of an order N∗ for which
the LMI stability conditions must be verified for stable
linear systems. Section 4 goes beyond the convergence
result by providing an estimation of the order N∗ of the
polynomial approximation for which the LMI conditions
are guaranteed. Finally, the theoretical results are eval-
uated on academic examples leading to several discus-
sions. The paper ends with a conclusion and several ap-
pendixes gathering the highly technical proofs required
to derived the main results of this paper.

Notations : Throughout the paper, N (N∗), Rm×p and
Sm (Sm

+ ) denote the sets of natural numbers (excluding
zero), real matrices of sizem×p and symmetric matrices
of sizem (positive definite), respectively. For any x in R,
⌈x⌉ stands for the least integer greater than or equal to
x. For any square matrix M ∈ Rm×m, M(p, q) denotes
the entries of M located at the pth row and qth column,
M⊤ denotes the transpose of M and H(M) stands for

M +M⊤. Furthermore, for any M in Sm, its minimal
and maximal eigenvalues are denoted σ(M) and σ̄(M).

The 2-norm of matrixM in Rm×p is |M | =
√
σ̄(M⊤M).

The vector u = vec(M) in Rmp×1 collocates the columns
of matrixM and the inverse of this operation is denoted
vec−1 and is such that vec−1(vec(M)) = M . Moreover,
notation ⊗ represents the Kronecker product. The set
of square-integrable functions from (a, b) to Rm×p is
noted L2(a, b;Rm×p). Let finally Cpw(a, b;Rm×p) the set
of piecewise continuous functions with a finite number
of discontinuity points and, for each continuity interval,
finite left and right-hand side limits.

2 A sufficient LMI stability condition for time-
delay systems

2.1 System data

Consider a time-delay system given by

ẋ(t) = Ax(t) +Adx(t− h), ∀t ≥ 0,

x(t) = φ(t) ∈ Cpw(−h, 0;Rnx), ∀t ∈ [−h, 0],
(1a)

(1b)

where the single delay h > 0 and matrices A,Ad in
Rnx×nx are constant and known. Without loss of gener-
ality, let decompose Ad into a product BC as

Ad = BC with |C| = 1, (2)

with B,CT ∈ Rnx×nz being full column rank matrices,
with nz the rank of matrixAd. Along the paper, notation
xt(θ) = x(t+ θ), for all (t, θ) in R+ × [−h, 0] is used.

Definition 1 (GES) The trivial solution x(t) ≡ 0 of
system (1) is globally exponentially stable (GES), if there
exist κ ≥ 1 and µ > 0 such that the solution to (1)
generated by any initial condition φ ∈ Cpw(−h, 0;Rnx),
denoted as x(t, φ) verifies

|x(t, φ)| ≤ κe−µt sup
[−h,0]

|φ|, ∀t ≥ 0. (3)

Several ways of assessing GES of linear systems have
been provided in the literature as mentioned in the in-
troduction. Here, the contribution focuses on conditions
arising from the application of the Lyapunov-Krasovskii
theorem, adapted to the linear case.

Theorem 1 Let ε1, ε2 and ε3 be positive scalars. If
there exists a continuous and differentiable functional
V : Cpw(−h, 0;Rnx) → R+ such that, for any φ in
Cpw(−h, 0;Rnx), inequalities

(i) ε1|φ(0)|2 ≤ V(φ) ≤ ε2 sup
[−h,0]

|φ|2 hold and

2



(ii) V̇(φ) ≤ −ε3|φ(0)|2 holds for all t ≥ 0, where V̇ denotes
here the derivative of V along the trajectories of (1).

Then, the solution x(t, 0) ≡ 0 is GES for system (1).

Such a functional is called a Lyapunov-Krasovskii func-
tional.

Themain underlying idea of this theorem is to determine
a positive definite functional V, such that its derivative
with respect to time along the trajectories of the system
(1) is negative definite. The main problem within the
application of this theorem is to design a suitable func-
tional and then to provide some conditions that guaran-
tee its positive definiteness and the negative definiteness
of its derivative.
The derivation of stability conditions using Lyapunov-
Krasovskii functionals usually involves quite elaborate
developments. To give an idea of the procedure involved
in this approach and to provide a glimpse of its technical
flavor, we present here some basics on the procedure to
follow in order to derive asymptotic stability criteria for
time-delay systems expressed in terms of linear matrix
inequality (LMI). The procedure follows three steps.

Step 1. Propose a candidate Lyapunov-Krasovskii func-
tional V, based on the structure of the system.
Step 2. Compute the derivative of the functional along
the trajectories of the system.
Step 3.Apply over-approximation technique to V̇ and de-
rive a stability condition expressed in terms of LMI.

Among the numerousmethod employed in the literature,
we will focus here on the method based on the applica-
tion of the Bessel-Legendre integral inequality [31,32],
which is scalable with respect to the degree of the Legen-
dre polynomial to be considered and provides interest-
ingly LMI with a hierarchical structure. Before stating
this theorem, let us first recall the main definitions and
some characteristics about these polynomials.

2.2 Definition of Legendre polynomials

The Legendre polynomials widely used in polynomial
approximation theory [2] are defined over the normalized
interval [0, 1] as

∀k ∈ N, lk(θ) =

k∑
j=0

( kj )(
k+j
j )(θ − 1)j , (4)

where ( kj ) stands for the binomial coefficients.
The main motivation for employing these polynomials
comes from their nice properties that are summarized
below. Before going into the details, for any order n and
nz in N∗ and θ ∈ [0, 1], let us introduce the following

notation

ℓn(θ)=
[
l0(θ)Inz

l1(θ)Inz
. . . ln−1(θ)Inz

]⊤
∈ Rnnz×nz ,

(5)

Property 1 The Legendre polynomials given in (4) rep-
resent an orthogonal sequence with respect to the inner

product
∫ 1

0
ϕ⊤(θ)ψ(θ)dθ, for any ϕ, ψ in L2(0, 1;Rnz ).

The following equality holds for all n in N∗, and for all
symmetric matrix R ∈ Snz

+∫ 1

0

ℓn(θ)R
−1 ℓ⊤n (θ)dθ = R−1

n ∈ Rnnz×nnz , (6)

where Rn = I0
n ⊗R, with

I0
n(p, q) =

{
2p− 1 if p = q,

0 otherwise.

Proof : The proof can be found in [9]. □

In particular, we will consider over the paper notation
Ip
n = I0

n ⊗ Ip, for any integer p. To ease the reading of
the paper and where no confusion is possible, we will
omit the upper script ‘p’ and only use notation In.

Furthermore, the Legendre polynomials have been intro-
duced because they allows formulating efficient integral
inequalities, which are stated here

Lemma 1 Let x ∈ L2(−h, 0;Rnz ) and R ∈ Snz
+ a posi-

tive definite matrix. The integral inequalities∫ 0

−h

x⊤(θ)Rx(θ)dθ ≥ 1

h
ξn(x)

TRnξn(x), (7a)∫ 0

−h

(θ + h)x⊤(θ)Rx(θ)dθ ≥ 1

2
ξn(x)

T R̃nξn(x), (7b)

hold, for all n ∈ N∗, where ξn(x) =
∫ 0

−h
ℓn
(
θ+h
h

)
x(θ)dθ

and where matrixRn is defined in Property 1 and matrix
R̃n ∈ Rnnz×nnz is defined as follows

R̃n = J 0
n ⊗R, J 0

n (p, q) =


2p− 1 if p = q,

min(p, q) if |p− q| = 1,

0 otherwise.

Moreover, if x is a polynomial function of degree n − 1
over (−h, 0), both inequalities become equality.

Proof : The proof of these two inequalities can be found
in [32] for the first one and in [16] for the second one. □
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2.3 Sufficient LMI condition

We are now in position to state a stability theorem for
system (1) based on the previous developments.

