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Necessary and sufficient stability condition for time-delay systems arising
from Legendre approximation

Bajodek, M. and Gouaisbaut, F. and Seuret, A.

Abstract— Recently, sufficient conditions of stability or instabil-
ity for time-delay systems have been proven to be necessary. In
this way, a remarkable necessary and sufficient condition has then
been developed by Gomez et al. It is presented as a simple test of
positive definiteness of a matrix issued from the Lyapunov matrix.
In this paper, an extension of this result is presented. Without
going into details, the uniform discretization of the state has been
replaced by projections on the first Legendre polynomials. Like
Gomez et al., based on convergence arguments, the necessity
is obtained in finite order, which can be calculated analytically.
Compared to them, by relying on the fast convergence rate of
Legendre approximation, the required order to ensure stability has
been reduced. Thanks to this major modification, as shown in the
example section, it is possible the find stable regions for low orders
and unstable ones for even smaller orders.

I. INTRODUCTION

As soon as time processing or analog-to-digital converters interfere
in between dynamical systems, a delay is introduced. To take into
consideration this latency and to analyze the stability of time-delay
systems, numerous numerical methods have been deployed [19]. To
enumerate some of them, which provide an exact indication on the
stability properties, one can look at D-partition [20] issued from
modulus-argument calculation is the simplest one to implement. Ap-
proximated models issued from pseudospectral [1] or tau-method [16]
are also often plebiscited. Indeed, besides that bifurcation analysis
leads to stability regions, an outline of the root locus can be drawn.
To avoid case by case study, frequency delay-dependant techniques
have also been developed. The H∞ analysis provides nice stability
results [18] and foments the design of controllers [7], [21]. Further-
more, stability areas can be inferred by quasi-polynomials approaches
and the set up of Mikhaı̈ov diagrams [22]. Lastly, in time domain, it is
well-known that the existence of the Lypaunov-Krasovskii functional
(LKF) is a necessary and sufficient condition of stability [17] but that
the sufficiency is not numerically tractable. Recently, this has been
made feasible by discretization of the LKF [5]. Applied to time-delay
systems with integral [23], neutral [13] or multiple delays [14] types,
numerical necessary and sufficient conditions have been presented
as scalable criteria of positive definiteness of a certain matrix Kr∗
defined in [12].

In this paper, one focuses on this last test. From one side, the neces-
sity is directly obtained by construction of the LKF (see [6]). From
the other side, the sufficiency is obtained asymptotically (see [9]).
In practice, if the positiveness is satisfied up to a certain order
r∗ [11], then the stability is assessed. Nevertheless, these orders seem
extremely large and pessimistic. Then, is it possible to extend the
methodology developed by Mondié et al [11] to other support basis?
Do the numerical complexity of the numerical test can be reduced? In
that direction, we investigated another way to approximate the LKF
by projection of the infinite-dimensional state on the first Legendre
polynomials. The selection of Legendre polynomials is not harmless
insofar promising sufficient stability results have been obtained for
low orders in the linear matrix inequality framework [24]. By taking
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the benefits of Legendre approximation, in particular the fast conver-
gence rate in ρn

n! , this work explains how the necessary and sufficient
criterion of stability is preserved. With this improved technique, the
required orders for the new positivity test is drastically reduced. Thus,
it is possible to predict the stability of time-delay systems in a faster
and easier way.

The article is organized as follows. In Section II, based on the
complete LKF, the lemmas used in [11], [12] to prove the neces-
sity and sufficiency are recalled. To complete these preliminaries,
Section III is dedicated to the convergence lemma occuring when
performing Legendre approximations. Then, our new numerical nec-
essary and sufficient condition of stability is exposed in Section IV.
The last section is dedicated to the evaluation and comparison of our
contribution.

Notations : Throughout the paper, N and Rm×p and Sm denote
the set of natural numbers, real matrices of size m×p and symmetric
matrices of size m, respectively. For any square matrix M ∈ Rm×m,
the transpose of M is denoted M> and H(M) is equal to M+M>.
For any matrix M ∈ Sm, M � 0 means that M is positive definite
(i.e. the eigenvalues of M are strictly positive). Furthermore, for any
matrix M in Rm×p, the 2-norm of M is |M | =

√
σ̄(M>M),

where σ̄ defines the maximal eigenvalue. The vector u = vec(M)
in Rmp collocates the columns of matrix M . Moreover, notation
δjk represents the Kronecker delta, symbol ⊗ denotes the Kronecker

product, matrix
[
M1 M2
∗ M3

]
stands for

[
M1 M2

M>2 M3

]
, Im is the identity

matrix of size m and dre is the ceiling part of the real number
r. The set of piece-wise continuous functions from [−h, 0] to Rm
with a finite number of discontinuity points and, for each continuity
interval, finite right-hand-side and left-hand-side limits is noted
Cpw(−h, 0;Rm). For any function ϕ in such space, the induced
norm is ‖ϕ‖ = sup

[−h,0]
|ϕ(τ)|. Denote also C∞(−h, 0;Rm), the set of

smooth functions from [−h, 0] to Rm. Lastly, the standard notation

xt :

{
[−h, 0]→ Rm

τ 7→ xt(τ) = x(t+ τ)
is used for the state function.

