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Abstract—The generation of test cases may have to accom-
modate size-varying data structures and semantic constraints
between the data elements. This often requires the development
of custom generators. In this paper, we introduce a novel generic
tool to generate constrained and diverse test cases from a data
model. First, the user defines the model using an XML-based
domain-specific language. Then TAF generates diverse test cases
by combining random sampling with the use of an SMT solver.
The capabilities of the tool are demonstrated by four examples
of models coming from various application domains: virtual
crop fields for testing an agriculture robot, bitmap images with
a graduated background, a population of taxpayers in a tax
management system, and tree structures of diverse sizes and
heights. We show how TAF performs in terms of data diversity
and execution time. We also provide some comparison results
with an UML-based tool using SMT solving.

Index Terms—test, test input generation, fuzzing, autonomous
robots, simulation

I. INTRODUCTION

Many applications require test cases with rich and structured
data content. For example, the starting point of this work was
the simulation-based testing of mobile robots. In this context,
a test case includes the description of the 3D-scene in which
the robot is placed. The scene is a data structure composed
of elements of various types, the number of elements as well
as their attributes having to satisfy some semantic constraints.
Beyond this example, size-varying data structures and inter-
dependent data elements are quite common for information
processing systems, communication protocols, etc.

The production of synthetic test data for such systems may
involve custom test generators, but this paper investigates a
more generic solution based on a data model. The candidate
approach should: (i) require no user effort other than the
declarative specification of the data, (ii) accommodate rich
data structures and numerical properties, (ii) provide diversity
in the generated data contents and size.

We investigated the numerous existing tools for test gen-
eration. Surprisingly, we did not find any tool that could
match the three objectives at the same time. In particular,
the approaches using constraint solving seemed promising.
They fit well with declarative models. A number of mature
solvers are available off-the-shelf, including SMT (Satisfia-
bility Modulo Theories) solvers that can handle numerical
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constraints. However, they fail short of our objectives for two
reasons. First, the backend solvers work in a fixed universe,
i.e., with a fixed set of variables and constraints. They offer
little support for exploring size-varying data structures, when
the number and type of contained elements is not fixed, and the
creation of data instances yields an evolving set of variables
and relations. Second, the solvers are deterministic and return
one solution, which is (in some way) the most obvious one
they find to satisfy all constraints. This is not satisfactory for
test generation, as one would like to generate multiple test
cases and obtain diversity in the coverage of the valid data
space.

This paper presents the solution we designed to address
these issues. It proposes a novel way to harness the constraint
solving, which ensures diverse data contents and size. The
harness dynamically updates the constraints as data instances
are generated, and combines random sampling with constraints
solving to enforce diversity. In particular, the generation injects
random values into the queries sent to the solver.

TAF (Test Automation Framework) [1] prototypes this ap-
proach on top of the Z3 SMT solver [2]. The user specifies
a data model in an XML-based language. The tool then
offers data generation, completion, and export facilities. We
demonstrate the capabilities of the tool by four case studies
exemplifying different types of data models: virtual crop
fields for testing an agriculture robot, bitmap images with a
graduated background, tree data structures of diverse sizes and
heights, and a population of taxpayers in a tax management
system.

The structure of the paper is as follows. Section II presents
related work on test case generation. Section III gives an
overview of the tool, and introduces our motivating example.
Our test case description language is detailed in Section IV,
then Section V presents the generation algorithms. Section VI
shows the use of the tool on four case studies. We also provide
some comparison results with an alternative tool. Finally,
Section VII concludes.

II. RELATED WORK

We discuss related work that addresses the generation of
test cases from rich input data models. Here, we do not
consider approaches that derive the test data from the source
code. Rather, we focus on black box approaches for system-
level testing or when the source code is not available. The



generation proceeds from data models expressed in XML-
based languages [3], [4], first-order languages [5], [6], formal
grammars [7]–[14], UML [15]–[17], or even general-purpose
languages [18]–[20].

As soon as the data model involves semantic properties, the
production of valid instances becomes an issue. We classify the
generation approaches in three broad categories, depending on
whether they rely on many successive trials, or they tune the
generation process for the specific model under consideration,
or they delegate the generation to constraint solvers.

A. Generate-then-filter approaches

In practice, many approaches implement a form of the
generate-then-filter algorithm. It consists in producing a can-
didate data instance, checking it, and discarding it if it is
semantically invalid. The process is repeated.

The property-based approaches popularized by
QuickCheck [18] work according to this principle: they
randomly generate inputs and discard the ones that do not
fulfill the precondition of the property to check. Another
example is Yagg [10], a generation framework based on
attribute grammars. Yagg uses the context-free part of the
grammar to produce the candidate test cases, and then apply
the context-sensitive checks to filter out the invalid ones.

Our framework TAF addresses generation problems where
such an approach is inefficient, and yields a high rate of invalid
candidate test cases.

B. Approaches that tune the generation process

The rate of invalid cases can be decreased by tuning the
generation process. It requires the introduction of application-
specific knowledge on how to build the data.

Several approaches annotate the data model with user-
supplied code fragments. The commercial fuzzer Peach [4]
(now integrated in DevSecOps) has an XML-based language
with constructs for inserting references to external functions.
This provides a means to aid in the generation of valid data at
the expense of some coding effort. Similarly, in the framework
of formal grammars, Maurer [9] attaches Action routines to the
production rules. Part of the data may then be generated based
on the context. The grammar annotation scheme by Kifetew
et al. [14] manages a context that carries information about
the data types, which proved helpful to build valid integer
or float expressions. Some authors have used higher-order
attribute grammars (HAGs), for which the separation between
the semantic attributes and the syntactic constructs disappears.
The mutation-based fuzzer in [12] leverages this facility: the
user-supplied annotations can manipulate the syntax tree of
the test cases to keep the data valid after a mutation.