Theorem 2 For a given constant delay h, if there exist
an order n in N∗ and matrices (Pn, R, S) in Snx+nnz ×
Snz
+ × Snz

+ such that the following LMI holds

Φ+
n = Pn +

[
0 0

0 1
hSn + 1

2R̃n

]
≻ 0, (8a)

Φ−
n =

[
H(PnAn) + Φ0

n(S,R) PnBn

∗ −S

]
≺ 0, (8b)

where

Φ0
n(S,R) =

[
C⊤(S + hR)C 0

0 − 1
hRn

]
,

An =

[
A 0

ℓn(1)C − 1
hL

nz
n

]
, Bn =

[
B

−ℓn(0)

]
,

ℓn(1) =

[
Inz

...
Inz

]
, ℓn(0) =

[ Inz

...
(−1)n−1Inz

]
∈ Rnnz ,

Lnz
n = L0

n ⊗ Inz
∈ Rnnz×nnz ,

L0
n(p, q) =

{
(2q − 1)(1− (−1)p+q) if p ≥ q,

0 otherwise,

then, the trivial solution of system (1) is GES.

Proof : For a given integer n ≥ 0, consider the functional
defined as follows

Vn(xt) =

[
xt(0)

ξn(xt)

]⊤
Pn

[
xt(0)

ξn(xt)

]

+

∫ 0

−h

x⊤t (θ)C
⊤(S + (θ + h)R)Cxt(θ)dθ,

(9)

where matrices Pn, S and R are solution to the LMI
stated in the theorem and where the augmented vector
ξn is defined as follows

ξn(xt) =

∫ 0

−h

ℓn

(
θ + h

h

)
Cxt(θ)dθ. (10)

Applying the Bessel inequalities presented in Lemma 1
to both integral terms yields

Vn(xt) ≥

[
xt(0)

ξn(xt)

]⊤
Φ+

n

[
xt(0)

ξn(xt)

]
.

Therefore, if condition (8a) is verified, then there exists

a sufficiently small ε1 > 0 such that Vn(xt) ≥ ε1 |xt(0)|2.
In addition, since V is quadratic with respect to xt, we
can take ε2 = σ̄(Pn) + σ̄(S) + hσ̄(R) so that inequality
Vn(xt) ≤ ε2 sup

[−h,0]

|xt| holds.

As in [31], computing the derivative of the functionals
along the trajectories of the system yields

V̇n(xt)=2

[
xt(0)

ξn(xt)

]⊤
Pn

[
ẋt(0)

ξ̇n(xt)

]
−x⊤t (−h)C⊤SCxt(−h)

+x⊤t(0)C
⊤(S+hR)Cxt(0)−

∫ 0

−h

x⊤t (θ)C
⊤RCxt(θ)dθ.

(11)
Then, the dynamics (1a) and an integration by parts of

ξ̇n(xt) provides an expression
[

ẋt(0)

ξ̇n(xt)

]
with respect to

xt(0), ξn(xt) and xt(−h). It ensures that[
ẋt(0)

ξ̇n(xt)

]
= An

[
xt(0)

ξn(xt)

]
+BnCxt(−h).

Re-injecting this expression into (11) and applying the
Bessel inequality yields

V̇n(xt) ≤


xt(0)

ξn(xt)

Cxt(−h)


⊤

Φ−
n


xt(0)

ξn(xt)

Cxt(−h)

 .
Therefore, if condition (8b) is satisfied, then there exists

a sufficiently small ε3 such that V̇n(xt) ≤ −ε3|xt(0)|2,
which concludes the proof. □

Remark 1 Note that the proposed theorem has a cou-
ple of differences with respect the original conditions pre-
sented in [31] or in [32]. The first one is due to the appli-
cation of inequality (7b), which can also be seen as double
integral inequality. This will have a fundamental impor-
tance in the next developments. The second one is related
to the decomposition of Ad as the product of matrices
B ∈ Rnx×nz and C ∈ Rnz×nx of ranks nz ≤ nx. This
manipulation allows reducing the complexity of the LMI
by reducing both the number of rows and columns but also
the number of decision variables when Ad is singular.

As in [31] or in [32], the previous stability condition form
a hierarchy with respect to n. This aspect is presented
formally in the following lemma.

Lemma 2 If there exists an integer N ∈ N∗, for which
a solution to LMI (8) exists, then there also exists a
solution to the same problem for any integer n ≥ N .
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Proof : The proof uses similar arguments to the
ones provided in [32, Theorem 7]. A glimpse of the
proof consists in introducing Pn+1 =

[
Pn 0
0 0

]
, so that

Vn+1(xt) = Vn(xt) and so that one can exhibit a solu-
tion to the LMI problem at order n + 1 based on the
solution at order n. The details of the proof are omitted
but strongly relies on the structure of Φ+

n and Φ−
n . □

To sum up the results presented so far, Theorem 2
presents scalable LMI conditions for the stability (GES)
of linear time-delay systems. These conditions depend
on an order n ∈ N∗, corresponding to the degree of
the Legendre polynomial considered in the construction
of the Lyapunov-Krasovskii functional. Moreover, it is
demonstrated that when n increases, the conservatism
can only be reduced. It is however legitimate to wonder
if a converse result can be proven. This direction refers
to the possibility of assessing the satisfaction of these
LMI conditions for a sufficiently large n, when the sys-
tem under consideration is known a priori to be GES for
a given delay h. Apart the convergence, ie. the existence
of an order N∗ for which the LMI condition is guaran-
teed, an interesting underlying question is to estimate
analytically such a bound. The next developments aim
at providing a solution to these two problems. More
specifically, the next section presents a converse theo-
rem with first a proof of existene of N∗, while the latter
address the problem of estimating order N∗.

3 Necessity of the LMI condition: Existence of
an order

The converse result of Theorem 2 is formally stated.

Theorem 3 If the trivial solution of system (1) is GES
for a given delay h, then there exist an order N∗ in N∗

and matrices (PN∗ , R, S) in Snx+N∗nz × Snz
+ × Snz

+ such

that inequalities Φ+
N∗ ≻ 0 and Φ−

N∗ ≺ 0 in (8) hold.

The proof is decomposed in five subsections respectively
based on the steps listed below.

Step 1. To ensure the existence of a complete Lyapunov-
Krasovskii functional which can be expressed analytically
with respect to a Lyapunov matrix function.
Step 2. To use the properties of convergence of Legendre
polynomial series to approximate the Lyapunov matrix
function and its derivatives.
Step 3.Tomake the link between Vn introduced in (9) and
the Legendre approximation of the complete functional.
Step 4. To apply the approximation results to obtain a
new necessary condition based on functional Vn.
Step 5.To recover the LMI condition given in Theorem 2.

3.1 Existence and properties of complete functionals

It is well known that the stability of system (1) can
be established thanks to the use of the so-called com-
plete Lyapunov-Krasovskii functional, firstly introduced
in [18] and fully described in [21]. All along this arti-
cle, for any positive definite matrices (W1,W2,W3) in
Snx
+ × Snz

+ × Snz
+ , we define the complete Lyapunov-

Krasovskii functional V by

V(xt)=x⊤t (0)U(0)xt(0)+2x
⊤
t (0)

∫ 0

−h

U(θ+h)BCxt(θ)dθ

+

∫ 0

−h

∫ 0

−h

x⊤t (θ1)(BC)
⊤U(θ2 − θ1)BCxt(θ2)dθ1dθ2

+

∫ 0

−h

x⊤t (θ)C
⊤(W2 + (θ + h)W3)Cxt(θ)dθ,

(12)
where U is a matrix function from [−h, h] to Rnx×nx and
is called the Lyapunov matrix. Interestingly, referring
to [21, Section 2.10], a method is provided to build ana-
lytically this matrix. Its expression is therefore given by{
U(θ) = vec−1

(
[ In2

x
0 ]eθMN−1

[−vec(W )
0

])
if θ ≤ 0,

U(θ) = U⊤(−θ) if θ > 0,

(13)
where matrices

W =W1 + C⊤(W2 + hW3

)
C,

M =
[
−A⊤⊗Inx −A⊤

d ⊗Inx

Inx⊗A⊤
d Inx⊗A⊤

]
,

N =
[
A⊤⊗Inx+Inx⊗A⊤ A⊤

d ⊗Inx

I
n2
x

0

]
+
[
Inx⊗A⊤

d 0
0 −I

n2
x

]
e−hM.

