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LAAS - CNRS, Université de Toulouse,
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Abstract—Cloud-Applications are the new industry standard
way of designing Web-Applications. With Cloud Computing, Ap-
plications are usually designed as microservices, and developers
can take advantage of thousands of such existing microservices,
involving several hundred of cross-component communications
on different physical resources.

Microservices orchestration (as Kubernetes) is an automatic
process, which manages each component lifecycle, and notably
their allocation on the different resources of the cloud infrastruc-
ture. Whereas such automatic cloud technologies ease develop-
ment and deployment, they nevertheless obscure debugging and
performance analysis. In order to gain insight on the composition
of services, distributed tracing recently emerged as a way to get
the decomposition of the activity of each component within a
cloud infrastructure. This paper aims at providing methodologies
and tools (leveraging state-of-the-art tracing) for getting a wider
view of application behaviours, especially focusing on application
performance assessment.

In this paper, we focus on using distributed traces and alloca-
tion information from microservices to model their dependencies
as a hierarchical property graph. By applying graph rewriting
operations, we managed to project and filter communications
observed between microservices at higher abstraction layers like
the machine nodes, the zones or regions. Finally, in this paper
we propose an implementation of the model running on a mi-
croservices shopping application deployed on a Zonal Kubernetes
cluster monitored by OpenTelemetry traces. We propose using the
flow hierarchy metric on the graph model to pinpoint cycles
that reveal inefficient resource composition inducing possible
performance issues and economic waste.

Index Terms—Distributed Tracing, Cloud Computing, Prop-
erty Graph, Graph Rewriting, Hierarchical Model

I. INTRODUCTION

Nowadays Cloud-Applications have become the industry-
standard way of designing Web-Application running at global
scale. Back then, in 2008, the National Institute of Standards
and Technology (NIST) defined the term “Cloud Computing”
as a ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources [1]. The
impact of this new paradigm on software architecture has
been massive: Applications are now divided in a multitude

of components, running on a numerous virtual machines
scattered into data centres around the world. These processes
communicate with each other over the network through API
calls (often designated as Remote Procedure Calls).

Separating an application into business-centric components
is the foundation of the Microservices approach [2]–[4]. The
number of services involved in an application can grow up to
thousands as evidenced by recent communications from promi-
nent Cloud companies. An engineering blog post from Uber
reported that the number of critical microservices composing
their application was about 2200 [4]. Also, in [5], Google
mentioned that the order of magnitude of RPC involved in a
single-user request in an application like Gmail can go from
tens to thousands. With this significant increase of network
communications involved in the application, the impact of
the internal network on the global application response time
become a key metric to monitor.

This shift in design has a direct implication on the way mon-
itoring should be done, and what events / metrics should be
reported to characterize the overall application performance.
By adopting a distributed architecture, Cloud Applications also
face a new range of problems like components misconfigura-
tion, cascading errors, hot points / bottlenecks or even noisy
neighbours [6], [7].

In the last years, we observed various initiatives introducing
a new kind of software monitoring tools related to tracing
service composition in Cloud environments. These new tools
are often designated as Observability tools; in particular, they
focus on creating a visualization of the propagation of a
request within a cloud application. This technique, named
Distributed-Tracing, has been implemented by most of the
major actors of Cloud-Computing for their own monitoring
needs [8]–[11]. They reported how they are using traces to
detect performance anomalies [9], [11], [12], but also for other
scenarios involving a high observability need like running
tests in production [5], [13]. Unlike metrics gathering or
logging, distributed tracing provides a unified view of the



propagation of a request in a distributed system, crossing the
boundaries of its components. This propagation is called a
trace and establishes causality between latency measurements
of each application components. Traces are displayed as a
Gantt chart of the time spent in each component involved in
the request. The prevailing approach for building distributed
traces is to aggregate measurements is the Google Dapper’s
span model [9]. It has numerous open source derivative
implementations, OpenZipkin1, OpenTracing2, OpenCensus3

to quote a few. A recent open source initiative, OpenTelemetry,
merged the two most mature technologies: OpenTracing and
OpenCensus; this project has a high visibility as it aims to
normalize monitoring for Cloud Applications. This project, in
Beta version at the time of writing, acts as an element part
of the pipeline that uniforms tracing data emitted from the
various existing implementations.