II. LYAPUNOV NECESSARY AND SUFFICIENT STABILITY
CONDITION FOR TIME-DELAY SYSTEMS

A. Time-delay system and Lyapunov-Krasovskii functional

Consider a time-delay system given by

ẋ(t) = Ax(t) +Adx(t− h), ∀t ≥ 0, (1)

where the delay h > 0 and matrices A,Ad in Rm×m are con-
stant and known. Such a system is initialized by x0 = ϕ in
Cpw(−h, 0;Rm) and, for any t ≥ 0, the solution xt belongs to
Cpw(−h, 0;Rm).

The trivial solution of system (1) is said to be exponentially stable
if there exist κ, µ > 0 such that ‖xt‖ ≤ κe−µt ‖x0‖, for any t ≥ 0.

In order to study the stability of system (1), let recall the Lyapunov-
Krasovskii functional introduced in [17]:

V (ϕ) =

∫ 0

−h

∫ 0

−h

[
ϕ(0)
ϕ(τ1)
ϕ(τ2)

]>
Π(τ1, τ2)

[
ϕ(0)
ϕ(τ1)
ϕ(τ2)

]
dτ1dτ2, (2)
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for any ϕ ∈ Cpw(−h, 0;Rm), where matrix

Π(τ1, τ2)=

U(0)

h2
1

2hU
>(h+ τ1)Ad

1
2hU

>(h+ τ2)Ad
∗ 1

2hIm
1
2A
>
d U(τ1 − τ2)Ad

∗ ∗ 1
2hIm

,
(3)

and where the Lyapunov matrix U in Rm×m is given by U =
vec−1(U) since the vector U = vec(U) is given analytically by

U(τ) =

{
[ Im2 0 ]eτMN−1[−Im

0

]
if τ ≥ 0,

[ 0 I
m2 ]e(h+τ)MN−1[−Im

0

]
if τ < 0,

(4)

with Im the vector which stacks the columns of Im and with

M =

[
A>⊗Im A>d ⊗Im
−Im⊗A>d −Im⊗A

>

]
,

N =

[
A>⊗Im+Im⊗A> A>d ⊗Im

I
m2 0

]
+

[
Im⊗A>d 0

0 −I
m2

]
ehM .

(5)

Remark 1: Notice that the Lyapunov matrix U exists if and only
if matrix N is non singular. As explained in [17], such a limitation is
called the Lyapunov condition and excludes all systems which have
eigenvalues s1, s2 satisfying |s1 + s2| = 0.

B. Necessary and sufficient stability condition

Under the Lyapunov condition, the authors of [11], [17] provide
lemmas, respectively, on a sufficient and necessary condition for
exponential stability of time-delay system (1). They are recalled
below.

Lemma 1: Let system (1) be exponentially stable, then there exists
η > 0 such that,

V (ϕ) ≥ η

(
|ϕ(0)|2+

1

h

∫ 0

−h
|ϕ(τ)|2 dτ

)
, ϕ ∈ Cpw(−h, 0;Rm),

(6)
with the Lyapunov-Krasovskii functional V defined by (2).

Proof: As in [15, Theorem 5.19], we introduce

W (ϕ) = V (ϕ)−
∫ 0

−h

[
ϕ(0)
ϕ(τ)

]>[ ε
h Im 0

0 1
2 Im

][
ϕ(0)
ϕ(τ)

]
dτ. (7)

Functional V is built so that the derivative along trajectories xt of
system (1) gives

Ẇ (xt) = −
[

x(t)
x(t−h)

]>[ εH(A)+ 1
2 Im εAd

∗ 1
2 Im

][
x(t)

x(t−h)

]
dτ, (8)

for which there exists a sufficiently small ε > 0 such that Ẇ (xt) ≤ 0.
Then, integrating from 0 to ∞ and assuming exponential stabil-
ity yields W (x0) ≥ 0, for any initial conditions x0 = ϕ in
Cpw(−h, 0;Rm). Thus,(6) holds with η = min(ε, h).

Lemma 2: Assume that system (1) has an eigenvalue with a strictly
positive real part. Then,

∃ ϕ ∈ S, V (ϕ) ≤ −η0 = −e
−2rh

4r
cos2(b0) < 0, (9)

where S stands for the compact set given by

S =

{
ϕ ∈ C∞(−h, 0;Rm);

|ϕ(0)| = 1, ∀k ∈ N
max

[−h,0]
|ϕ(k)(τ)| ≤ rk

}
, (10)

with a system dependent parameter r given by

r = |A|+ |Ad| , (11)

and with b0 is the unique root on [0, π2 ] of

g(b) = sin4(b)
(

(hr)2 + b2
)
− (hr)2 = 0.