(14)
and where ‘vec’ is the operator that transforms a matrix

inRnx×nx to a vector inRn2
x that collects all the columns

of this matrix and ‘vec−1’ denotes the inverse operator.

Remark 2 Before going any further, it is important to
note that this functional cannot be defined if matrix N
is singular. As mentioned in [21, Theorem 2.10], this
condition is equivalent to the Lyapunov condition, i.e.
there is no eigenvalue of (1) such that its opposite is also
eigenvalue. This is not an issue since it excludes a set of
systems which are intrinsically unstable.

The complete functional V has been built so that its
derivative with respect to time along the trajectories of
the system yields

V̇(xt) = −x⊤t (0)W1xt(0)− x⊤t (−h)C⊤W2Cxt(−h)

−
∫ 0

−h

x⊤t (θ)C
⊤W3Cxt(θ)dθ,

(15)

Recall thatW1,W2 andW3 are arbitrary symmetric pos-
itive definite matrices. The following theorem holds.
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Theorem 4 System (1) is GES for the delay h if and
only if V defined by (12) is a Lyapunov-Krasovskii func-
tional for this system.

Proof : The proof can be found for instance in [15,
Theorem 5.19] or in [21]. □

In addition, the Lyapunov matrix satisfy several prop-
erties. The first property is related to the fact that U is
continuous over [−h, h] but its derivative, U ′, is not only
continuous over [−h, 0)

⋃
(0, h]. Indeed, U ′ has a discon-

tinuity at 0, which is measured as follows.

Property 2 ([21]) The Lyapunov matrix U verifies the
following properties

(i) The Lyapunov matrix U is infinitely differentiable on
[0, h] (and [−h, 0]) and is continuous at 0 with

U(0) = U⊤(0).

(ii) The derivative of the Lyapunov matrix is infinitely dif-
ferentiable on [−h, 0)

⋃
(0, h] and a unique discontinu-

ity at 0 so that

∆U ′(0) := lim
ϵ→0

(U ′(ϵ)− U ′(−ϵ)) =W.

These regularity conditions satisfied by the Lyapunov
matrix have been used for H2 [19] or H∞ [20] analysis.
They will also be at the heart of the derivation of the
convergence results.

3.2 Polynomial approximation of the Lyapunov matrix
and convergence of the approximation errors

In this section, the objective is to understand how to re-
late the Lyapunov-Krasovskii functional defined in (9)
and the complete one in (12). To do so, themain idea is to
exploit the terms of (12) that are expressed in U(θ+h)B
and B⊤U(θ2 − θ1)B. The Legendre polynomial approx-
imation of these functions at any order n in N∗ writes

U(θ + h)B = U1,nℓn
(
θ+h
h

)
+ Ũ1,n(θ), ∀θ ∈ [−h, 0],

B⊤U(θ)B = U2,nℓn
(
θ+h
2h

)
+ Ũ2,n(θ), ∀θ ∈ [−h, h].

(16)
In this decomposition, the constant matrices U1,n and
U2,n have been selected as the orthogonal projection of
U(θ + h)B and B⊤U(θ)B, respectively, on the n first
Legendre polynomials ℓn. Their expressions are given by

U1,n =
1

h

(∫ 0

−h

U(θ + h)Bℓ⊤n

(
θ + h

h

)
dθ

)
In,

U2,n =
1

2h

(∫ h

−h

B⊤U(θ)Bℓ⊤n

(
θ + h

2h

)
dθ

)
In.

(17)

Functions Ũ1,n(θ) and Ũ2,n(θ) can be interpreted as
the approximation errors of the orthogonal projections,
which verify∫ 0

−h

Ũ1,n(θ)ℓ
⊤
n

(
θ+h

h

)
dθ=

∫ 0

−h

U(θ+h)Bℓ⊤n

(
θ+h

h

)
dθ︸ ︷︷ ︸

=U1,n(In/h)−1

−U1,n

∫ 0

−h

ℓn

(
θ+h

h

)
ℓ⊤n

(
θ+h

h

)
dθ︸ ︷︷ ︸

=(In/h)−1

= 0,

where we have used (6) on [−h, 0]. Similarly, the same

calculations ensure that error Ũ2,n is orthogonal to the
n first Legendre polynomials considered over [−h, h], i.e.∫ h

−h
Ũ2,n(θ)ℓ

⊤
n (

θ+h
2h )dθ = 0.

The next developments aim at demonstrating the uni-
form convergence of the polynomial approximation. Fol-
lowing the theory of polynomial approximation (see for

instance [2] and references therein), it results that Ũ1,n

and Ũ2,n given in (16) converge to zero in the sense of
the L2 norm. This is actually a by-product of Bessel
inequality. This implies that the approximation errors
converges to zero almost everywhere on their domain of
definition, as n tends to infinity. Nevertheless, uniform
convergence properties can even be obtained using the
regularity of the Lyapunov matrix.

The following lemma assesses the uniform convergence
that will be used in the proof of Theorem 3.

Lemma 3 Consider the Lyapunov matrix U for the
time-delay systems (1) defined for any positive definite
matrices (W1,W2,W3). The following statements hold.

(i) The approximated Legendre function U1,nℓn
(
θ+h
h

)
converges uniformly to U(θ + h)B, when n tends to
infinity, on the closed interval [0, h].
More precisely, for any n ≥ 4, the following inequality
holds

sup
θ∈[0,h]

∣∣∣Ũ1,n(θ)
∣∣∣ ≤ ū1,n :=

ϱ1√
n− 3

|W | , (18)

where

ϱ1 =
√
nx

(π
2

) 3
2

eh|M| ∣∣M2N−1
∣∣h2 |B| , (19)

and matrices M, N and W are given by (14).
(ii) The approximated Legendre function 1

hU1,nℓ
′
n

(
θ+h
h

)
converges uniformly to U ′(θ + h)B, when n tends to
infinity, on the closed interval [0, h].
More precisely, for any n ≥ 6, the following inequality
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holds

sup
θ∈[0,h]

∣∣∣Ũ ′
1,n(θ)

∣∣∣ ≤ ū2,n :=
ϱ2√
n− 5

|W | , (20)

where

ϱ2 =
1

2

√
nx

(π
2

) 3
2

eh|M| ∣∣M4N−1
∣∣h3 |B| , (21)

and matrices M, N and W are given by (14).
(iii) The approximated Legendre function U2,nℓn(

θ+h
2h )

converges uniformly to B⊤U(θ)B, when n tends to
infinity, on the closed interval [−h, h].
More precisely, for any n ≥ 4, the following inequality
holds

sup
θ∈[−h,h]

∣∣∣Ũ2,n(θ)
∣∣∣≤ ū3,n := ϱ3√

n− 3
|W | , (22)

where

ϱ3 =
√
2π(1 +

√
nxπhe

h|M| ∣∣M2N−1
∣∣)h |B|2 , (23)

and matrices M, N and W are given by (14).