In this paper, a focus is put on a way to exploit tracing data
from OpenTelemetry in order to spot inefficient communica-
tion within a Cloud application. Indeed, Cloud orchestrator,
like Kubernetes, assign workload to physical resources with
an allocation algorithm that do not consider communication
between microservices. To illustrate this problem, we will
focus on a Zonal Kubernetes Clusters. Kubernetes is one of
the most popular Cloud Orchestrator, its role is to allocate
containers on multiple machines and make them communicate
through an overlay network. Once it allocates a Pod (a set of
containers) to a machine (called a Node), it does not question
this decision any more in the pod lifecycle. A pod is allocated
to a machine if that machine has enough memory and CPU
resources available. In Zonal clusters, nodes are scattered on
different “availability zones”, this allows handling failure more
reliably but has an extra cost as node to node communications
across zones are added to the bill. To effectively reduce the
bill, having a resource placement that considers the commu-
nications across services, Nodes and Zones is required.

Given these constraints of reduced latency and costs, this
work aims to exhibit a new generic model and metrics based on
the communication monitoring that may help to get a location-
aware placement. In the next section, we provide motivating
examples where tracing helped to improve a cloud application
performance. Then, we propose a generic methodology and
a toolset to create a hierarchical property graph leveraged by
state-of-the-art cloud monitoring tools. This hierarchical model
is motivated by the current trend of pushing computations
to the edge, and provides a representation of the overlay
network linking microservices as a layered network instead of
a flat one. The following section introduces the flow hierarchy
metric to detect inefficient composition on the hierarchical
model. Finally, this paper concludes with a deployment of this
model on a Zonal Kubernetes cluster to illustrate the detection
of costly communications.

1https://zipkin.io
2https://opentracing.io
3https://opencensus.io

II. BACKGROUND

A. Cloud Application Specific Performance Issues
At the scale of a globally used application, made of hun-

dreds of services geographically distributed on multiple data
centres, optimizing performance involves minimizing network
latency while keeping the utilization of data centres as low
as possible. Facebook Engineering published various papers
where they detail how they used Traffic Engineering to pre-
serve the balance between latency and data centre utilization.

In [14], authors detail a solution that manages the traffic
generated by users into a geographically distributed applica-
tion. Their custom traffic management improves hardware us-
age in production by 20%. In another paper [15], authors raised
the problem of congestion and bottleneck links in Cloud-
Application. They address these problems with the implemen-
tation of a routing algorithm dedicated to service-to-service
communications, balancing network calls in a more efficient
way. In addition, Maelstrom [16] applies traffic engineering
techniques to disaster mitigation and recovery. Finally, in [17],
autors present Taiji, an application-level load balancer that
pushes more in depth the routing and placement of computing
resources to the edge. In this contribution, adding application-
level parameters to the routing algorithm reduces the load of
back-end servers by 17%.

These various publications made on a real large-scale appli-
cation (Facebook) highlight the importance of a smarter in-app
request routing can greatly improve a resource management
in a multi data centre cloud. However, methods used in these
publications are not generic and result of years of engineering
based on the specificities of the Facebook application. Now,
when developping a Cloud-Native Application, Kubernetes
acts as a base-component. It abstracts the physical network
to creates a flat overlay network for containers. These internal
communications hold an important role in global application
performance but are often overlooked by both developers and
operations. This overlay network undergoes the same chal-
lenges for traffic management, in particular when deploying
an application on multiple data centres.

B. Monitoring Initiatives for Cloud Native Applications
Whereas monitoring tools tend to become more and more

exhaustive in the way they describe Cloud environments,
cloud orchestrators and providers, on the contrary, tend to
obscure underlying implementations, making debugging more
difficult [18]. The recent OpenTelemetry initiative aims to
normalize Cloud monitoring by providing an open format and
production-ready binaries for Cloud-Native Monitoring. While
the project is still in Beta at the time of writing, it opens many
research opportunities to enhance the quality of tracing data
or the way it is processed [19]–[24]

The goal of this paper is to exhibit inefficient allocations
made by Kubernetes in the case of a geographically distributed
cluster. We use a Zonal Kubernetes Cluster as a motivating
example for our study. In the later section, we discuss how
we leveraged OpenTelemetry semantic to create a hierarchical
property graph model from tracing data.