For weighted grammars and other stochastic models, an
alternative way to improve the generation process is by tuning
the probabilities of the choices. In [20], these probabilities are
optimized by search-based techniques. In [14], they are learned
from an existing pool of valid test cases. Note that the latter
work also proposes a grammar annotation scheme (mentioned
in the previous paragraph), which produces a higher number

of valid data than the learned probabilities. In [13], a grammar
rule can change the probability of another one, providing yet
another scheme to manually adapt the choices to the context.

All these approaches require an effort from the user to
customize the generator. The effort is to be done for each new
application. In contrast, our framework TAF offers a generic
solution that works out of the box. The user only has to specify
the data structures and the desired properties. The model is
kept declarative and free from programmatic annotations.

C. Approaches that use constraint solving

A solution to spare the tuning effort is to delegate the
construction of valid test cases to off-the-shelf constraint
solvers (as we do in TAF).

In the context of SAT solving, Alloy [21], [22] is worth
mentioning. The core first-order language is well suited for
expressing structure-rich models. The analyzer is able to create
model instances, making it usable for test generation. For
example, TestEra [5] is a framework for testing Java programs
based on Alloy. It uses the Alloy analyzer to enumerate the set
of all non-isomorphic valid inputs up to a certain size. Note
that, in this case, the aim is to perform bounded exhaustive
testing, which induces a focus on small data sizes. Also, since
Alloy is connected with SAT-based analysis, the approach does
not support numerical constraints over real variables.

UMLtoCSP [16] uses constraint logic programming (CLP)
to analyze UML models including constraints in OCL (Object
Constraint Language [23]). It supports numerical constraints.
Like Alloy, the framework is able to create model instances
with a bounded size. The authors recommend that the size
be kept small. Dewey et al. [24] demonstrate the efficiency
of CLP to generate data structures, but observe that CLP
specifications may become obscure. They recommend the
design of small frontend languages with loops and variable
assignments, for which an efficient translation to CLP would
be investigated.

Other approaches use SMT solving to address UML models
with numerical constraints. Cantenot et al. [15] generate tests
in a fixed universe: the user has to predefine the desired class
instances in an object model. The PLEDGE framework [17]
directly generates the class instances and their contents from
the UML class diagram. It addresses the lack of scalability
of constraint solvers by hybridizing metaheuristic search and
SMT. The authors show that this strategy is able to create
larger model instances than Alloy and UMLtoCSP. The hybrid
strategy also outperforms the pure search-based one using the
metaheuristic only.

Among all generation approaches, PLEDGE is the closest
one to ours since TAF hybridizes random sampling and SMT.
The hybridization algorithms are however different. PLEDGE
has randomness in the creation of class instances but does
not attempt to ensure diversity of their contents. It takes the
solution returned by the SMT solver. TAF has randomness
in both the instantiation process and the production of data
contents, with the aim of maximizing diversity. It forces the
solver to produce different solutions.
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To the best of our knowledge, this contribution is novel.
As noted by Dutra et al. [6], the generation of multiple
diverse solutions has been little studied for SMT constraints.
The authors have addressed the problem for theories of bit
vectors and bit-vector arrays used in hardware verification.
Their approach relies on combinations of bitflips to explore the
diverse solutions in a fixed universe. With TAF, we propose
another approach targeted at size-varying data structures with
numerical constraints. In addition to providing diversity, the
approach is also efficient for creating data instances of a
realistic size, as will show the evaluation against PLEDGE
in Section VI.

III. FRAMEWORK OVERVIEW

In order to illustrate the facilities offered by the TAF
framework, let us first provide a motivating example inspired
by [25]. It concerns the simulation-based testing of an agri-
culture robot, an autonomous weeder that operates in fields of
vegetables. A test case for this system consists of a weeding
mission in a virtual crop field (see Figure 1). A crop field
is composed of an arbitrary number of crop rows. The robot
has to navigate along them. When it arrives at the end of a
row, it makes a U-turn to weed the next one. We assume a
monoculture environment, hence the field contains a single
type of vegetables, which can be cabbages or leeks. One of
the mission parameters, is first track outer, indicates whether
or not the robot starts at the external side of the field.

The generation of such virtual test cases can proceed in two
steps. The first step generates abstract cases from a data model,
while the second one produces the concrete test artifacts to be
fed into the test platform. By having these two separate steps,
it is possible to keep the modeling focused on high-level data
elements, without being overwhelmed by the complexity of
concrete details or formatting issues. For example, an abstract
test case of the autonomous weeder only specifies a number
of crop rows and a vegetable type. It is then concretized by
creating a scene description file in a format understood by the
simulator, e.g., in terms of a list of vegetable meshes to be
placed at designated coordinates.

The TAF framework supports this test generation process
(see Figure 2). It provides an XML-based language to specify
test templates, i.e., structured models of the data composing
an abstract test case. The data factory generates abstract
test cases according to the template. To facilitate the final
concretization step, TAF also creates a code skeleton, in which
export functions are attached to the various data elements.
These export functions are initially empty, the user should add
the custom export code in order to convert the produced test
cases (in XML) into the required file format.