Proof : The proof follows the arguments provided in [35,
Theorem 2.5] and is based on the regularity properties
of the Lyapunov matrix U . Because of its technicality,
the proof is postponed to Appendix C, for the sake of
readability. □

The previous lemma provides uniform upper bounds on
the error done by three approximations related to the
Lyapunov matrix U . This lemma extensively uses the
properties of the Lyapunov matrix U on its domain of
definition. These uniform convergence results are only
presented as properties of U and its polynomial approx-
imations but addresses specific problems of functional
analysis of continuous and discontinuous functions.

All these upper bounds depend explicitly on the arbi-
trary symmetric positive definite matrices (W1,W2,W3)
through the term |W |, which is intuitively relevant.

As a final comments, Lemma 3 implies the following
corollary.

Corollary 1 For any positive scalar η > 0, there exists
an integer N∗

η such that

max (ū1,n, ū2,n, ū3,n) ≤ η, ∀n ≥ N∗
η . (24)

Proof : Since the upper bounds of approximation errors
tend to 0 as n tends to infinity, the existence of such N∗

η
for any η > 0 is guaranteed. □

3.3 Construction of Pn, S and R

Lemma 4 Consider any positive definite matrices
(W1,W2,W3) in Snx

+ × Snz
+ × Snz

+ and assume that the
following inequality holds

Ψn(θ) :=


W1+H(Ũ1,n(0)C) −Ũ1,n(−h) Ψ1

n(θ)

∗ W2 Ψ2
n(θ)

∗ ∗ 1
hW3

≻0,

(25)
for a given n in N∗ and for all θ in [−h, 0] with

Ψ1
n(θ) = A⊤Ũ1,n(θ)− Ũ ′

1,n(θ) + C⊤Ũ2,n(θ),

Ψ2
n(θ) = B⊤Ũ1,n(θ)− Ũ2,n(θ + h),

and with Ũ1,n, Ũ
′
1,n and Ũ2,n are the approximation errors

of the Lyapunov matrix U of system (1) generated with
matrices (W1,W2,W3).

Then, having system (1) GES for the delay h ensures
that there exists ε > 0 such that the candidate functional
Vn, given in (9) with matrices

Pn =

[
U(0) U1,n

∗ Tn

]
, S =W2, R =W3,

Tn=

0 0∫∫
−h −h

In
h
ℓn

(
θ1+h

h

)
U2,n(θ2−θ1)ℓ⊤n

(
θ2+h

h

)
In
h
dθ1dθ2,

U2,n(θ)=U2,nℓn

(
θ + h

2h

)
,

(26)
where U1,n, U2,n are given in (17), verifies

Vn(φ)≥ε
(
|φ(0)|2+h

∫ 0

−h

|Cφ(θ)|2 dθ
)
, (27a)

V̇n(φ)≤−ε
(
|φ(0)|2+h

∫ 0

−h

|Cφ(θ)|2dθ+|Cφ(−h)|2
)
,

(27b)

for all φ in Cpw(−h, 0;Rnx).

Proof : The proof is divided into two parts, each one
being dedicated to each inequality in (27). Let us start
with the proof of inequality (27b). Re-injecting the ex-
pression of U(θ+h)B and B⊤U(θ)B and using their ap-
proximation given by (16) into the complete functional
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V leads to

V(xt) = x⊤t (0)U(0)xt(0)

+2x⊤t (0)U1,n

∫ 0

−h

ℓn

(
θ+h

h

)
Cxt(θ)dθ

+

∫ 0

−h

∫ 0

−h

x⊤t (θ1)C
⊤U2,nℓn

(
θ2−θ1+h

2h

)
Cxt(θ2)dθ1dθ2

+

∫ 0

−h

x⊤t (θ)C
⊤(W2 + (θ + h)W3)Cxt(θ)dθ

+2x⊤t

∫ 0

−h

Ũ1,n(θ)Cxt(θ)dθ

+

∫ 0

−h

∫ 0

−h

x⊤t (θ1)C
⊤Ũ2,n(θ2 − θ1)Cxt(θ2)dθ1dθ2.

(28)
Since U2,n(θ2 − θ1) = U2,nℓn

(
θ2−θ1+h

2h

)
belongs to

Rnz×nz and is a polynomial function of degree n − 1
in both θ1 and θ2, it can be decomposed using the ba-
sis of Legendre polynomials ℓn

(
θ1+h
h

)
and ℓn

(
θ2+h
h

)
.

Thanks to the orthogonality of Legendre polynomials,
this decomposition gives

U2,nℓn

(
θ2−θ1+h

2h

)
=ℓ⊤n

(
θ1+h

h

)
Tnℓn

(
θ2+h

h

)
,

where matrix Tn is the symmetric matrix given in (26).
Note that the symmetry of Tn is ensured by the sym-
metry of Ũ2,n highlighted in Property 4 that has been
postponed in Appendix B in order to ease the reading.
Hence, using the same augmented vector as in the proof

of Theorem 2, i.e. ξn(xt) =
∫ 0

−h
ℓn
(
θ+h
h

)
Cxt(θ)dθ, func-

tional V reduces to the following expression

V(xt) =

[
xt(0)

ξn(xt)

]⊤ [
U(0) U1,n

∗ Tn

][
xt(0)

ξn(xt)

]

+

∫ 0

−h

x⊤t (θ)C
⊤(W2 + (θ + h)W3)Cxt(θ)dθ

+2x⊤t (0)

∫ 0

−h

Ũ1,n(θ)Cxt(θ)dθ

+

∫ 0

−h

∫ 0

−h

x⊤t (θ1)C
⊤Ũ2,n(θ2 − θ1)Cxt(θ2)dθ1dθ2.

(29)
Therefore, by selectingPn, S andR as in (26), functional
Vn in (9) is retrieved and we obtain

Vn(xt) = V(xt)−2x⊤t (0)

∫ 0

−h

Ũ1,n(θ)Cxt(θ)dθ

−
∫ 0

−h

∫ 0

−h

x⊤t (θ1)C
⊤Ũ2,n(θ2 − θ1)Cxt(θ2)dθ1dθ2.

Differentiating the previous expression leads to

V̇n(xt) = V̇(xt)− 2ẋ⊤t (0)

∫ 0

−h

Ũ1,n(θ)Cxt(θ)dθ

−2x⊤t (0)

∫ 0

−h

Ũ1,n(θ)Cẋt(θ)dθ

−
∫ 0

−h

∫ 0

−h

ẋ⊤t (θ1)C
⊤Ũ2,n(θ2 − θ1)Cxt(θ2)dθ1dθ2.

−
∫ 0

−h

∫ 0

−h

x⊤t (θ1)C
⊤Ũ2,n(θ2 − θ1)Cẋt(θ2)dθ1dθ2.

Since V is the complete functional, its derivative is ex-
pressed usingW1,W2,W3. Several integrations by parts
lead to the following expression of V̇n

V̇n(xt) = −x⊤t (0)W1xt(0)− x⊤t (−h)C⊤W2Cxt(−h)

−
∫ 0

−h

x⊤t (θ)C
⊤W3Cxt(θ)dθ

−2(Axt(0) +BCxt(−h))⊤
∫ 0

−h

Ũ1,n(θ)Cxt(θ)dθ

−2x⊤t (0)
(
Ũ1,n(0)Cxt(0)− Ũ1,n(−h)Cxt(−h)

)
+2x⊤t (0)

∫ 0

−h

Ũ ′
1,n(θ)Cxt(θ)dθ

−x⊤t (0)
∫ 0

−h

C⊤ (Ũ2,n(θ) + Ũ⊤
2,n(−θ))︸ ︷︷ ︸

=2Ũ2,n(θ)

Cxt(θ)dθ

+x⊤t (−h)
∫ 0

−h

C⊤ (Ũ2,n(θ+h)+Ũ
⊤
2,n(−h−θ))︸ ︷︷ ︸

=2Ũ2,n(θ+h)

Cxt(θ)dθ

+

∫ 0

−h

∫ 0

−h

x⊤t (θ1)C
⊤Ũ ′

2,n(θ2 − θ1)Cxt(θ2)dθ1dθ2,

−
∫ 0

−h

∫ 0

−h

x⊤t (θ1)C
⊤Ũ ′

2,n(θ2 − θ1)Cxt(θ2)dθ1dθ2.