III. MODELLING INTERNAL COMMUNICATIONS BASED ON
TRACES

A. Getting Tracing Data With Network Level Measurements

Usually tracing data comes from the code of the application,
however, only relying on in-app instrumentation to get traces
do not provide the full picture, as it lacks networking data. In
order to observe cross services network calls and to cover the
latency introduced by services, Kubernetes has been expanded
with a Service-Mesh [25]. A Service-Mesh is a Data-Plane
made of L4/L7 proxies injected in each microservice to better
control and observe service-to-service communications. The
configuration of these proxies is made through a control
plane that ensures that their configuration is coherent. For
the purpose of our experiment, the Linkerd4 service mesh has
been used as it is compatible with OpenCensus format (and
thus, has a backward compatibility with current OpenTeleme-
try Beta binaries). In a Kubernetes environment, Linkerd
automatically injects and configures HTTP proxies between
each microservices instances to allow communications to be
observed (through traces) or controlled (through HTTP proxies
configuration).

To ensure all the required attributes are set, and the Open-
Telemetry semantic is fully respected, another agent is also
added to each microservice. This agent captures and reformat
tracing data shards (called Spans) sent by Linkerd proxies to
make them compliant with the OpenTelemetry semantic. For
our experimentation, this agent acts as a temporary “hack”
and permitted to have a Kubernetes Cloud Application emit-
ting OpenTelemetry formated traces spans. This agent then
forwards the trace spans reported by proxies to a central
OpenTelemetry Collector.

Finally, OpenTelemetry traces are made available through a
Web aplication named Jaeger Tracing, which allow to visualize
and query OpenTelemetry traces. Jaeger Tracing is one of
the most popular interfaces to display and manage traces: it
provides a Web UI but also a gRPC endpoint to query and
compute this data. Jaeger gRPC endpoint provides a binary
data flow to process traces online.

B. Creating a Property Graph

When considering traces, they appear to be more than
a collection of data objects living in a multi-dimensional
space independently. The core of this data resides in the
interdependencies expressed between latency measurements.
Property graphs provide a powerful machinery to represent
these traces; indeed, as a graph, relationships are as important
as the data represented in nodes. Furthermore, adding the
capability to have labels and attributes on both nodes and edges
allows the preservation of the original data semantic. There is
existing work considering every trace as a Directed Acyclic
Graph (DAG) of spans linked by causal relationship [19], [21].
However, considering every trace as independent graphs does
not allow a wider view of the application, or the exhibition
of observations correlation from other traces. In this work,

4https://linkerd.io/ a service mesh for Kubernetes hosted by CNCF

we consider all traces as a single graph decomposing tracing
data into multiple vertices and edges merged with previously
observed data, thus establishing correlation over multiple
traces.

In OpenTelemetry various concepts have been defined: the
concept of Span holds the description of a latency measure-
ment at a precise point in time. It comes with a variety of
attributes aiming to provide an exhaustive description of the
action measured. The concept of a resource is also defined;
it characterizes the executor of the measure. It comes with
a variety of attributes that describe the process on which
the measurement has been done. In our model, resources are
used as common vertices shared by multiple traces. Resources
attributes allow the identification of the different abstractions
layers involved in the latency measurement: we assume we
can identify Kubernetes Pods, Nodes, Zones and Clusters.

These terms come from Kubernetes Domain Specific Lan-
guage (DSL) and describe some abstraction levels involved in
representing resource location.

Pods
They represent the smallest Kubernetes schedulable
unit, they are a collection of heavily tighted con-
tainers sharing the same network namespace and
colocated on the same machine.

Nodes
In Kubernetes nodes represent machines (either vir-
tual or physical), they are the kernel shared by the
containers and are characterized by a number of
CPUs and an amount of memory.

Zones
They are concepts coming from Zonal Kubernetes
Clusters, they are often characterizing independent
availability areas; Applications developers seeking
high availability deploy an application over multiple
Availability Zones.

Clusters
They represent Kubernetes centralized control plane.
This level has been defined as it is now common to
deploy an application over multiple clusters that are
often geographically distributed.