A salient feature of TAF is its possibility to accommodate
semantic constraints. In the motivating example, the various
data elements cannot take independent values. If the crop
field has only one row, then the weeding mission necessarily
starts at an external side of the field. Consecutive rows must
have nearly the same length, say by +/- 10%. We furthermore
require that the lengths of the first and last row are also

close by +/- 10%. Such constraints can be expressed into
the template and make the test generation challenging. On
the one hand, a random generate-then-filter strategy would
be inefficient. Suppose we have tens of rows: it would take
a huge number of trials before obtaining a set of consistent
row lengths. On the other hand, the use of a constraint solver
would return a single solution, possibly the simplest one, like
all rows having the same length, and this length is the minimal
one allowed for a row. To avoid both pitfalls, the data factory
combines random generation with constraint solving, allowing
for the efficient production of diverse test cases that satisfy the
constraints. The framework offers tunable random generation
functions for each basic type of data, and uses the SMT solver
Z3 for the satisfaction of constraints.

Another convenient facility is the possibility for the user
to supply a partially instantiated test case. This input file
is optional. It allows for setting the values of any subset of
the basic data elements. For example, the user can request
a crop field with a maximal number of rows, or request the
combination of this number of rows with a cabbage type of
vegetables. The data factory will generate the missing data
elements to produce a complete and valid test case. This
test case completion facility gives great flexibility to explore
subsets of the input space or cover extreme cases. Moreover,
the choice of XML-based file formats is intended to facilitate
the implementation of test strategies on top of TAF. Both
the template and partial instance files can be manipulated to
request specific values, add or remove constraints, or change
the default generation function for a given data element.

The following sections provide more details about the data
factory: the XML-based description language it accepts, and
its generation algorithm.

IV. TEST CASE DESCRIPTION LANGUAGE

This section describes the language used in the XML files
Template and Partial instance from Figure 2. It features a
markup-based declaration of the data elements and embeds
constraints. The language was designed with the ontology
presented in Figure 3. The .dtd and the BNF are provided
on the Git repository [1]. In order to illustrate the main
concepts, we will use the template file in Figure 4 that gives
the data model of our motivating example. We first present
how the data structure is declared, from composite elements
to parameters having a basic type. We also explain how
the parameters are attached a default generator. Then, we
introduce the expression of constraints between parameters.
Finally, we present how to assign values to parameters in a
partially instantiated test case.

A. Data structure

As shown in Figure 3, a test case template involves four
different types of XML elements: Root, Node, Parameter,
and Constraint. Every element must have a “name” attribute.
Elements are nested to form a tree starting from the root.
The root and nodes are composite data structures with child
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Fig. 1. A virtual test case for the autonomous weeder

Fig. 2. Overview of the TAF framework

Fig. 3. TAF DSL ontology with a UML class diagram

elements, while a parameter is not composite. The types of
parameters (P Type) are boolean, string, real, and integer.

The root is unique and mandatory, but both the parameters
and nodes have a “nb instances” (–number of instances–)

meta-attribute that allows for multiplicity. If multiplicity is not
explicitly declared in the template, the number of instances is
supposed to be 1.

The template in Figure 4 illustrates these structural concepts.
The test case root (Line 3) is composed of a node “field”
(L4) and a node “mission” (L19). The node “field” has one
instance (L4), and contains a parameter “vegetable” (L5) that
can take the values “leek” or “cabbage”. A field is composed
of multiple rows. In the declaration of the “row” node (L6), the
allowed number of instances is specified by its min and max
values (1 and 40). Each row element contains a parameter
“length” (L7), with min and max values as well (10 and
100). As a general rule, all numerical parameters (real or
integer) must have an explicit definition range, and all string
parameters must have a set of candidate values.

B. Default generators

TAF attaches a default generator to each parameter in
the structure. Its aim is to produce diverse values from the
parameter type. If nothing is specified in the template, uniform
sampling over all possible values is used as the default. For
instance, in Figure 4, L7, the parameter “length” will be
determined in the range [10, 100] with a uniform sampling.
But the user also has the possibility to select other default
generators. This is done when the parameter is declared, by
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1 <? xml v e r s i o n =” 1 . 0 ” ?>
2
3 <r o o t name=” t e s t c a s e ”>
4 <node name=” f i e l d ” n b i n s t a n c e s =” 1 ”>
5 <p a r a m e t e r name=” v e g e t a b l e ” t y p e =” s t r i n g ” v a l u e s =” cabbage ; l e e k ” w e i g h t s =” 5 ; 7 ” />
6 <node name=” row ” min=” 1 ” max=” 40 ”>
7 <p a r a m e t e r name=” l e n g t h ” t y p e =” r e a l ” min=” 1 0 . 0 ” max=” 100 .0 ” />
8 <c o n s t r a i n t name=” i n t e r v a l ” t y p e s =” f o r a l l ”
9 e x p r e s s i o n s =” row [ i ]\ l e n g t h INFEQ 1 . 1 * row [ i −1]\ l e n g t h ;

10 row [ i ]\ l e n g t h SUPEQ 0 . 9 * row [ i −1]\ l e n g t h ”
11 q u a n t i f i e r s =” i ”
12 r a n g e s =” [ 1 , row . n b i n s t a n c e s −1] ” />
13 <c o n s t r a i n t name=” i n t e r v a l 2 ”
14 e x p r e s s i o n s =” row [ 0 ]\ l e n g t h INFEQ 1 . 1 * row [ row . n b i n s t a n c e s − 1]\ l e n g t h ;
15 row [ 0 ]\ l e n g t h SUPEQ 0 . 9 * row [ row . n b i n s t a n c e s − 1]\ l e n g t h ” />
16 </ node>
17 </ node>
18
19 <node name=” m i s s i o n ” n b i n s t a n c e s =” 1 ”>
20 <p a r a m e t e r name=” i s f i r s t t r a c k o u t e r ” t y p e =” b o o l e a n ” />
21 <c o n s t r a i n t name=” f i r s t t r a c k ”
22 e x p r e s s i o n s =”IMPLIES ( . . \ f i e l d \row . n b i n s t a n c e s EQ 1 , .\ i s f i r s t t r a c k o u t e r EQ True ) ” />
23 </ node>
24 </ r o o t>

Fig. 4. Template file example for the autonomous weeder simulation

using dedicated attributes (e.g., the weights attribute appearing
in the note on the Parameter class of Figure 3).