We first notice that the two last terms of the previous
expression are opposite and thus sum up to zero. More-
over, Property 4 given in Appendix B helps reducing the
expression of the terms that depend on Ũ2,n. Re-ordering
the previous expression yields

V̇n(xt)=− 1

h

∫ 0

−h

[
xt(0)

Cxt(−h)
hCxt(θ)

]⊤
Ψn(θ)

[
xt(0)

Cxt(−h)
hCxt(θ)

]
dθ, (30)

where Ψn is given in (25). Therefore if matrix Ψn is
positive definite there exists a sufficiently small ε > 0
such that Ψn(θ) ≻ εI3nz which yields to (27b).

In order to ensure inequality (27a), let us introduce the
following functional

W(xt)=Vn(xt)−ε
(
|xt(0)|2+h

∫ 0

−h

|Cxt(θ)|2dθ
)
, (31)
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where ε is a positive scalar to be determined and where
Vn is the candidate functional given in (9) with the same
selection of matrices Pn, S and R as in (26) associated
to (W1,W2,W3) in Snx

+ × Snz
+ × Snz

+ . Differentiating W
along the trajectories of the system, yields

Ẇ(xt) = V̇n(xt)− 2εx⊤t (0)(Axt(0) +BCxt(−h))
−εh

(
|Cxt(0)|2 − |Cxt(−h)|2

)
,

(32)
which can be rewritten as

Ẇ(xt) = − 1

h

∫ 0

−h

[
xt(0)

Cxt(−h)
hCxt(θ)

]⊤
Ψε

n(θ)

[
xt(0)

Cxt(−h)
hCxt(θ)

]
dθ, (33)

where

Ψε
n(θ)=Ψn(θ)+ε


H(A)+C⊤C B 0

∗ −Inz 0

∗ ∗ 0

 , ∀θ ∈ [−h, 0].

Therefore, if Ψn is positive definite, then there exists a
sufficiently small ε > 0 such that Ψε

n adn consequently,

Ẇ(xt) are negative definite. Integrating then Ẇ(xt)
from t to infinity yields

lim
T→∞

W(xT )−W(xt) = −W(xt) ≤ 0,

where we have used the assumption that system (1) is
GES meaning that W(xT ) →

T→∞
0. Hence, (31) ensures

that there exists a sufficiently small ε > 0 such that
(27a) holds, which concludes the proof. □

3.4 New necessary condition for functional Vn

The next statement provides a convergence result on the
functional Vn. To do so, it suffices to ensure that matrix
Ψn is positive definite, which still has to be proven.

Corollary 2 If the trivial solution of system (1) is GES,
then there exist an orderN∗ inN∗ andmatrices (Pn, S,R)
in Snx+nnx×Snz

+ ×Snz
+ such that the associated Lyapunov

functional Vn given in (9) satisfies (27), for any n ≥ N∗.

Proof : As a first step to the proof of convergence, let
us emphasize the structure of matrix Ψn and recall that
matrices (W1,W2,W3) in Snx

+ ×Snz
+ ×Snz

+ have been fixed
to build the complete functional V. Therefore, matrix
Ψn can be decomposed as the sum of a block diagonal
positive definite matrices that is independent of n and
of a matrix whose entries are all expressed using the
approximation errors Ũ1,n Ũ

′
1,n and Ũ2,n, which can be

made uniformly arbitrarily small in light of Lemma 3.

To do so, we will use the following equivalence results.
For any matrix X in Rp×q such that X⊤X ⪯ |X|2Iq,
then inequality

[
|X|Ip X

X⊤ |X|Iq

]
⪰ 0 holds. Using this in-

equality, the following lower bounds of Ψn is derived

Ψn(θ) ⪰


µ1,nInx

0 0

0 µ2,nInz
0

0 0 µ3,nInz

 ,
with

µ1,n = σ(W1)−(1+|A|+2|C|)ū1,n−ū2,n−|C|ū3,n,
µ2,n = σ(W2)−(1+|B|)ū1,n−ū3,n,
µ3,n = 1

hσ(W3)−(|A|+|B|)ū1,n−ū2,n−(1+|C|)ū3,n,
(34)

where ū1,n, ū2,n and ū3,n are the upper bounds of the
approximation errors of the polynomial approximation
given by (18), (20) and (22), respectively.
Then, Corollary 1 ensures that all the negative terms
can be made arbitrarily small as n increases, while the
first terms are positive and independent of n. In partic-
ular, there exists N∗ in N∗ such that inequalities (27)
hold, for all n ≥ N∗, which concludes the proof. □

Note that such result could also be obtained with other
approximation methods. For instance, it is also the case
of piece-wise approximation as demonstrated in [14].

3.5 Necessary LMI condition

The next and final step of the proof consists in demon-
strating that the previous corollary imposes the satis-
faction of the sufficient LMI in Theorem 2.

Proof of Theorem 3: Assume that system (1) is GES.
Thanks to Corollary 2, there existN∗ such that inequal-
ities (27) hold for any n ≥ N∗. This means that, for such
an n, there exists matrices (Pn, S,R) in Snx+nnx ×Snz

+ ×
Snz
+ given by (26) such that the associated functional Vn

verifies (27) for all φ in Cpw(−h, 0;Rnx). In particular,
consider φ as a function expressed as follows

φ(θ) =

[
δ0(θ)Inx

1

h
C†f⊤n (θ)In δ−h(θ)C

†
][ φ0

φn
φh

]
, (35)

with C† = C⊤(CC⊤)−1 in Rnx×nz is the right pseudo-
inverse of C and with

fn(θ) = ℓn

(
θ + h

h

)
− ℓn(1)δ0(θ)− ℓn(0)δ−h(θ).

In this formulation, vector
[ φ0
φn
φh

]
in Rnx+nz(n+1) is arbi-

trary and δθ0 is zero everywhere except at θ0, where is
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it equal to 1, i.e.

δθ0(θ) =

{
1 for θ = θ0,

0 otherwise.

Note that such a function φ has been selected so that
φ at the boundary of [−h, 0] is given by φ(0) = φ0,
φ(−h) = C†φ−h, and in the interval (−h, 0) by φ(θ) =
1
hC

†ℓn
(
θ+h
h

)
Inφn, for all θ in (−h, 0), which is a poly-

nomial function of θ of degree n− 1.
Re-injecting this expression into the definition of Vn in
(9) and its derivative in (11) yields

Vn(φ) = [ φ0
φn ]

⊤
Φ+

n [
φ0
φn ], V̇n(φ) =

[ φ0
φn
φh

]⊤
Φ−

n

[ φ0
φn
φh

]
,

where we have used the equality case of Lemma 1, since
φ is a polynomial of degree n−1 over (−h, 0). Similarly,
re-injecting (35) into both inequalities in (27) leads to

Vn(φ)≥ε
(
|φ0|2 + φ⊤

n Inφn

)
≥ε | φ0

φn |
2
, (36a)

V̇n(φ)≤−ε
(
|φ0|2+φ⊤

n Inφn+|φh|2
)
≤−ε

∣∣∣ φ0
φn
φh

∣∣∣2, (36b)

for a sufficiently small scalar ε > 0. Therefore, the follow-

ing inequalities hold for any vector
[ φ0
φn
φh

]
in Rnx+(n+1)nz

[ φ0
φn ]

⊤
Φ+

n [
φ0
φn ] ≥ ε | φ0

φn |
2
,
[ φ0
φn
φh

]⊤
Φ−

n

[ φ0
φn
φh

]
≤ −ε

∣∣∣ φ0
φn
φh

∣∣∣2 .
Hence matrices Φ+

n and Φ−
n are necessarily positive and

negative definite, respectively. □

4 Necessity of the LMI condition: Estimation of
the order N∗

This section aims at providing an estimation of the order
N∗ for which the sufficient LMI conditions of Theorem 2
are necessarily satisfied if the system is assumed to be
GES for a given delay h.