All these concepts follow a containment hierarchy. Indeed
Pods are allocated to Nodes, Nodes to Zones, and Zones
belong to a Cluster. Whereas these concepts are specific to
Kubernetes, the model presented in this paper only considers
them as entities part a containment hierarchy [26], [27]. The
process described in the following works for every elements
part of a predefined containment hierarchy that can be matched
from tracing data.

In Figure 1, an example of this transformation is provided
where a trace made of seven spans is decomposed in a graph
highlighting the resources involved: four Pods scattered on two
Nodes. For the sake of clarity of the graph, both Zones and
Clusters have been omitted.

This property graph is created by connecting to the Jaeger
gRPC endpoint and retrieving data. This data is then processed
in order to match a model encoded as a graph following the



Fig. 1. Transforming a Trace in a Property Graph.

schema described in Figure 2. This meta-model represents two
kinds of hierarchies observed in traces, each of this hierarchy
is materialized by edges in the graph with different labels.

The first hierarchy represented is the most commonly used
to describe traces: according to OpenTelemetry specifications
[28, a Trace can be thought of as a DAG of Spans, where the
edges between Spans are defined as parent/child relationship].
In this graph-model, the edges labelled REFERENCE are
created from the field “reference” from span that points to
another span in the same trace.

The second hierarchy expressed in the model corresponds
to the containment hierarchy defined earlier for resources.
We can define a hierarchical order of service location within
a Zonal Kubernetes Cluster by having the following orders
of abstraction levels: Pods ⊂ Nodes ⊂ Zones ⊂ Clusters.
In the proposed graph-model, this hierarchy materializes as
edges labelled IS CONTAINED that appear between resource
vertices. When multiple traces have been processed, traversing
the graph of resources by following the IS CONTAINED
relationship will form a pure tree.

Finally edge labelled EXECUTES ON links a span vertex
to their resource vertices (Pod, Node, Zone, Cluster). When
processing multiple traces, all spans characterizing the execu-
tion of an action in the same Pod will be linked to the same
Pod Vertex.

Fig. 2. Transforming a Trace in a Property Graph.

C. Deducing Resources Dependencies

The property graph offers valuable pieces of information
regarding how service composition may impact the resources
they are executed on. Indeed, a dependency between two
resources may be deduced from the observation of dependency
in a trace, through the REFERENCE relationship. However the
graph scale baldy when ingesting numerous traces as Span
vertices accumulates into the graph making it increasingly
complex to analyse. A graph rewriting approach has been
taken to keep the number of vertices low and to express
dependencies observed between two microservices to the level
of their respected resources. The rewriting process aims to
delete Span vertices and project the REFERENCE relationship
to each abstraction level of the containment hierarchy. The
rewriting process deletes numerous vertices and edges and
adds a new edge labelled PROJECTED REF.

This graph transformation is formulated with pushout trans-
formations, which are based on concepts from the category
theory. There are two main variants of pushouts operations that
may be applied to graphs. Both provide a synthetic description
graph rewriting, but they differ in particular, in the way they
handle suspended edges. As the rewriting process deletes some
vertices, there is a chance that it will leave some edges with
one of its ends not linked to any vertices, this what is called
suspended edges.

The two approaches used for graph rewriting:
• Single Pushout: it allows to add, delete, merge or clone

vertices or edges in an attributed graph, deleting any
suspended edges.

• Double Pushout: it allows to add, delete, merge or clone
vertices or edges in an attributed graph, but blocks if any
suspended edges is encountered.

For this purpose, a Single Pushout is convenient to delete
Span Vertices and EXECUTES ON and REFERENCE edges
once the PROJECTED REF has been created. Figure 3 pro-
vides a Single Pushout formalization of the rewriting approach
and takes the same conventions as in Figure 1. The first line
shows on the left side of the operand the pattern that will be
searched into the graph, and on the right side the result of the
rewriting process (the creation of the new edge) applied on this
pattern. On the second line, the left part of the operand is the
graph from trace in Figure 1 (with only pods as resources for
the sake of clarity), and on the right part the result of the graph
rewriting. After the rewriting process, no nodes labelled Span
remains nor edges labelled EXECUTES ON. The final graph
is only made of resources vertices with IS CONTAINED and
PROJECTED DEP edges.