Proof: The proof is similar to the one given in appendix in [11].
THe only difference relies on the definition of set S that has been
extended to C∞ instead of C1. Let denote s0 = α + iβ be the
eigenvalue with positive real part of system (1). According to [10],
there exists a vector C = C1 + iC2 such that |C2| ≤ |C1| = 1,
C>2 C1 = 0 and that

(s0Im −A−Ade−hs0)C = 0.

Consequently, we have

α ≤ |s0| ≤ |A|+ |Ad| = r. (12)

and,
x̄(t) = eαt (cos(βt)C1 − sin(βt)C2) , ∀t ∈ R,

is a solution of system (1). Then, by construction, the derivatives
of V (x̄t) along the trajectories of (1) yields to

V̇ (x̄t) = − |x̄(t− h)|2 . (13)

After some calculations developed in [11], we also obtain that

V (x̄0) ≤ −e
−2αh

4α
cos2(b0) ≤ −e

−2rh

4r
cos2(b0) = −η0. (14)

Let ϕ = x̄0, which belongs to C∞(−h, 0;Rm) and satisfies |ϕ(0)| =
|x(0)| = 1. We finally prove by induction that

∣∣∣ϕ(k)(τ)
∣∣∣ ≤ rkeατ ,

for any τ in [−h, 0]. Initially, |x̄(τ)| ≤ eατ holds on [−h, 0]. Then,
assuming

∣∣∣x̄(k)(τ)
∣∣∣ ≤ rkeατ , since x̄ satisfies (1) and is infinitely

differentiable, we obtain∣∣∣x̄(k+1)(τ)
∣∣∣ ≤ |A| ∣∣∣x̄(k)(τ)

∣∣∣+ |Ad|
∣∣∣x̄(k)(τ − h)

∣∣∣ ≤ rk+1eατ .

Therefore, max
[−h,0]

∣∣∣ϕ(k)(τ)
∣∣∣ ≤ rk for any k ∈ N.

III. PRELIMINARIES ON LEGENDRE POLYNOMIALS

A. Legendre approximation

Recall the Legendre polynomials considered on [−h, 0] and defined
as

∀k ∈ N, lk(τ) = (−1)k
k∑
j=0

(−1)j( kj )( k+j
j )

(
τ+h
h

)j
, (15)

where ( kj ) stands for the binomial coefficient [8].
These polynomials {lk}k∈N form an orthogonal sequence, which

spans the space of square-integrable functions [8].
In the sequel, an approximation on the n first Legendre polynomi-

als is performed. For the sake of simplicity, introduce matrix `n in
Rnm×m given by

`n(θ)=
[
l0(θ)Im l1(θ)Im . . . ln−1(θ)Im

]>
, ∀θ ∈ [−h, 0].

(16)
For any approximation order n ∈ N∗ and any function ϕ in
Cpw(−h, 0;Rm), let us decompose

∀τ ∈ [−h, 0], ϕ(τ) = `>n (τ)Φn︸ ︷︷ ︸
ϕn(τ)

+ϕ̃n(τ), (17)

where ϕn(τ) = `>n (τ)Φn is the polynomial approximation and
ϕ̃n(τ) = ϕ(τ)−ϕn(τ) is the residual error. The vector Φn represents
the normalized n first polynomials coefficients of the function ϕ and
is defined by

Φn = In

∫ 0

−h
`n(τ)ϕ(τ)dτ ∈ Rnm, (18)
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where In is the normalization matrix given by

In =


1
h Im 0 ... 0

0 3
h Im 0

...
. . .

...
0 0 ... 2n−1

h Im

. (19)

In the sequel, the objective is to prove that the Legendre approx-
imation ϕn converges uniformly towards ϕ with respect to τ and
more interestingly to quantify the convergence rate on the subset S.

B. Convergence of the Legendre remainder
In light of polynomial approximation theory [2], [4], it results an

important convergence lemma.
Lemma 3: For any function ϕ in S, the approximation error ϕ̃n

in (17) verifies, for any ε > 0,

‖ϕ̃n‖ ≤ ε, ∀n ≥ N (ε), (20)

where N (ε) is given by

N (ε) = max

4, 1 +


hr

2
e
1+W

(
− ln(µε)

(hr2 )e

)
 , (21)

with

ρ = max

(
2,

⌈
hr

2

⌉)
, µ =

(
e

ρ

)ρ(
hr

2

)ρ−2(√
π

2
π

)−1

, (22)

and with the Lambert function [3] W :

{
R+ → R+

z 7→ W(z) = y
where

y is uniquely defined by the relation yey = z.
Proof: According to Theorem 2.5 in [25], the Legendre approx-

imation error ϕ̃n is bounded by

|ϕ̃n(τ)| ≤

√
π

2(n−1−k)
π(hr2 )k+1

(k − 1)(n− 3
2 ) . . . (n− k + 1

2 )
, (23)