The set of available generators depends on the data type.
Boolean and string parameters can have weighted choices.
For instance, in Figure 4, L5, the declaration of the vegetable
parameter introduces a biased sampling of values, where the
choice “leek” (of weight 7) is more likely than “cabbage” (of
weight 5). It is required to have as many weights as values. For
integer or real parameters, there are two alternatives to uniform
sampling over their definition range. The user can assign
weights to subranges of values, or request sampling according
to a normal distribution with some mean and variance. The
parser of the template will check that the requested generator
is compatible with the parameter type.

C. Constraints

Constraints consist of expressions that specify semantic
properties in a descriptive way. The language syntax lets the
user specify a list of one or more expressions separated by a
semi-colon (Figure 4, L8, L13, L21).

The expressions may involve logical (not, and, or, implies),
arithmetic (+, -, *, /), and relational (==, !=, <, <=, >, >=)
operators. The concrete syntax ensures that the file can be
parsed by any regular XML parser. In particular, the relational
operators are written as EQ, DIF, INF, INFEQ, SUP, SUPEQ
to avoid issues with characters < and >. For easier interfacing
with Z3, the structure of the expressions follows the Z3 syntax
(e.g., for expressions with logical operators as in L22 of
Figure 4, the operator is first, and the operands come after).

The variables can be any parameter of the test case structure.
They are referenced by an access path relative to the location
where the constraint is declared. The path syntax uses the
windows file system notation with separators “\”, to avoid
ambiguity with the division symbol. Moreover, “.” and “..”
refer to the current node and the parent node. Paths can include

indices to refer to the instances of nodes. In Figure 4, L9,
row[i]\length refers to the length parameter of the ith row.

Our language also provides quantification over finite struc-
tures. For instance, the constraint named “interval” (L8-12)
has a universal quantification (forall) over all row instances.
It has a single quantified variable (i in L11) taking the value
of row indices (L12). The language also provides existential
(exist) quantification (not used in our motivating example).
Note that it is possible to use nested quantifiers of universal
and existential types. An example is given in the tax payer
template on the git repository in the “templates” directory [1].

D. Partially instantiated test cases

An important feature is the possibility to feed partially
instantiated test cases into TAF. If possible, the test case is
completed according to the template model.

The partial test case file has a structured description of a
subset of element instances. Some parameters are forced to
a desired value. They appear with their name and a value
attribute. Figure 5 shows an example where the length of the
third row (with row numbering starting at 0) is forced to 40.
Accordingly, TAF will consider that the template is augmented
with two constraints: that the number of the row instances is
> 2, and that the third row has a specific length. If the desired
length is out-of-range, the parsing will detect it and abort
the generation. For the convenience of the user, predefined
keywords facilitate the assignment of some values of interest
(e.g., “max” for the maximal value of a numerical parameter,
“first” for the first possible value of a string parameter).

Note that the user who creates a partially instantiated test
case is not necessarily human. A program may produce the
partial instances according to some test strategy, and rely on
TAF to complete them.
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<? xml v e r s i o n =” 1 . 0 ” ?>

<r o o t name=” t e s t c a s e ”>
<node name=” f i e l d ”>

<node name=” row ” i n s t a n c e =” 2 ”>
<p a r a m e t e r name=” l e n g t h ” v a l u e s =” 40 ” />

</ node>
</ node>

</ r o o t>

Fig. 5. Partially instantiated test case

Fig. 6. Layered generation approach

V. GENERATION ALGORITHMS

The generation adopts a top-down, layered approach that
follows the structure of the XML template. The parsing of
the template file builds an initial tree. It contains placeholders
for the elements defined in the template according to the
containment hierarchy. As the generation proceeds, the tree
is updated to insert the created element instances, and assign
values to their parameters.

Figure 6 illustrates the top-down approach on our running
example. The root test case node is at depth 0 of the tree,
its mission and crop field children at depth 1, and so on. All
elements at a given depth d are generated at the same step,
after the elements at depth d− 1 and before the ones at d+1.
The number of instances to create at each layer is a parameter
<element name>.nb instances that belongs to the immedi-
ately upper layer, the one of the parent node. It guarantees
that the number of instances is always defined before building
the related objects. If the template lets this parameter implicit,
it takes the default value one. In the running example, the
number of mission and crop field instances is set to 1, hence
we build one instance of each of them. In contrast, the template
specifies any number of rows in a [min,max] range: a number
will be chosen at depth 1, when the parent crop field node is
processed.

Each constraint defined in the template is also assigned a
depth: it takes the maximal depth of all the parameters that it
refers to. In the running example, there is a constraint between
row.nb instances and is first track outer, respectively
of depth 1 and 2. According to the previous rule, this is a
depth 2 constraint. It means that row.nb instances will be
generated first, and later the generation will try to find a value

of is first track outer that satisfies the constraint. This
approach can obviously lead us to a dead-end as the parameters
generated from the previous layers may produce unsolvable
constraints. Hence the generation uses backtracking.