With this rewriting approach, we project REFERENCEs
observed between spans to any kind of resources present in our
tracing data. As a result, for each trace, we build the network
topology containing only the network calls of each abstraction
layers, of the containment hierarchy. In our example, the
constructed graph (right DAG) exhibits the communications
between the pods that do not appear in the property graph
model (left DAG).



Fig. 3. Graph Rewriting Approach to deduce resources dependencies (applied
to Pods) based on a Simple Pushout operation.

D. Graph Hierarchical Model

After the rewriting process, the property graph is not a
hierarchical structure by itself. By defining a hierarchy as
a DAG whose nodes are graphs and edges are morphisms
between elements of these graphs, we can consider our model
to match this definition. With this model, we can maintain the
view of the different topologies of resources; each of them
corresponding to a level of this hierarchy. The hierarchical
relationship expressed by the model is the IS CONTAINED
resources relationship: Pods ⊂ Nodes ⊂ Zones ⊂ Clusters. In
this designation Pods is a graph where its vertices are labelled
Pod and its edges are typed PROJECTED REFs. The same
applies to Nodes, Zones and Clusters, each being a graph of
vertices respectively labelled Node, Zone and Cluster linked
by PROJECTED REFs. Figure 4 is a visual representation
of a portion of this graph involving the “Pods” and “Nodes”
hierarchical vertices where the different network topologies
have been reconstructed based on a trace.

Fig. 4. Hierarchical Graph Representation.

As a result, traces, which are flat graphs where abstraction
levels are hidden, have been turned in a multi-level location-
aware model that highlights the composition of service and
resources.

IV. DETECTING INEFFICIENT COMMUNICATIONS IN
CLOUDS

When projecting the references expressed in traces to upper
layers, which originally was a DAG, the new projected graph
may exhibit cycles, e.g. Figure 4 shows this kind of configura-
tion where the two nodes within the Nodes Hierarchical layer
initiate a communication with each other for a single trace.
These cycles show an inefficient placement of services re-
garding their composition. In this section we focus on the flow
hierarchy that may appear among each level of the containment
hierarchy. In [27], the flow hierarchy concept is associated with
directed networks of vertices of the same entity. Vertices are
layered by their influence on each other: higher level vertices
influence lower level vertices; the influence is materialized
by a relationship between vertices. Authors propose a metric
of Flow hierarchy which detects and measure the extent to
which all the local flows follow a holistic overall “underlying
direction”. It may also be defined as the fraction of nodes not
involved in a cycle.

A. Using the flow hierarchy metric to assess service compo-
sition regarding their placement

To assess resource placement regarding a trace, the key idea
is to compute the flow hierarchy metric h in all levels of the
containment hierarchy. If a resource topology has cycles, its
h metric will be lesser than 1 otherwise it will be 1. As the
network of resources does not have numerical attributes on
edges, we will consider the following definition of the flow
hierarchy:

h =

∑L
i=1 ei
L

(1)

where L is the number of PROJECTED REF in the network
and ei = 0 if the PROJECTED REF relationship i belongs to
a cycle or ei = 1 otherwise. Cycle detection is not covered by
this formula and is a prerequisit to compute the flow hierarchy
metric. In the next section, two methods for identifying cycles
in the graph are discussed.

In our case, having cycles within the topology for a single
trace spots unnecessary network calls, and thus reveals an
inefficient placement of the underlying resources involved in
the cycle, and performance degradations. Also, the rewriting
process can lead to a projected graph made of a single vertex
with no edges, e.g. when all network communications remains
contained within the same availability zone. In that case
L = |E| = 0 and then h is undefined. However, for the
purpose of our model, this use case materializes a normal case
where network communications are efficient. Therefore when
|E| = 0 we define h = 1.

B. Example

To illustrate a use case where the calculation of the flow
hierarchy metric brings valuable feedback regarding the alloca-
tion of resources, we will use the example trace we have been
using throughout this section. Let’s consider the case of Pod
load-balancing: Figure 5 represents two traces representing the



Fig. 5. Examples of Flow hierarchy metric calculation at each layer of the
containment hierarchy for two traces

same service composition, but using different resources. In
this example Pod 4 has two instances: Pod 4 and Pod 4’; the
first one is hosted on Node 1 and the second one on Node
2. Whereas one trace involves the creation of a cycle at the
Nodes level the other does not.