≤
( eρ )ρ(hr2 )k+ρ−1

µ(n− 2) . . . (n− k)
, (24)

for any n ≥ k + 2 and k ≥ 2. Then, in order to obtain the tightest
upper bound, the maximal allowable order k which satisfies

hr
2

n− 2
< · · · <

hr
2

n− k ≤ 1,

is selected. For instance, for small value of hr
2 ∈ [0, 2], the best

order is k = n− 2. More generally, k is selected as max(2, n− ρ).
Nevertheless, since the expected n is large enough, the case n−ρ < 2
(i.e. k = 2) does not occur and we consider then k = n − ρ. For
such order k, applying the logarithm to (24) leads to

ln (µ |ϕ̃n(τ)|) ≤ ρln

(
e

ρ

)
+ (n− 1)ln

(
hr

2

)
−
n−2∑
ρ

lnk,

≤ ρln

(
e

ρ

)
+(n− 1)ln

(
hr

2

)
−
∫ n−1

ρ
lnxdx,

ln (µ |ϕ̃n(τ)|) ≤ −(n− 1)ln

(
n− 1

(hr2 )e

)
. (25)

Moreover, for any n ≥ N (ε), the following inequality(
n− 1

(hr2 )e

)
ln

(
n− 1

(hr2 )e

)
≥ W

(
− ln(µε)

(hr2 )e

)
e
W

(
− ln(µε)

(hr2 )e

)
=− ln(µε)

(hr2 )e
,

(26)
holds by definition of the Lambert function. Consequently, inequali-
ties (25) and (26) lead to |ϕ̃n(τ)| ≤ ε for all τ in [−h, 0].

IV. A NEW NECESSARY AND SUFFICIENT STABILITY
CONDITION FOR TIME-DELAY SYSTEMS

A. Approximated Lyapunov-Krasovskii functional

In this section, the Lyapunov-Krasovskii functional given by (2)
is regarded for particular functions ϕ, taken from subsets of
Cpw(−h, 0;Rm). For instance, discrete values of ϕ equally dis-
tributed on [−h, 0] have been considered in [11], [12]. Here, as
presented in the preliminaries section, we proceed differently by
taking support on the n first Legendre coefficients of ϕ denoted Φn
and expressed in (18).

Let the approximated Lyapunov-Krasovskii functional at order n

Vn(ϕ) =
[
ϕ(0)
Φn

]>
Pn
[
ϕ(0)
Φn

]
, (27)

for any ϕ ∈ Cpw(−h, 0;Rm), with matrix

Pn =

[
U(0) Qn

∗ Tn + I−1
n

]
. (28)

In the previous expression, we have

Qn =

∫ 0

−h
U>(h+ τ)Ad`

>
n (τ)dτ,

Tn =

∫ 0

−h

∫ 0

−h
`n(τ1)A>d U(τ1 − τ2)Ad`

>
n (τ2)dτ1dτ2.

(29)

Remark 2: Note that Vn does not take into consideration the
Legendre remainder ϕ̃n and can then be seen as an approximation
of the Lyapunov-Krasovskii functional V defined by (2).

Based on the previous section on polynomial approximation, the
convergence of this approximated functional towards the complete
Lyapunov-Krasovskii functional given by (2) will be established in
the next section.

B. Convergence of the approximated Lyapunov-Krasovskii
functional

Define the Lyapunov-Krasovskii functional remainder as

Ṽn(ϕ) = V (ϕ)− Vn(ϕ), ∀ϕ ∈ Cpw(−h, 0;Rm). (30)

Applying expansion (17), this remainder is rewritten as

Ṽn(ϕ) =

∫ 0

−h

∫ 0

−h

 ϕ(0)
ϕn(τ1)
ϕ̃n(τ1)
ϕ̃n(τ2)

>∆n(τ1, τ2)ϕ̃n(τ2)dτ1dτ2,

(31)
where

∆n(τ1, τ2)=


2
hU
>(h+ τ2)Ad

2A>d U(τ1 − τ2)Ad
A>d U(τ1 − τ2)Ad

1
hIm

 . (32)

The main idea is now to prove, at least in the compact subset S
of Cpw(−h, 0;Rm) given by (10), that the approximated Lyapunov-
Krasovskii functional Vn given by (27) converges towards the com-
plete Lyapunov-Krasovskii functional V given by (2). On S, its
convergence rate is also quantified. This boils down to the study
of the convergence of Ṽn towards zero, presented in the next lemma.

Lemma 4: Consider the Lyapunov-Krasovskii remainder defined
by (31). For any ϕ in S and η > 0, we have∣∣∣Ṽn(ϕ)

∣∣∣ ≤ η, ∀n ≥ N (E(η)), (33)
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where the order N (ε) is described in (21) and where

E(η) =
−(κ1 + κ2) +

√
(κ1 + κ2)2 + (h+ κ2)η

h+ κ2
,

=
η

(κ1 + κ2) +
√

(κ1 + κ2)2 + (h+ κ2)η
,

(34)

with maximal values on bounded intervals

κ1 = hmax
[0,h]
|U(τ)Ad| , κ2 = h2 max

[−h,h]

∣∣∣A>d U(τ)Ad

∣∣∣ .
Proof: Roughly bounding the norm of Ṽn, we obtain∣∣∣Ṽn(ϕ)

∣∣∣ ≤ 2κ1
h |ϕ(0)|

∫ 0
−h |ϕ̃n(τ)|dτ

+ 2κ2
h2

(∫ 0
−h |ϕn(τ)| dτ

)(∫ 0
−h |ϕ̃n(τ)| dτ

)
+κ2
h2

(∫ 0
−h |ϕ̃n(τ)| dτ

)2
+
(∫ 0
−h |ϕ̃n(τ)|2 dτ

)
.

