Solving Footstep Planning as a Feasibility Problem using L1-norm Minimization - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes Access content directly
Journal Articles IEEE Robotics and Automation Letters Year : 2021

Solving Footstep Planning as a Feasibility Problem using L1-norm Minimization

Abstract

One challenge of legged locomotion on uneven terrains is to deal with both the discrete problem of selecting a contact surface for each footstep and the continuous problem of placing each footstep on the selected surface. Consequently, footstep planning can be addressed with a Mixed Integer Program (MIP), an elegant but computationally-demanding method, which can make it unsuitable for online planning. We reformulate the MIP into a cardinality problem, then approximate it as a computationally efficient l1-norm minimisation, called SL1M. Moreover, we improve the performance and convergence of SL1M by combining it with a sampling-based root trajectory planner to prune irrelevant surface candidates. Our tests on the humanoid Talos in four representative scenarios show that SL1M always converges faster than MIP. For scenarios when the combinatorial complexity is small (< 10 surfaces per step), SL1M converges at least two times faster than MIP with no need for pruning. In more complex cases, SL1M converges up to 100 times faster than MIP with the help of pruning. Moreover, pruning can also improve the MIP computation time. The versatility of the framework is shown with additional tests on the quadruped robot ANYmal.

Dates and versions

hal-03435135 , version 1 (18-11-2021)

Identifiers

Cite

Daeun Song, Pierre Fernbach, Thomas Flayols, Andrea del Prete, Steve Tonneau, et al.. Solving Footstep Planning as a Feasibility Problem using L1-norm Minimization. IEEE Robotics and Automation Letters, 2021, 6 (3), pp.5961 - 5968. ⟨10.1109/LRA.2021.3088797⟩. ⟨hal-03435135⟩
26 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More