V. IMPLEMENTATION AND EXPERIMENTATION

To verify our approach a Proof of Concept (PoC) plat-
form has been developed integrating Linkerd service mesh
with an early release of the OpenTelemetry service for trace
formatting. This platform has been deployed on a Zonal
Kubernetes Cluster, in order to get more depth in the hierarchy
representing resource location. Finally, a demonstration appli-
cation has been deployed on that cluster with an integrated
load generator that emulates incoming user requests. The
deployment manifests of this platform have been published
on GitHub [29].

Both the application own instrumentation and the service
mesh proxies have been configured to send traces to a central
Jaeger Tracing instance. In the next section, we will provide
more details on the implementation of both the pipeline
processing traces and of the PoC application that was used
for experiments.

A. Creating a Pipeline for Trace Processing

Traces managed by Jaeger Tracing are processed via the
Polynote5 data-processing platform. Polynote is a Notebook
engine capable of executing code written in Scala; all the steps
described in the graph modelling section have been imple-
mented in Scala by using a functional programming approach.
We created, in the notebook engine, an real-time processing
pipeline for parallel trace computations. This pipeline covers:
reading data from a Jaeger gRPC endpoint, applying the model
to create graphs, then applying the rewritting process on the

5https://polynote.org A Scala Notebook engine open sourced by Netflix

graph to generate a hierarchical structure and finally storing
this model in a graph database after computations.

The choice of the Scala programming language was further
motivated by its compatibility with the Java ecosystem that
has a wide set of libraries available. Data retrieval was
implemented based on the work published in the Jaeger Data
Analytics Library6; the capability of matching the various
resources type has been added in order to create resource
vertices in the model. The graph rewriting process has been
implemented with the Gremlin language [30] on Tinkerpop In-
Memory graphs. In-Memory graphs make computations faster,
which is required for the identification of cycles that the flow
hierarchy metric depends on. In addition, Tinkerpop provides
a solid implementation for processing property graphs. To
identify cycles, we took an approach based on the identifica-
tion of Strongly Connected Components (SCC), as an edge
is in a cycle if and only if it is in a strongly connected
component. The Tarjan algorithm [31] is in general a good
solution to identify SCC because of its low complexity. It
has a complexity of O(|V | + |E|), where |V | represents the
number of vertices in the graph and |E| is the number of edges.
We favoured this method over the one described in original
work on the flow hierarchy metric [27] that was based on
exponentiation of the adjacency matrix which has a complexity
of O(|E||V |).

Finally, to store the hierarchical model, a Neo4J database
was used. This graph database has a clean and powerful
synthax to create or reuse vertices from the database without
prior checks. Our graph hierarchical model requires to identify
resources vertices already present in the model when stored in
the graph database. Using this backend to store the hierarchical
model reduced the number of network calls to the graph
backend by a factor of three.

This approach is then scalable and allows online trace pro-
cessing; indeed, all the heavy graph computation and rewriting
is done independently for each trace. Only the results of these
computations are stored on a graph stored in a Neo4J database.
In the current implementation, the model is dependent on
Kubernetes as it has the best support for distributed tracing;
however the resource containment model may also be used to
describe edge computing structure.

B. Test Application Overview

In order to get representative tracing data, a microservices
Cloud application was needed. In this paper, a PoC platform
has been created by implementing OpenTelemetry data col-
lection on the sample Cloud application provided by Google
Cloud for demonstration purpose [32]. This application is
made of ten microservices communicating with each other
over gRPC and coded in five different languages. Some
services have part of their code base instrumented to emit
traces spans based on the time spent in some functions; some
have no instrumentation. An OpenTelemetry agent has been
injected in each of the micro-services in order to convert traces

6https://github.com/jaegertracing/jaeger-analytics-java



to a common format and to ensure the common attributes
have been set. This agent forwards trace spans to a Jaeger
Tracing Collector; this setup builds a complete tracing pipeline
representative of production setups.

This application emulates the behaviour of an online bou-
tique. User can basically do five different operations on this
web application: (1) Consult the catalogue of products: this
operation will trigger the execution of five services, (2) Consult
the page of a specific product: this operation will trigger
the execution of six microservices (3) Consult the cart: this
operation also triggers the execution of six microservices, (4)
change the currency of the boutique: this operation only trig-
gers one microservice and finally (5) proceed to the checkout:
this operation involves nine out of the ten services in the
application.