Hence having ϕ in S leads to∣∣∣Ṽn(ϕ)
∣∣∣ ≤ 2(κ1 + κ2) ‖ϕ̃n‖+ (h+ κ2) ‖ϕ̃n‖2 . (35)

Similarly having ‖ϕ̃n‖ ≤ E(η) implies
∣∣∣Ṽn(ϕ)

∣∣∣ ≤ η. The conclusion
is finally drawn thanks to Lemma 3, which states that ‖ϕ̃n‖ ≤ E(η)
holds for any orders n greater than N (E(η)).

The proposed convergence property of the remainder will be
therefore the key to design a stability test for time-delay systems.

C. Necessary and sufficient stability test

Lemmas 1 and 2 on the approximated Lyapunov-Krasovskii func-
tional Vn defined by (27) provide then milestones of a new necessary
and sufficient condition of stability for system (1) presented below.

Theorem 1: System (1) is exponentially stable if and only if
matrix PN (E(η0)) in (28) is positive definite where N , E are defined
in (21), (34), respectively.

Proof: The necessity and sufficient sides of the proof are split.
Necessity: Assume that system (1) is exponentially stable. Let choose,
for any vector

[ x
Φn

]
in R(n+1)m and any n in N, function ϕ as

ϕ(τ) =

{
`>n (τ)Φn, ∀τ ∈ [−h, 0),
x, if τ = 0.

Thanks to Lemma 1 with ϕ given above, there exists η > 0 such that

V (ϕ) = Vn(ϕ) =
[ x

Φn

]>
Pn
[ x

Φn

]
≥ η

∣∣[ x
Φn

]∣∣2 ,
which yields Pn � 0, for all n ∈ N, since x and Φn are any
independent vectors.
Sufficiency: By contradiction, assume that system (1) is not expo-
nentially stable, and that PN (E(η0)) � 0. This means that there
exists an eigenvalue of (1) with a positive real part. Consequently,
by application of Lemma 2, there necessarily exists ϕ in S such that

Vn(ϕ) = V (ϕ)− Ṽn(ϕ) ≤ −η0 +
∣∣∣Ṽn(ϕ)

∣∣∣ , (36)

with η0 given by (9). Finally, the convergence presented in Lemma 4
with η = η0 leads to

Vn(ϕ) =
[ x

Φn

]>
Pn
[ x

Φn

]
≤ 0, ∀n ≥ N (E(η0)), (37)

which contradicts PN (E(η0)) � 0. Therefore, if PN (E(η0)) is
positive, then the system is exponentially stable.

The proposed theorem provides a numerical test to guarantee
stability or instability of time-delay systems, which follows the
following sequence.

1) Calculate n∗ = N (E(η0)) with η0 given by (9).
2) Evaluate each element of matrix Pn∗ .

3) Test the positive definiteness of matrix P∗n and conclude on
the stability properties.

Notice that this necessary and sufficient condition of stability is of
the same nature as the one in [11]. Indeed, the test is based on the
positivity of matrix Pn for a certain order n which can be given
analytically.

As a background result, a hierarchical sufficient condition for
instability of system (1) is also formulated below.

Corollary 1: If there exists n ∈ N such that matrix Pn given
by (28) is not definite positive then system (1) is not exponentially
stable. Moreover, if this statement holds at order n0, then it also
holds at any order n ≥ n0.

Proof: Relying on the necessity part of the proof of Theorem 1,
the sufficient condition for instability is directly obtained. The hier-
archy can then be proven because matrix Pn at order n ≥ n0 can
be written as

Pn =

[
Pn0 Q̄n0:n

∗ T̄n0:n+Ī−1
n0:n

]
, (38)

with

Q̄n0:n =
1

h

∫ 0

−h
U>(h+ τ)Ad ¯̀n0:n(τ)dτ,

T̄n0:n =
1

h2

∫ 0

−h

∫ 0

−h
¯̀n0:n(τ1)A>d U(τ1 − τ2)Ad ¯̀>

n0:n(τ2)dτ1dτ2,

Īn0:n =


2n0+1
h Im 0 0

0
. . . 0

0 0 2n−1
h Im

, ¯̀n0:n = [ ln0Im ... ln−1Im ]>.

Consequently, if Pn0 is not positive definite then Pn is also not
positive definite at orders n ≥ n0.

The algorithm presented in Corollary 1 consists in testing Pn � 0
from n = 1 to n = n∗. If Pn is not definite positive, then the
system is unstable. From Theorem 1, once order n∗ = N (E(η0))
is reached, one concludes that the system is stable. Compared to
Theorem 1, unstable systems can then be detected faster, thanks to
smaller orders.