Algorithm 1 shows the layered generation with backtrack-
ing. The main loop (Lines 6-18) iterates until either the
generation is complete or the maximal budget for backtracking
is reached (MAX B). This budget is configured by the user.
At each iteration, function generate depth() attempts the
generation of the elements at the current depth. If it succeeds,
the generation continues at the next depth (Line 8). If it fails,
the choices made at the current depth are undone, and the
generation goes back to the previous layer (Lines 11-13). After
exiting the loop, the tool reports on its failure (Line 20) or
success (Line 23). In the latter case, an XML version of the
test case is created for archiving purposes.

Algorithm 1 main
Require: path
1: tree← parse template(path)
2: create export code skeleton file(tree)
3: preprocess(tree)
4: counter ← 0
5: depth← 0
6: while counter < MAX B AND depth ≤ tree.max depth() do
7: if generate depth(tree, depth) then
8: depth← depth + 1
9: else

10: if depth > 0 then
11: counter ← counter + 1
12: depth← depth− 1
13: tree.reset(depth)
14: else
15: return False
16: end if
17: end if
18: end while
19: if counter == MAX B then
20: return False
21: end if
22: create XML TestCase file(tree)
23: return True

Algorithm 2 describes how a given layer is generated. First,
it extracts the parameters p and the constraints c of the current
depth. Then, there is a triage between dependent and indepen-
dent parameters, according to whether they are involved in
any of the constraints (Lines 3-4). Independent parameters are
simply generated using the default random generators (Lines
5-7). If there is no constraint, the generation of the layer is
done (Lines 8-10). Otherwise, a problem object is created
with the dependent parameters and the constraints (Line 12).
If the problem fails the satisfiability check in Z3, the layer is
not generated and the function returns False (Line 14). This
will cause backtracking in the main algorithm. If the problem
is satisfiable, the dependent parameters are processed. Their
generation mixes constraint solving and randomness in order
to ensure diversity in the solutions. Such a process is described
in Algorithm 3 to be presented shortly. Finally, before return-
ing success, the algorithm prepares the next layer according to
the newly generated values of <element name>.nb instances
parameters (Lines 9 or 17): the appropriate number of element
nodes is created and inserted into the tree.
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Algorithm 2 generate depth
Require: tree, depth
1: p← extract parameters(tree, depth)
2: c← extract constraints(tree, depth)
3: dependent p← filter dp(p, c)
4: independent p← filter indp(p, c)
5: for p′ in independent p do
6: p′.default generate()
7: end for
8: if c is empty then
9: create next depth instances(p)

10: return True
11: end if
12: problem← init problem(dependent p, c)
13: if NOTproblem.check sat() then
14: return False
15: else
16: solve with diversity(problem)
17: create next depth instances(p)
18: return True
19: end if

Algorithm 3 takes a problem object as input and solves it
with diversity. We know that the problem is satisfiable (from
the previous algorithm), but want to force the solver to produce
a different solution than the one it would normally return.
For this, the principle is to assign random values to as many
parameters as possible before solving the constraints. In the
inner loop at Lines 5-12, we keep adding new constraints
p = v until the problem becomes unsatisfiable. It yields a
new solvable version of the problem where some parameters
take random values. The process is repeated multiple times
according to a diversity budget MAX D (outer loop starting
at Line 3). At each iteration, we keep track of the best problem
in terms of the number of randomly chosen parameters (Line
14). Lastly, the best problem is solved, and all the parameters
are updated accordingly (Lines 17-18).

Algorithm 3 solve with diversity
Require: problem
1: current best← problem
2: counter ← 0
3: while counter < MAX D do
4: new problem← copy(problem)
5: while new problem.check sat() do
6: p← select parameter(problem)
7: p.default generate()
8: v ← p.value
9: p.reset()

10: c← build constraint(p, v)
11: new problem.add constraint(c)
12: end while
13: remove last constraint(new problem)
14: current best← choose best(current best, new problem)
15: counter ← counter + 1
16: end while
17: current best.solve()
18: current best.update parameters()

The TAF test case factory implements the above algorithms
in Python. For simplification purposes, the presentation has
focused on the template-based generation, omitting the test
completion facility. In practice, the submission of a partially
instantiated test case only impacts the preprocessing of the tree
structure in Algorithm 1. It adds new constraints to force the
desired parameter values, then the layered generation proceeds
as described. The user may also request the generation of N
test cases, rather than just one. Both the backtracking and

diversity budgets (MAX B and MAX D) can be easily
configured, should the default setting be insufficient for the
target generation problem.

VI. CASE STUDIES

In this section we demonstrate the use of TAF on four
case studies coming from different application domains. We
assess its performance and the data diversity it supplies.
Performance is measured by the execution time needed to
generate 100 valid test cases from each of the four models.
The generation is repeated 10 times, and the median, min, max
times are reported. Data diversity is analyzed in terms of the
coverage of the data space. For each case study, we manually
derive a set of cases to be covered, considering both the raw
definition domains of the parameters (e.g., a range decomposed
into subranges to be covered) and some application-specific
aspects related to the semantics of the data. We monitor the
accumulated percentage of covered cases while the generation
proceeds and identify the missing cases at the end.

TAF is also compared with two alternative strategies:
generate-then-filter and PLEDGE [17]. From our analysis of
related work (see Section II), PLEDGE emerges regarding
its ability to handle size-varying data structures and numer-
ical constraints. Moreover, the hybridization of metaheuristic
search and SMT allows it to create larger data instances than
the other solver-based approaches.