Theorem 5 If the trivial solution of system (1) is GES
for a given delay h, then there exist matrices (PN∗ , R, S)
in Snx+N

∗nz × Snz
+ × Snz

+ such that LMI (8) holds at
the order n = N∗ given by

N∗=5+

⌈(
( 4
1+h2 +|A|+|B|)ϱ1+ϱ2+2ϱ3

)2(
1+h2

)2⌉
,

(37)
where parameters ϱ1, ϱ2, ϱ3 are defined by (19), (21), (23),

but are recalled here for consistency

ϱ1 =
√
nx
(
π
2

) 3
2 eh|M|

∣∣M2N−1
∣∣h2 |B| ,

ϱ2 = 1
2

√
nx
(
π
2

) 3
2 eh|M|

∣∣M4N−1
∣∣h3 |B| ,

ϱ3 =
√
2π(1 +

√
nxπhe

h|M|
∣∣M2N−1

∣∣)h |B|2 .

Proof : The key step for the estimation ofN∗ appears in
the proof of Corollary 2, more particularly in equations
(34), that are recalled here for the sake of readability
(with |C| = 1),

0 < µ1,n = σ(W1)−(3+|A|)ū1,n−ū2,n−ū3,n,
0 < µ2,n = σ(W2)−(1+|B|)ū1,n−ū3,n,
0 < µ3,n = 1

hσ(W3)−(|A|+|B|)ū1,n−ū2,n−2ū3,n.

(38)
As matrices (W1,W2,W3) are arbitrary, it is possible to
select for all λ > 0

W1 = λη1Inx
, W2 = λη2Inz

, hW3 = λη3Inz
, (39)

where η1, η2 and η3 > 0 are positive scalars such that
η1+η2+η3 = 1. This selection makes that σ(W1) = λη1,
σ(W2) = λη2 and σ(W3) = 1

hλη3 so that |W | = λ.
Therefore, the upper bounds of the approximation errors
given in (18), (20) and (22) verify for all n ≥ 6,

ū1,n =
ϱ1√
n− 3

λ ≤ ϱ1√
n− 5

λ,

ū2,n =
ϱ2√
n− 5

λ,

ū3,n =
ϱ3√
n− 3

λ≤ ϱ3√
n− 5

λ.

The objective is now to evaluate the necessary condition
obtained in the previous section, more particularly the
ones arising from inequalities (38). We select then η1, η2
and η3 as follows

η1 ≥ ϱ1(3 + |A|) + ϱ2 + ϱ3√
n− 5

,

η2 ≥ ϱ1(1 + |B|) + ϱ3√
n− 5

,

η3 ≥ ϱ1(|A|+ |B|) + ϱ2 + 2ϱ3√
n− 5

h2.

Recalling that η1 + η3 + η3 = 1, we obtain

4ϱ1+
(
(|A|+|B|)ϱ1+ϱ2+2ϱ3

)
(1+h2)

√
n− 5

≤ 1,

which yields condition (37). □
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Table 1
Sufficiency: maximal allowable delay h which satisfies (8).

n = 1 n = 2 n = 3 Expected

Ex. 1 0.577 0.604 0.604 atan
√
3√

3
≃ 0.604

Ex. 2 − 1.600 1.603 1.603

Remark 3 It is worth noticing that the minimal order
N∗ given by (37) is an over estimate of the necessary or-
der. Indeed, to get such estimate, several over bounding
approximation have been performed, leading to a conser-
vative estimation. Nevertheless, this is a first attempt in
this direction, which has not been provided in the context
of LMI conditions for the stability of time-delay systems.
Several improvements to get a more accurate estimation
is led to future works. One of the possible improvements
would consider, for instance, more accurate estimation
of ϱ1, ϱ2, ϱ3 which would greatly reduce the estimation by
using the fact that U is infinitely continuous on [−h, 0].
Another possibility to improve our estimation of N∗ is to
calculate the minimal order directly from inequality (25).

5 Numerical results

The numerical application of Theorems 2 and 5 is com-
mented and illustrated on the following academic exam-
ples corresponding to (1) with

Example 1 A = 1 and Ad = −2.

Example 2 A = [ 0 0
0 0 ] and Ad =

[ −1 0.2
−0.1 0

]
.

Example 3 A=

[
0 0 1 0
0 0 0 1

−10−λ 10 0 0
5 −15 0 − 1

4

]
and Ad=

[
0 0 0 0
0 0 0 0
λ 0 0 0
0 0 0 0

]
.

First, we recall the efficiency of the sufficient stability
condition of Theorem 2. For Examples 1 and 2, Table 1
reports the maximal allowable delay, for which LMI (8)
at order n = 1, 2, 3 are satisfied. Figure 1a shows the
stability region for Example 3 achieved by the same con-
dition for several orders. One can see that in this table
and in this figure the efficiency of Theorem 2 even for
very low orders n to provide an inner approximation of
the stability regions.

Thanks to Theorem 5, these LMI conditions of stability
are proven to be also necessary. Therefore, the inner ap-
proximation mentioned above is supposed to converge
toward the expected regions of stability as the order n
increases. Table 2 reports the estimated order N∗ for
which the LMI become necessary. Similarly, Figure 1b
shows the values of N∗ given by (37) for various values
of (λ, h) ∈ [0.1, 10]× [0, 3]. Clearly the values ofN∗ com-
puted here are very too large to propose tractable test
of instability in comparison to [12]. Nonetheless, The-
orem 5 provides a theoretical estimation of N∗, from
which the sufficient LMI conditions becomes necessary.

Table 2
Necessity: estimated order N∗ given by (37).

h = 0.1 h = 0.5 h = 1 h = 2

Ex. 1 75 108 1010 1013

Ex. 2 6 537 107 1010

(a) Sufficiency: stability areas in the plan (λ, h) given by (8)
for n ∈ {1, 2, 3, 4, 5}.

(b) Necessity: order N∗ in the plan (λ, h) given by (37).

Fig. 1. Example 3.

This estimation is a by-product of our main result that
has not been optimized in this paper. Some guidelines
to improve this estimation have been suggested in Re-
mark 3.

Interestingly Figure 1b shows that increasing both λ and
h makes that N∗ also increases very fast and reach very
large values. Indeed, formula (37) shows that the order
N∗ grows as the delay h or the norm |B| increase, respec-
tively in h8e2h|M | and |B|4. It is also worth noticing that
when the parameter λ and h are getting closer to the
black lines, the estimationN∗ increases evenmore faster.
These black lines correspond to the situation where some
roots of the time-delay system cross the imaginary axis.
This makes sense in light of Remark 2, because if charac-
teristic roots are approaching the imaginary axis, then
matrix N tends to a singular matrix and

∣∣N−1
∣∣ tends

to infinity. Hence, the upper bounds ϱ1, ϱ2, ϱ3 also tend
to infinity. All together, this ascertainment can be cor-
related with Figure 1a and can explain why some stable
regions are difficult to reach with LMI conditions (8),
especially for low orders n.
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6 Conclusions

This paper studied the convergence of sufficient LMI
conditions for the stability analysis of time-delay sys-
tems, based on the Bessel-Legendre inequalities. While
the framework of Bessel-Legendre already showed its
relevance regarding the hierarchical structure of the
LMI, i.e. to increase the order can only reduce the con-
servatism, the main contribution of this paper demon-
strates that this framework also offers an asymptotically
necessary condition of stability for time-delay systems.
In other words, it is now proven that if a time-delay
system is stable, then, there exists an order N∗ such
that these LMI conditions are verified at least at this
order. A numerical estimation of this necessary order
has also been provided, ensuring then that if the LMI
conditions are not verified at this order, then the sys-
tem is proven to be unstable. To summarize, the LMI
conditions arising from the Bessel-Legendre inequality
are sufficient and asymptotically necessary.