It remains to solve the important problem of the numerical compu-
tation of Pn, which is necessarily to implement the algorithm. This
is detailed in the next section.

V. COMPUTATIONAL ISSUES

A. Problem identification

To perform the numerical test presented above, each coefficient
of matrix Pn given by (28) needs to be evaluated numerically. This
amounts to calculate the integral terms Qn and Tn given by (29).
Such computation can be done analytically but may turn out to be
a tough task, especially for large n or m. Technically speaking, for
m = 4 and n = 100, the exact calculation of Pn can take days on
a basic computer.

It is worth noticing that this problem is not encountered in [11]
to the matter of fact that the matrix under process contains point-
wise evaluations of the Lyapunov matrix U . Here, the situation is
more complicated since matrix Qn =

[
Q>0 Ad ... Q

>
n−1Ad

]
contains

{Qk}k∈{0,...n−1} the first Legendre coefficients of U given by

Qk =

∫ 0

−h
U(h+ τ)lk(τ)dτ, ∀k ∈ {0, . . . , n− 1}, (39)

and since Tn is composed of coefficients A>d (Tjk + (T [jk)>)Ad
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where

Tjk =

∫ 0

−h

(∫ τ1

−h
U(τ1 − τ2)lk(τ2)dτ2

)
lj(τ1)dτ1,

T [jk =

∫ 0

−h

(∫ 0

τ1

U(τ2 − τ1)lk(τ2)dτ2

)
lj(τ1)dτ1,

∀(j, k) ∈ {0, . . . , n− 1}2.

(40)

The question of the numerical implementation of these integral terms
in a reasonable time is then raised.

To face the problem and make our results tractable numerically,
an alternative for the computation of Qn and Tn is proposed.

B. Iterative calculation of Legendre coefficients of exponential
functions

To begin with, by the use of (4), the Legendre coefficients Qk, Tjk
and T [jk of the Lyapunov matrix U given in (39),(40), can be rewritten
in the vector form as follows

Qk = vec(Qk) = [ Im2 0 ]ΓkN
−1[−Im

0

]
,

Tjk = vec(Tjk) = [ Im2 0 ]Γ̄jkN
−1[−Im

0

]
,

T [jk = vec(T [jk) = [ Im2 0 ]Γ̄[jkN
−1[−Im

0

]
,

(41)

with Γk, Γ̄jk and Γ̄[jk defined by

Γk =

∫ 0

−h
e(h+τ)M lk(τ)dτ, ∀k ∈ {0, . . . , n− 1}, (42)

Γ̄jk =

∫ 0

−h

(∫ τ1

−h
e(τ1−τ2)M lk(τ2)dτ2

)
lj(τ1)dτ1, (43)

Γ̄[jk =

∫ 0

−h

(∫ 0

τ1

e(τ2−τ1)M lk(τ2)dτ2

)
lj(τ1)dτ1, (44)

∀(j, k) ∈ {0, . . . , n− 1}2.

The numerical issue can then be resumed to the calculation of Leg-
endre polynomials coefficients of exponential matrices. To perform
this calculation in a fast manner, the following relations are used.

Proposition 1: If M is a non singular matrix, then matrices Γk
in (42) can be computed by the recursive relation

Γk = Γk−2 −
2(2k − 1)

h
M−1Γk−1, ∀k ≥ 2, (45)

and initialized with[
Γ0
Γ1

]
=

[
M−1(ehM−I

2m2 )

M−1(ehM+I
2m2 )− 2

hM
−1Γ0

]
. (46)

Proposition 2: For any matrix M and for matrices Γ̄jk, Γ̄[jk
expressed in (43),(44), the following equality holds

Γ̄jk = (−1)j+kΓ̄[jk, ∀(j, k) ∈ {0, . . . , n− 1}2. (47)
Proposition 3: If M is a non singular matrix, then matrices Γ̄jk

in (43) can be computed by the following relations

Γ̄jk=


(−1)j+kΓ̄kj , ∀k<j,(
Γ̄jk−2+M−12(2k−1)

h Γ̄jk−1

−M−1 h
2j+1 (δjk − δjk−2)

)
, ∀k≥max(2, j),

(48)
and initialized with[

Γ̄00
Γ̄01
Γ̄11

]
=

 M−1(Γ0−hI2m2 )

−M−1Γ1

M−1
(

( 2
hM
−1−I

2m2 )Γ1−h3 I2m2

)
. (49)

Proof: The proofs of these propositions are respectively given
in Appendix A, B and C.

TABLE I: Evaluation and comparison of necessary and sufficient
conditions for stability for Example 1 with several delays.

Delay h Result Order n∗ ∆T Order r∗ [11]
0.1 Stable 4 0.2s 36

0.604 Stable 13 0.9s ' 108

0.605 Unstable 13 0.9s ' 108

2 Unstable 23 2.3s ' 1012

TABLE II: Evaluation of necessary and sufficient conditions for
stability for Example 1 with several control gains K and delays h.