Throughout the rest of this section, we will only focus on
the checkout operation which provides the most complex graph
of service composition. As this application follows a common
pattern in software architecture (the API gateway pattern) the
dependencies of these microservices may be represented as a
star graph. As we might not observe cycle in a star shaped
graph most common actions of the application are not traced.
Only the checkout operation does not create a star-shaped
graph dependency and adds extra depth to the composition
of services.

C. Deployment

Trace spans from checkout operation are sent to Open-
Telemetry agents and are merged with code-level trace spans
into the final trace. With this particular configuration, a trace
mixes monitoring measurements from two abstraction layers:
the code instrumentation and the network instrumentation.
Whereas this exhaustive view is a clear advantage for debug-
ging purpose, it saturates the content of the traces and makes
the processing of traces more computation intensive. When
applying the rewriting operation, the process automatically ex-
tracts the network-related spans and discards the ones focused
on code instrumentation.

Our ten microservices application has been deployed on a
Zonal Kubernetes Cluster made of four nodes (named Node1,
Node2, Node3 and Node4) scattered in two zones (named
Zone1 and Zone2). We have Node1 ⊂ Zone1, Node2 ⊂ Zone1,
Node3 ⊂ Zone2 and Node4 ⊂ Zone2.

With this platform, the application has been deployed with
four replicas of each service, each on a different node follow-
ing the previous topology. The load simulator emulates two
concurrent users using the application at the same time.

D. Experimentation

To verify our approach we executed the model on a
Zonal Kubernetes Cluster which is, typically, a representative
implementation of a hierarchical network model. Our goal
was to assess whether Kubernetes allocation could produce
bad allocation, or bad load balancing between instances. We
applied our model to each checkout trace hosted in Jaeger

Fig. 6. Graph transformation for a particular trace

Tracing to build a tuple of three flow hierarchy metrics:
(hPod, hNode, hZone).

In Figure 6, the graph transformation process has been
unrolled, showing the three stages of the location hierarchy.
Each stage has the flow hierarchy metric provided, calculated
as the percentage of edges not involved in a cycle. In that
case, the load balancer picked the email service hosted on
Node 1. This decision introduces a cycle between Nodes and
then between Zones. However, by routing the communication
initiated by checkout to the shipping service hosted on Node
2, the load balancer introduced a cycle not visible at the
Nodes hierarchy level. The cycle generated by this costly
communication is shown at the Zones Level.

When running the model on a flow of traces, we observed
that 70% of the traces created a cycle between the two
Zones of the cluster. This cycles introduce a communication
that could be avoided by having a better placement and
communications between zones, as they represent an economic
waste. Therefore, there is room for improvement in Kubernetes
internal routing so that they can manage a more effective
routing between zones. And, to a wider extent, manage a more
complex network structure for the pod overlay network.

CONCLUSION

OpenTelemetry is a fast-growing technology in the cloud
ecosystem with a high visibility among most prominent indus-
trial like Google, Microsoft or Uber. It provides both an open



format and an implementation to Cloud-Native Monitoring,
in particular for tracing. Still, distributed tracing is a young
technology and there are few usages of traces today. They
are used individually for debugging purpose, but state-of-the-
art tools do not provide a wider view of the system. In this
contribution we propose a generic model fed by traces that
maintain at runtime a hierarchical property graph. This model,
based on the semantic defined by OpenTelemetry, represents
the microservices ecosystem of a Cloud Native Application.
Most notably, it highlights service composition which is a
topic that is not covered by previous monitoring techniques.
With this contribution, we also provide an implementation of
this model fed by the most popular tracing tool supported
by OpenTelemetry: Jaeger Tracing. And finally, we propose
a usage of this model by using the flow hierarchy metric
at each abstraction layer in order to identify an inefficient
placement of resources by Kubernetes. For our experiment we
focussed on an existing use case of identification of inefficient
communications within a zonal cluster that increase the Cloud
bill (cycles in service composition). Note that, both the model
and its usage are generic and can adapt to more depth within
a placement hierarchy.
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