The estimation of the order N∗ provided in this paper
can be numerically very large, even on some simple ex-
amples. This can be seen as a major drawback of the
contribution. Providing more accurate estimations is let
to future direction of research. A generalization to other
approximation or discretization methods or the investi-
gation of combined procedures could also be considered.

A Preliminaries on Legendre Polynomials for
the technical proofs

In this section, several additional properties of Legendre
polynomials are presented and are of high importance
in the next technical developments that are required to
the proofs of the main results of this paper.

Property 3 The Legendre polynomials verify the fol-
lowing properties

(i) Point-wise values: The Legendre polynomials are
evaluated point wisely by

lk(0) = (−1)k, lk(1) = 1, l′k(1) = k(k + 1), ∀k ∈ N.
(A.1)

(ii) Evenness and oddness: For any θ1 and θ2 in [−h, 0]
and n in N∗, the following equation holds

ℓ⊤n

(
h−θ1
2h

)
Inℓn

(
h+θ2
2h

)
=ℓ⊤n

(
h−θ2
2h

)
Inℓn

(
h+θ1
2h

)
.

(A.2)
(iii) Bound: For any θ in [0, 1], the Legendre polynomials

verify the following inequalities

|lk(θ)| ≤ 1, ∀k ∈ N, (A.3)

|lk(θ)| ≤
1

2

√
π

2kθ(1− θ)
, ∀k ∈ N∗. (A.4)

(iv) Derivation: For any θ in [0, 1], the Legendre polyno-
mials verify the following differentiation rule

lk(θ) =
1

2(2k + 1)

(
l′k+1(θ)− l′k−1(θ)

)
, ∀k ∈ N∗.

(A.5)
(v) Bound on the derivative: For any θ in [0, 1], the

Legendre polynomials verify the following inequality

|l′k(θ)| ≤ |l′k(1)| = k(k + 1), ∀k ∈ N. (A.6)

Proof : The proofs can be found in [9] except the one
of (A.4) which is given by [29, Theorem 61]. □

B Symmetric property

In the core of the paper, we have used the following
property satisfied by the Legendre approximated error
Ũ2,n of function B⊤UB on the interval [−h, h].

Property 4 The approximation error Ũ2,n defined

in (16) verifies Ũ2,n(θ) = Ũ⊤
2,n(−θ), for all θ ∈ [−h, 0].

Proof : From the definitions of Ũ2,n and U2,n, we have

Ũ⊤
2,n(−θ) = B⊤U⊤(−θ)B

− 1

2h

(∫ h

−h

ℓ⊤n

(
h−θ
2h

)
Inℓn

(
h+θ1
2h

)
B⊤U⊤(θ1)Bdθ1

)
.

Then, property (A.2) of the Legendre polynomials and
since ℓ⊤n

(
h−θ1
2h

)
Inℓn

(
h+θ
2h

)
is an nz × nz matrix that is

proportional to Inz
, it commutes with B⊤U⊤(θ′)B, so

that the previous expression writes

Ũ⊤
2,n(−θ) = B⊤U⊤(−θ)B

− 1

2h

(∫ h

−h

B⊤U⊤(θ1)Bℓ
⊤
n

(
h−θ1
2h

)
Inℓn

(
h+θ

2h

)
dθ1

)
.

Recalling that U⊤(−θ) = U(θ) holds for all θ in [−h, h]
and performing the change of variable θ2 = −θ1, the
previous expression becomes

Ũ⊤
2,n(−θ) = B⊤U(θ)B

− 1

2h

(∫ h

−h

B⊤U(θ2)Bℓ
⊤
n

(
h+θ2
2h

)
dθ2

)
Inℓn

(
h+θ

2h

)
,

which is the definition of Ũ2,n(θ). □
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C Proof of Lemma 3

The next properties reflect the fact that U has contin-
uous and bounded second and fourth order derivatives
on [−h, 0) (or (0, h]). Their bound are provided therein.

Property 5 The Lyapunov matrix U associated to W
defined in (13) satisfies

sup
θ∈[−h,0)

∣∣∣U (2)(θ)
∣∣∣= sup

θ∈(0,h]

∣∣∣U (2)(θ)
∣∣∣ ≤ ρ |W | , (C.1)

sup
θ∈(0,h]

∣∣∣U (4)(θ)
∣∣∣ ≤ ρ′ |W |, (C.2)

with parameters ρ, ρ′ given by

ρ=
√
nxe

h|M| ∣∣M2N−1
∣∣ , ρ′=√

nxe
h|M| ∣∣M4N−1

∣∣ ,
(C.3)

and matrices M, N given by (14).

Proof : Thanks to the equivalence of matrix norms,
inequalities

∣∣M⊤
∣∣ = |M | ≤ |vec(M)| ≤ √

p |M | hold, for
any squareM of dimension p. Then, for all θ in [0, 1], we
have ∣∣∣U (k)(θ)

∣∣∣ ≤ ∣∣[ In2
x

0 ]eθMMkN−1
[−vec(W )

0

]∣∣ ,
≤
∣∣eθM∣∣ ∣∣MkN−1

∣∣ |vec(W )| ,
≤

√
nx
∣∣eθM∣∣ ∣∣MkN−1

∣∣ |W | .

Moreover, recalling the definition of exponential matri-

ces, i.e. eθM =
∑∞

k=0
(θM)k

k! , an upper bound of |eθM| is
obtained as follows

∣∣eθM∣∣≤ ∞∑
k=0

∣∣∣∣(θM)k

k!

∣∣∣∣≤ ∞∑
k=0

|θ|k|M|k

k!
≤

∞∑
k=0

hk|M|k

k!
=eh|M|,

which yields the results (C.1) and (C.2). □

C.1 Proof of item (i) of Lemma 3

Proof : The objective of the proof is to provide an up-
per bound of the norm of the approximation error Ũ1,n,
which depends explicitly on order n. To do so, let us first
rewrite the expression of this error as follows

Ũ1,n(θ) = U(h+θ)B−
n−1∑
k=0

Uk
1 lk

(
h+θ

h

)
,

with Uk
1 being the projection of U(h+ θ)B onto the kth

Legendre polynomial, that is

Uk
1 =

2k + 1

h

∫ 0

−h

U(h+θ)Blk

(
h+θ

h

)
dθ,

= (2k + 1)

∫ 1

0

U(hθ)lk(θ)dθ. (C.4)

Using the differentiation rule (A.5), the previous expres-
sion can be rewritten as

Uk
1 =

1

2

∫ 1

0

U(hθ)B
(
l′k+1(θ)− l′k−1(θ)

)
dθ. (C.5)

Then, an integration by parts yields

Uk
1 =

h

2

∫ 1

0

U ′(hθ)B (lk−1(θ)− lk+1(θ)) dθ, (C.6)

where we have used lk+1(0) = lk−1(0) and lk+1(1) =
lk−1(1) as a by-product of (A.1), which cancels the first
terms of the integration by parts. Repeating this opera-
tion, we get

Uk
1 =

h2

4(2k−1)

∫ 1

0

U ′′(hθ)B (lk−2(θ)− lk(θ)) dθ

− h2

4(2k + 3)

∫ 1

0

U ′′(hθ)B (lk(θ)− lk+2(θ)) dθ.