Parameters Result Order n∗ ∆T
K = 10, h = 0.552 Stable 64 150s
K = 10, h = 0.553 Unstable 64 150s

C. Suggested solution
The problem of fast evaluation of elements of matrix Pn is solved,

as summarized in the following proposition.
Proposition 4: Assume matrix M non-singular. For any n in N,

Pn=


U(0) Q>0 Ad ... Q>n−1Ad

∗ A>d H(T00)Ad+hIm ... A>d (T0n−1+(−1)n−1T>0n−1)Ad

∗ ∗
. . .

...
∗ ∗ ∗ A>d H(Tn−1n−1)Ad+ h

2n−1 Im

,
where Qk and Tjk are taken from (41) with Γk and Γ̄jk calculated
recursively according to (45) and (48), respectively.

Proof: This result comes from matrix manipulations to construct
integrals (29) with Qk, Tjk and T [jk given by (39),(40). Then,
Proposition 2 is traduced by Tjk + (T [jk)> = Tjk + (−1)j+kT>jk
and Propositions 1 and 3 complete the proof.

By computing matrix Pn as proposed in this proposition, the
necessary and sufficient condition of stability for time-delay systems
evoked in this paper is tractable numerically. In the last section, the
effectiveness of our numerical tests of stability are commented on
several numerical examples.

VI. APPLICATION TO NUMERICAL EXAMPLES

A. Presentation of the examples
Example 1: Consider (1) with A = 1 and Ad = −2.

Example 2: Consider (1) with A =

[
0 0 1 0
0 0 0 1

−10−K 10 0 0
5 −15 0 −0.25

]
and

Ad =

[
0 0 0 0
0 0 0 0
K 0 0 0
0 0 0 0

]
, for any K > 0.

B. Numerical results on stability analysis
To evaluate the stability of these systems with respect to the delay,

Theorem 1 is applied for point-wise values of h. The results are
gathered in Table I and II for Example 1 and 2, respectively. For
both systems, one can see that the maximal h, which guarantees the
stability can be given with a precision 0.001.

The minimal order to obtain such results is also given on both
Tables. More precisely, a map of orders n∗ = N (E(η0)) from which
the necessary condition of stability becomes sufficient is depicted in
Fig 1. By D-partition, the exact limit between the stable (on the right)
and unstable (on the left) regions is superposed. Surprisingly, order
n∗ do not depends on the location of the stability areas but rather
on parameters h and K. That means that the convergence towards
the expected sets of stability is not asymptotic but reached at a finite
order n∗.

The CPU time is obviously impacted by the size of the different
matrices to be calculated. Actually, the time of processing does not
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Fig. 1: Example 2: Required orders with respect to (K,h).

Fig. 2: Example 2: Unstable areas with respect to (K,h).

come from the computation of the eigenvalues of matrix Pn but
from the evaluation of matrices Qn,Tn. By using the recurrence
relation given by Proposition 4, this time has been drastically reduced.
Nonetheless, since errors are accumulated in the recurrence relations,
the Matlab precision requirement has to be refined as n increases
(10−32 for n ' 20 against 10−300 for n ' 70) and explain the
large difference between CPU time in Table I and II.

In [11], a similar necessary and sufficient condition of stability has
also been developed. It is based on a Dirac comb on [−h, 0] whereas,
in this paper, the Legendre approximation is used. In both cases,
an approximation of the complete Lyapunov-Krasovskii functional
is made and a positivity test of finite size is deployed to analyze
the stability of time-delay systems. Orders n∗ and r∗ can then be
compared. For Example 1, one remarks that our approach is more
efficient since it requires smaller orders. This is probably due to our
approximation technique, which allows to better fit with function ϕ
and to obtain faster convergence rate enlightened in Lemma 4.

Lastly, outside of Theorem 1, a scalable sufficient criterion of
instability is mentioned in Corollary 1. It permit to detect some
unstable systems by finding a low order n such that Pn � 0 does not
hold. Indeed, for Example 2, to avoid a direct test Pn � 0 at order
n = n∗ � 100 which is time consuming, alternative tests at low
orders n = {1, . . . , 5} are realized. Then, the corresponding unstable
areas with respect to parameters h and K, denoted {U1, . . . ,U5}, are
drawn on Fig. 2. For instance, at order n = 1, if matrix

P0 =

[
U(0) Q0Ad
∗ A>d H(T00)Ad+hIm

]
is not definite positive, then the time-delay system is unstable and
takes part of U1. Even if no certificate on stability can be deduced,
great information on the unstable regions of Example 2 is obtained.
We also verified that U1 ⊂ · · · ⊂ U5 as proven in Corollary 1
but it is worth noticing that U1 already spans the main part of
unstable systems. More interestingly, the hard-to-reach areas are
located around the passage of eigenvalues on the right-half plane
(see red lines).