A. Data models of the four case studies

We used our XML-based language to model the following
four case studies. The corresponding template files are avail-
able on the git [1].

Oz: This is the industrial case study of an agriculture robot
[25], from which our motivating example is extracted. The
complete model has 7 composite elements, 15 parameters, and
5 constraints. The structure is presented as a class diagram in
Figure 7. Compared to the smaller motivating example, the
few additional constraints are on the number of instances of
the new elements. For example, the number of row spacing
values (element inner track width) must be consistent with
the number of rows. The motivating example reproduces the
most challenging constraints in this case study (the ones on
the row lengths) and already gives a good idea of what the
complete Oz model is like in TAF.

Bitmap: The aim is to create a gradient image in the bitmap
format. The darkest pixel is at the bottom left corner and the
lightest one at the upper right (see Figure 8). The content
of the image is structured as a set of pixel rows, where
each pixel contains a grayscale value. A padding parameter
determines the number of bytes to add after each row, so that
the total number of bytes is a multiple of 4. The model is
concise, having two composite elements, 2 parameters, and 4
constraints. Formatting issues are delegated to the export code,
e.g., to produce the image header given the size of the data and
a predefined encoding option. Note that the generation of the
image content may be challenging for constraint solving, as
each pixel instance depends on its upper and right neighbors.
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Fig. 7. Oz complete case study structure with a UML class diagram

Fig. 8. A gradient image created by TAF

The value of the row padding is specified by a constraint
involving modulo operations.

Tree: We study the generation of tree structures of diverse
sizes and heights. TAF does not allow recursive definitions,
hence it is not possible to model a tree as a composite element
that would contain child trees. Rather, we have to consider a
flattened set of tree nodes, and introduce the tree properties
by quantification over this set. In our model, a node has two
parameters: a father (containing the id of the parent node)
and a depth. Figure 9 shows the encoding (XML in a tree
structure) of a tree instance of size 4 and height 2. Except
for node[0], which is the tree root, the other nodes may have
an arbitrary position in the tree, as determined by the value
of their parameters. We simply require that a node has the
depth of its father +1, that no node has a depth greater that
the global tree height, and that at least one node has a depth
equal to the global height. These constraints remain abstract,
not being prescriptive in how to generate the father relations
consistently with the height. This may be challenging for the
solver.

TaxPayer: This case study is the running example of the
PLEDGE paper [17]. Its UML model is shown in Figures 10
and 11. It describes the data for an income tax management
application. In this model, “Tax payer” is a “Physical person”
that can support “Child” and earns 1 or more “Income”.
There are five OCL constraints (C1 to C5). For instance,
C3 states that Taxpayers are not resident if they earn local
incomes but do not have any address is Luxembourg. None
of the OCL constraints is difficult to express in TAF. More
difficult are object paradigms such as inheritance (e.g., “Child”

Fig. 9. A tree instance: XML encoding and graphical export

Fig. 10. UML of the tax payer case study

inherits from “Physical person”) and bidirectional associa-
tion (a “Physical person” resides at an “Address”). Indeed,
TAF only supports composition relations. We modeled the
inheritance relation by “flattening” the inheritance (redistribute
information in sub-classes). Our model is thus less concise
than the original one, as some declarations and constraints
are duplicated. Regarding the associations, as they were one-
to many relations we were able to encode them as a uni-
directional composition. A more generic solution would add
parameters and encode symmetric indices in associated nodes.
The TaxPayer model in TAF involves 9 composite elements,
12 parameters and 7 constraints.

The four case studies illustrate various types of data (from
a matrix of pixels to Person elements), of structural relations
(from hierarchical containers to other architectural relations),
and of constraints (from simple logical constraints to more
complex ones with nested quantification and arithmetic ex-
pressions). In addition to modeling them in the XML-based
language, we developed external programs to check the valid-
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1 c o n t e x t P h y s i c a l p e r s o n inv C1 :
2 s e l f . b i r t h y e a r >=1920 and s e l f . b i r t h y e a r <2020
3
4 c o n t e x t P h y s i c a l p e r s o n inv C2 :
5 i f ( s e l f . d i s a b i l i t y t y p e = D i s a b i l i t y : : None )
6 then ( s e l f . d i s a b i l i t y r a t e = 0)
7 e l s e ( s e l f . d i s a b i l i t y r a t e > 0 and
8 s e l f . d i s a b i l i t y r a t e <= 1 . 0 ) e n d i f
9

10 c o n t e x t Tax payer inv C3 :
11 not s e l f . a d d r e s s −> f o r A l l ( a : Address |
12 a . c o u n t r y <> Count ry : : LU)
13 i m p l i e s s e l f . i s r e s i d e n t = t r u e
14
15 c o n t e x t Tax payer inv C4 :
16 s e l f . income−>e x i s t s ( i n c : Income | i n c . i s l o c a l = t r u e ) and
17 not s e l f . a d d r e s s −>e x i s t s ( a : Address |
18 a . c o u n t r y = Count ry : : LU)
19 i m p l i e s s e l f . i s r e s i d e n t = f a l s e
20
21 c o n t e x t Income inv C5 :
22 i f ( s e l f . o c l I s T y p e O f ( Othe r ) ) then
23 s e l f . t a x c a r d −>s i z e ( ) = 0 e l s e
24 s e l f . t a x c a r d −>s i z e ( ) = 1 e n d i f

Fig. 11. OCL code of the tax payer case study

ity of the generated data samples in each case. The checkers
allowed us to confirm that the models encoded the intended
properties and that the generation process was not flawed.