Then, Property (A.4) ensures that

∣∣Uk
1

∣∣ ≤ √
π
2h

2 |B|
2
√
k − 2(2k − 1)

∫ 1

0

|U ′′(hθ)|√
θ(1− θ)

dθ.

Using (C.1), (2k−1) ≥ 2(k−2) and
∫ 1

0
dθ√

θ(1−θ)
= π, the

following upper bound is obtained

∣∣Uk
1

∣∣ ≤ ρ(π2 )
3
2h2 |B| |W |

2(k − 2)
3
2

, ∀k ≥ 3.

Applying now (A.3) ensures that for any integer N ≥ n
and for all θ in [−h, 0]∣∣∣∣∣

N∑
k=n

Uk
1 lk

(
h+θ

h

)∣∣∣∣∣ ≤
N∑

k=n

∣∣Uk
1

∣∣ ≤ N∑
k=n

ϱ1 |W |
2(k − 2)

3
2

,

denoting ϱ1 = ρ(π2 )
3
2h2 |B|. Finally, using an integral

over estimation of the sum, we obtain∣∣∣∣∣
N∑

k=n

Uk
1 lk

(
θ+h

h

)∣∣∣∣∣ ≤ ϱ1 |W |
(

1√
n− 3

− 1√
N − 3

)
.
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We conclude that the approximation error Ũ1(θ) =
∞∑

k=n

Uk
1,nlk

(
θ+h
h

)
is uniformly bounded as in (18) and,

consequently, converges uniformly to zero as n tends to
infinity. □

C.2 Proof of item (ii) of Lemma 3

Proof : The objective of the proof is to demonstrate the
uniform convergence towards zero of

Ũ ′
1,n(θ) =

d

dθ

(
U(θ + h)B−U1,nℓn

(
θ+h

h

))
,

= U ′(θ + h)B− 1

h

n−1∑
k=0

Uk
1 l

′
k

(
θ+h

h

)
,

with Uk
1 given by (C.4). Here, we repeat the pro-

cess (C.5)-(C.6) four times successively to obtain

Uk
1=

(
h

2

)4

∫ 1

0

U (4)(hθ)B

(
4∑

i=0

(
4

i

)
αk,ilk−4+2i(θ)

)
dθ

(2k−5)(2k−3)(2k−1)

where αk,i are positive coefficients whose expression is
omitted for simplicity but which verify |αk,i| ≤ 1. There-
fore, an upper bound of the norm of Uk

1 can be derived
using property (A.4), yielding

∣∣Uk
1

∣∣ ≤ 1
2

√
π
2h

4 |B|
(2k−5)(2k−3)(2k−1)

∫ 1

0

∣∣U (4)(hθ)
∣∣√

(k−4)θ(1− θ)
dθ.

Using (C.2), (2k − 5) ≤ 2(k − 4) and
∫ 1

0
dθ√

θ(1−θ)
= π,

the following upper bound is obtained

∣∣Uk
1

∣∣ ≤ ρ′(π2 )
3
2h4 |B| |W |

2(k − 4)
3
2 (2k−3)(2k−1)

, ∀k ≥ 5. (C.7)

We denote ϱ2 = 1
2ρ

′(π2 )
3
2h3 |B| and we use this upper

bound to get to the result. The application of (A.6)
and (C.7) give, for any integer N ≥ n ≥ 5 and for all θ
in [−h, 0],

∣∣∣∣∣ 1h
N∑

k=n

Uk
1 l

′
k

(
θ+h

h

)∣∣∣∣∣ ≤
N∑

k=n

∣∣Uk
1

∣∣ k(k + 1)

h
,

≤
N∑

k=n

ϱ2 |W | k(k + 1)

(k − 4)
3
2 (2k−3)(2k−1)

.

Noticing that k(k+1)
(2k−1)(2k−3) <

1
2 for all k ≥ 5, we obtain∣∣∣∣∣ 1h

N∑
k=n

Uk
1 l

′
k

(
θ+h

h

)∣∣∣∣∣ ≤
N∑

k=n

ϱ2 |W |
2(k − 4)

3
2

.

Finally, an integral over estimation of the sum leads to∣∣∣∣∣ 1h
N∑

k=n

Uk
1 l

′
k

(
θ+h

h

)∣∣∣∣∣≤ϱ2 |W |
(

1√
n−5

− 1√
N−5

)
.

We conclude that the approximation error Ũ ′
1,n(θ) =

d
dθ

∞∑
k=n

Uk
1 lk
(
θ+h
h

)
is uniformly bounded as in (20) and

converges to zero as n tends to infinity. □

C.3 Proof of item (iii) of Lemma 3

Proof : The objective of the proof is to demonstrate the
uniform convergence towards zero of

Ũ2,n(θ) = B⊤U(θ)B−U2,nℓn

(
θ+h

2h

)
,

= B⊤U(θ)B−
n−1∑
k=0

Uk
2 lk

(
θ+h

h

)
,

with Uk
2 the k-th coefficient of matrix U2,n given by

Uk
2 =

2k + 1

2h

∫ h

−h

B⊤U(θ)Blk

(
θ+h

2h

)
dθ,

= (2k + 1)

∫ 1

0

B⊤U
(
h(2θ − 1)

)
Blk(θ)dθ. (C.8)

Using the differentiation rule (C.5) and integration by
parts (C.6) on both intervals (0, 12 ) and ( 12 , 1), we obtain

Uk
2 = h

∫ 1

0

B⊤U ′(h(2θ − 1)
)
B(lk−1(θ)− lk+1(θ)) dθ.

since lk+1(θ) = lk−1(θ) for θ ∈ {0, 1} is ensured by (A.1)
and since the continuity of U

(
h(2θ − 1)

)
at θ = 1

2 is en-
sured by Property 2 (i). Then, repeating this operation,
we get to

Uk
2= − h

2(2k−1)
B⊤∆U ′(0)B (lk(1/2)− lk−2(1/2))

+
h2

(2k−1)

∫ 1

0

B⊤U ′′(h(2θ−1)
)
B (lk−2(θ)−lk(θ))dθ

+
h

2(2k+3)
B⊤∆U ′(0)B (lk+2(1/2)− lk(1/2))

− h2

(2k+3)

∫ 1

0

B⊤U ′′(h(2θ−1)
)
B (lk(θ)−lk+2(θ))dθ.
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where ∆U ′(0) := limϵ→0 (U
′(ϵ)− U ′(−ϵ)). Then, an up-

per bound of the norm of Uk
2 can be derived by the use

of property (A.4) for θ ∈ [0, 1] and especially for θ = 1
2 ,

yielding

∣∣Uk
2

∣∣≤ √
2πh |B|2√

k−2(2k−1)

(
|∆U ′(0)|+h

∫ 1

0

∣∣U ′′(h(2θ−1)
)∣∣√

θ(1− θ)
dθ

)
.

Thanks to Property 2 (ii), upper bound (C.1), inequality

(2k−1) ≤ 2(k−2) and
∫ 1

0
dθ√

θ(1−θ)
= π, we have

∣∣Uk
2

∣∣≤√
2πh |B|2

2(k − 2)
3
2

(1+ρπh) |W | = ϱ3 |W |
2(k − 2)

3
2

, ∀k ≥ 3.

where notation ϱ3 :=
√
2π(1+ρπh)h |B|2 is introduced.

For the same reasons stated in the proof of Lemma 3 (i),
for any integer N ≥ n and for all θ in [0, 1], the following
upper bound is obtained∣∣∣∣∣

N∑
k=n

Uk
2 lk

(
θ+h

h

)∣∣∣∣∣ ≤ ϱ3 |W |
(

1√
n− 3

− 1√
N − 3

)
.

We conclude that the series Ũ2,n(θ) =
∞∑

k=n

Uk
2,nlk

(
θ+h
h

)
exists, converges to zero as n tends to infinity and that
inequality (22) holds. □
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