VII. CONCLUSIONS AND PERSPECTIVES

This contribution is an extension to the necessary and sufficient
condition for stability of time-delay systems developed in [11]. It
derives from the positivity of the complete Lyapunov-Krasovskii
functional, where an approximation of the delay Lyapunov matrix has
been considered. Stability can then be linked with the positive defi-
niteness of a certain matrix of finite size n∗, which depends on sys-
tems parameters. The originality of our work is that the approximation
is made on polynomial coefficients instead of discretized elements.
The properties of convergence satisfied by Legendre approximation
involve that our condition requires smaller orders n∗ than in [11].
Based on recurrence relations satisfied by Legendre polynomials, our
stability criterion can finally be implemented numerically in an easy
and fast way compared to linear matrix inequalities.

New tracks of research would be to cover other classes of delay
systems and infinite-dimensional systems by this methodology.

APPENDIX

A. Proof of Proposition 1

Proof: The proof is based on the relation

l′k − l
′
k−2 =

2(2k − 1)

h
lk−1, ∀k ≥ 2, (50)

satisfied by Legendre polynomials [8]. To calculate Γk, an integration
by parts leads to

Γk − Γk−2 =

∫ 0

−h
e(h+τ)M (lk−lk−2)(τ)dτ,

= − 2(2k−1)
h M−1

∫ 0

−h
e(h+τ)M lk−1(τ)dτ

+M−1
[
e(h+τ)M (lk − lk−2)(τ)

]0
−h

,

and knowing that lk(−h) = lk−2(−h) = (−1)k and lk(0) =
lk−2(0) = 1, the last term vanishes. Moreover, for k ∈ {0, 1}, we
directly have

Γ0 =

∫ 0

−h
e(h+τ)Mdτ = M−1(ehM − I2m2),

Γ1 =

∫ 0

−h
e(h+τ)M

(
2τ + h

h

)
dτ,

= M−1(ehM + I2m2)− 2

h
M−1Γ0.

B. Proof of Proposition 2

Proof: The successive changes of variables τ ′2 = −(τ2 + h)
and τ ′1 = −(τ1 + h) lead directly to

Γjk =

∫ 0

−h

(∫ −(τ1+h)

0
e(τ1+τ ′2+h)M lk(−τ ′2−h)dτ2

)
lj(τ1)dτ1,

=

∫ −h
0

(∫ τ ′1

0
e(τ
′
2−τ

′
1)M lk(−τ ′2−h)dτ ′2

)
lj(−τ ′1−h)dτ ′1,

= (−1)j+kΓ[jk,

following the parity properties of Legendre polynomials.
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C. Proof of Proposition 3

Proof: As in Appendix A, an integration by parts and (50)
ensure that Γ̄+

jk satisfies the recursive relation

Γ̄jk − Γ̄jk−2

=

∫ 0

−h

(∫ τ1

−h
e(τ1−τ2)M (lk−lk−2)(τ2)dτ2

)
lj(τ1)dτ1,

=
2(2k−1)

h M−1
∫ 0

−h

(∫ τ1

−h
e(τ1−τ2)M lk−1(τ2)dτ2

)
lj(τ1)dτ1

−M−1
∫ 0

−h
(lk − lk−2)(τ1)lj(τ1)dτ1,

=
2(2k−1)

h M−1Γ̄jk−1 − h
2j+1M

−1(δjk − δjk−2

)
.

It is also important to notice that

D = {(τ1, τ2); τ1 ∈ [−h, 0], τ2 ∈ [−h, τ1]},
= {(τ1, τ2); τ2 ∈ [−h, 0], τ1 ∈ [τ2, 0]},

which means that

Γ̄jk =

∫ −h
0

∫ τ1

−h
e(τ1−τ2)M lj(τ1)lk(τ2)dτ2dτ1,

=

∫ −h
0

∫ 0

τ2

e(τ1−τ2)M lj(τ1)lk(τ2)dτ1dτ2,

=

∫ −h
0

∫ 0

τ1

e(τ2−τ1)M lk(τ1)lj(τ2)dτ2dτ1,

= Γ̄[kj = (−1)j+kΓ̄kj .

The initial values are given by

Γ̄00 =

∫ 0

−h

(∫ τ1

−h
e(τ1−τ2)Mdτ2

)
dτ1,

=

∫ 0

−h

(
−M−1(I2m2 − e(τ1+h)M )

)
dτ1,

= −hM−1 +M−1Γ0,

then by

Γ̄01 = −Γ̄10,

= −
∫ 0

−h

(∫ τ1

−h
e(τ1−τ2)Mdτ2

)(
2τ1 + h

h

)
dτ1,

= M−1
∫ 0

−h

(
I2m2−e(τ1+h)M

)(2τ1+h

h

)
dτ1,

= −M−1Γ1.

and finally by

Γ̄11 =
∫ 0
−h

(∫ τ1
−he

(τ1−τ2)M
(

2τ2+h
h

)
dτ2

)(
2τ+h
h

)
dτ1,

= 2
hM
−1Γ̄10

− M−1∫ 0
−h

[
e(τ1−τ2)M

(
2τ2+h
h

)]τ1
−h

(
2τ1+h
h

)
dτ1,

= 2
hM
−2Γ1 − h

3M
−1 −M−1Γ1.
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