B. Performance

The performance of TAF heavily relies on the performance
of the used solver. On the positive side, the solver processes
only parts of the data. The layered approach decomposes
the generation problem into subproblems. Furthermore, in a
layer, only the dependent parameters are to be solved. On the
negative side, the search for diversity involves multiple calls
to the solver, which may be very costly. A question is whether
the approach is practical with a state-of-the-art solver like Z3.

Table I shows the generation time of 100 test cases for
each case study. The experiments are done on a 2017 Mac-
BookPro14,2 dual-core (3.5 GHz Intel Core i7, RAM 16 GB).
The backtracking and diversity budgets are both set to 10. The
size of the generated data may vary in each test case and has
the upper bound indicated in the second column of the table.
For example, for Oz, the number of crop rows has its definition
domain in 1..100. We stop a run if it is longer than two hours.

Tree is the most challenging case study for the solver. It
failed to produce the 100 test cases within two hours when
the tree size is up to 100 nodes. In the layered generation
approach, the global height is decided first, and then the local
decisions on node parameters have to comply with it. From
our analysis, the long solving times are when the randomly
injected father and depth values yield an unsat problem, but
the solver does not detect this and keeps trying possibilities.
By taking a max size of 50 nodes, the generation is feasible
in less than 50 minutes. The easiest case studies are Oz and
TaxPayer, for which 100 test cases are produced with a median
time of respectively 17.62 and 133.9 seconds. For Oz, the data
size is realistic since the crop fields in which the real robot
operates usually have less than 100 rows. As regards TaxPayer,
the loose coupling between person elements makes it possible

TABLE I
GENERATION TIME USING TAF (10 RUNS, 100 TEST CASES PER RUN)

Case study Max data size Tmin Tmax Tmedian
Oz 100 rows 16.36 s 18.79 s 17.62 s
Bitmap 100x100 px 636.7 s 1554 s 746.6 s
Tree 100 nodes >2 h >2 h >2 h

50 nodes 1961 s 2995 s 2664 s
TaxPayer 100 taxp. 123.9 s 161.9 s 133.9 s

TABLE II
GENERATION TIME USING PLEDGE (10 RUNS, 100 TEST CASES PER RUN)

Case study Max data size Tmin Tmax Tmedian
Oz 100 rows 1073 s 1327 s 1108 s
Tax payer 100 taxp >2 h >2 h >2 h

50 taxp 1640 s 2651 s 1804 s

to obtain a large population by generating multiple smaller
populations and merging them together.

For comparison purposes, we considered the performance of
two baseline strategies. The first one is generate-then-filter. We
removed the semantic constraints from the data models, and
used the external validity checker to filter the data generated
by TAF. A first 2-hours run failed to produce any valid data
except in the case of TaxPayer, which produced 46 test cases
(out of 33,290 trials). Additional runs for TaxPayer never
managed to obtain 100 valid cases in two hours (the best run
obtained 55 cases). Moreover, all valid cases merely consisted
of data instances with a single taxpayer. The generate-then-
filter strategy is thus highly inefficient for our case studies.
The second baseline is PLEDGE [17] which represents a
more complex strategy similar to ours. PLEDGE uses the
same backend solver as TAF (i.e., Z3) but harnesses it in a
different way. The generation strategy combines metaheuristic
search and SMT with the aim to use each technique where it
is the most efficient. It distributes tasks to one technique or
the other. In contrast, TAF has an intertwined usage of random
sampling and SMT. We modeled Oz and TaxPayer in UML to
supply them to PLEDGE. Table II shows the corresponding
generation times. They were an order of magnitude longer
than with TAF, even when the size of the data was reduced
(TaxPayer).

To conclude, the Z3 solver is efficient enough for the
proposed solve-with-diversity approach to be practical. Despite
the multiple calls to the solver, the time for generating samples
of medium-sized constrained data may be workable. The
strategy allowed us to address four case studies for which
a simpler generate-then-filter strategy fails. The comparison
with the state-of-art tool PLEDGE shows that TAF can be
very competitive in terms of performance.

C. Diversity of the test cases

We analyze the data space coverage provided by TAF. In the
models, each numerical parameter or number of instances has
a min-max definition range: we systematically split it into three
subranges to cover, yielding low, medium and high cases. We
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count a case as covered if any instance of the parameter has a
value in the subrange. When a parameter has an enumerated
type, we require the coverage of each value individually. We
then add cases derived from the constraints and other semantic
concerns, that address the relations between parameters. These
cases are presented below.

Oz: The relative length of consecutive rows has to cover the
+/-10% range split into low, medium and high cases. The same
is required for the constraint between extremal rows, but we
count coverage only if there are strictly more than two rows
(i.e., if the first and last rows are not consecutive). We further
require that the first row takes diverse values in its definition
range.

Bitmap: The difference between a pixel value and the one
of its upper (resp. right) neighbor has to range over 0..255,
yielding low, medium and high cases. We also analyze the
variation in an entire row or column of pixels, measuring the
difference between the first and last pixel. Finally, we require
that the darkest (resp. lightest) pixels takes diverse values in
the images.

Tree: We require diversity in the ratio of the height to the
number of nodes, to span the cases from a shallow tree with
all nodes under the root, to a linear tree with the maximum
possible height. We also require diversity in the balancedness
of the trees. We retain three alternative definitions of balanced-
ness (e.g., see [26]), each yielding low, medium and high cases
to cover. Given a height h, we measure Leaf-balancedness by
the rate of leaves that are either at depth h or h − 1. The
height-balancedness metric is the rate of internal nodes that
introduce subtrees of similar heights (+/- 1), and similarly for
size-balancedness. To exclude degenerate covering cases, we
only report balancedness for trees having at least 5 nodes, and
a height strictly greater than 2.

TaxPayer: We consider three cases for the addresses of a
taxpayer: the taxpayer has no address in Luxembourg, at least
one address in Luxembourg and another one elsewhere, or
all the addresses are in Luxembourg. From constraint C4, we
also extract cases combining the various types of local incomes
(pension, employment, other) with no address in Luxembourg.

Table III reports the total number of cases to cover for
each case study, as well as the coverage results. The complete
list of cases to cover is available in our repository [1]. For
example, there are 51 cases to cover for Oz. From Table III,
100% of them are covered by each of the 10 test sets. The full
coverage is reached after a median number of 16.5 data have
been generated (8 in the earliest case, 49 in the latest one). As
can be seen, TAF succeeds in supplying a high coverage for all
case studies. For Tree, we consider that this was challenging,
because the measured properties of the tree structure only
indirectly emerge from the instantiation of parameters. There
is no notion of balancedness in the model, and still TAF
managed to generate trees with diverse balancedness metrics.
The only case study for which full coverage is not reached is
Bitmap. The missing cases concern high values for the darkest
pixel in an image (hence yielding a nearly completely white
image) , and similarly low values for the lightest pixel (nearly

TABLE III
COVERAGE SUPPLIED BY 100 TEST CASES GENERATED BY TAF

# cases % coverage sample size to reach
to cover final coverage

Oz 51 cases 100% 8-49 (median 16.5)
Bitmap 28 cases 89.3%-96.4% 10-80 (median 28)
Tree 18 cases 100% 8-47 (median 22.5)
TaxPayer 70 cases 100% 2-8 (median 2.5)

black image). Such extremal cases are unlikely during the
generation process. They are best covered by creating partially
instantiated test cases that have the bottom left pixel or the top
right one at the desired values.

In comparison, PLEDGE does not provide data diversity.
Using PLEDGE, the ten test sets supply a coverage of respec-
tively 52% for Oz and 51% for TaxPayer. The generation man-
ages well a varying number of instances in class architectures,
but the data content is the simplest solution returned by the
solver. For example, for Oz, the generated fields have a varying
number of crop rows, but all rows have an identical length of
10m (the minimum of the interval), the noise in the alignment
in crop plants is zero, and so on. For TaxPayer as well,
the population of taxpayers lacks diversity, e.g., all taxpayers
are born in 1920 (the minimal birth date), their address is
never in BE or DE. The authors acknowledge the lack of
diversity [17]: they argue that diversity can be effectively
enforced by dynamically updating the OCL constraints with
new inequalities.

However, this is not as satisfactory as built-in diversity.
The user has to very explicitly manage the generation of each
numerical parameter, and may still get limited diversity.

For instance, consider how to enforce diverse row lengths
for Oz. By default, all rows have the minimal length (10m).
We may enforce the first and last rows to be different: the
generated lengths are then 10m, ..., 10m, 10.5m. If we further
require all rows to be different, the generation time is longer
and the different values are still between 10m and 10.5m. We
would need additional constraints to cover other values (up to
100m) and other variation patterns between consecutive rows
(up to +/-10%). This becomes heavy. The constraints grow
more complex than mere inequalities. In contrast, TAF natively
provides diverse values and variation patterns.

To conclude, TAF was successful in generating constrained
data that provide a high coverage of the data space. To the
best of our knowledge, there is no comparable tool that would
offer a similar facility based on SMT solving.

VII. CONCLUSION

The paper has presented TAF, a tool that automatically
generates test cases from high-level XML-based data models.
This tool introduces a novel way to generate diverse instances
of data elements in the size-varying data structures. The core
feature of TAF is the function “solve with diversity”, that
mixes constraint solving and random sampling. It assigns
random values to as many parameters as possible before
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solving the constraints, in order to force diversity in the
obtained solutions. The function is part of a main algorithm
that uses a layered generation approach with backtracking.
The top-down decomposition into layers ensures that the data
elements are generated only after their number of instances is
decided.

TAF has been applied to four case studies. It successfully
generated valid and diverse test cases for all of them. The
comparison with an alternative tool using the same backend
solver showed that the generation time is competitive, while
allowing for a much better coverage of the data space.

Regarding improvements of TAF, three main aspects may be
envision. First, a connection with de facto standard languages
like UML, would improve the usability of our tool. A second
point is the native inclusion in TAF of some object-oriented
concepts such as inheritance, bidirectional or recursive asso-
ciations. Particularly, implementing (bounded) recursive as-
sociations would allow a more direct expression of some
structural properties, which are currently specified by means of
quantified predicates rather than by recursive definitions. The
third improvement is to interface TAF with a generic language
for solver facilities. For instance, an interfacing with SMT-LIB
would allow TAF to use several solvers as an alternative to Z3.

Finally, TAF can be used as a test generation tool by
itself, but we plan to integrate it in a larger test automation
framework. Our future work will consider the integration into
a framework that leverages the test completion facility of TAF.
We envision an approach where test objectives are produced
under the form of partially instantiated test cases, completed
by TAF, submitted to the system under test, and then analyzed
to produce new objectives. This approach will be experimented
in our on-going work on testing autonomous robots in complex
3D environments.
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