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Abstract
In this paper, we highlight an intriguing connection between the cryptographic attacks on Enigma’s
code and local consistency reasoning in constraint programming.

The coding challenge proposed to the students during the 2020 ACP summer school, to be
solved by constraint programming, was to decipher a message encoded using the well known Enigma
machine, with as only clue a tiny portion of the original message. A number of students quickly
crafted a model, thus nicely showcasing CP technology – as well as their own brightness. The detail
that is slightly less favorable to CP technology is that solving this model on modern hardware is
challenging, whereas the “Bombe”, an antique computing device, could solve it eighty years ago.

We argue that from a constraint programming point of vue, the key aspects of the techniques
designed by Polish and British cryptanalysts can be seen as, respectively, path consistency and
singleton arc consistency on some constraint satisfaction problems.
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1 Introduction

Enigma was a cipher machine that had been commercialised since 1923. Breaking its code
was a decisive breakthrough with a significant impact on the outcome of World War II.

The machine resembles a portable typewritter. Once configured in a particular setting
agreed upon by the sender and the receiver, it can be used to encrypt a message. When
typing with the machine, each letter is ciphered to a seemingly random letter indicated by a
light bulb. The encrypted message, or ciphertext, can be deciphered by the receiver using
his own Enigma machine. The code is indeed symmetric and typing the ciphertext with the
same machine setting yields the original message.

The Enigma code was first broken by the mathematicians Marian Rejewski, Jerzy Różycki
and Henryck Zygalski for the Polish Cipher Bureau before the war, although this method
relied on a weakness due to an operating practice that was abandoned during the war.
This knowledge on the machine, however, was shared with the allies and helped British
cryptanalysts to break the code. To this end, Alan Turing and Gordon Welchman designed
“The Bombe”, an electro-mechanical device that made it possible to decipher Enigma’s
encrypted messages until the end of the war.
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In this paper, we look back to this story from the viewpoint of constraint programming. We
first describe a constraint model to break Enigma’s code in Section 4. Given a portion of the
original message (the crib), a solution of this model represents the internal settings of Enigma
(the cryptographic key) that produced, and can decrypt, the intercepted communication.
Modelling this constraint satisfaction problem was the topic of a “hackathon” held during the
ACP summer school in 2020, and several participants managed to break Enigma’s code during
this event.1 This problem would be deceptively tricky to tackle without a rich modelling
framework, and it nicely illustrates the effectiveness of constraint programming in that
respect. However, solving this model with state-of-the-art solvers appears to be challenging,
which highlights the prowess that was solving this problem eighty years ago. Interestingly,
it appears that both methods used by the Polish Cipher Bureau or at Bletchley Park can
be equated to known concepts of consistency: Singleton Arc Consistency on the constraint
model introduced in this paper for the latter (see Section 5), and Path Consistency on some
precomputed constraints for the former (see Section 6).

2 The Constraint Satisfaction Problem and Consistency

A Constraint Satisfaction Problem (CSP) is a triple (X ,D, C) where X = {x1, . . . , xn}, is
a set of variables; D = {D(x1), . . . , D(xn)} a set of domains; and C = {c1, . . . , ct} a set of
constraints. An assignment maps2 values to variables, we write x ← v for the assignment of
value v to variable x. A constraint cj is given by a pair (S(cj), R(cj)) where S(cj) is a subset
of X , and R(cj) is |S(cj)|-ary relation, that is, a set of satisfying assignments of S(cj).

The assignment A = {x1 ← v1, . . . , xk ← vk} of the set of variables {x1, . . . , xk} is
consistent for a constraint c if and only if its projection {xi ← vi | 1 ≤ i ≤ k & xi ∈ S(c)} to
S(c) can be extended to an assignment in R(cj); Assignment A is globally consistent if and
only if it is consistent for every constraint in C; it is valid if and only if, for every variable xi,
we have vi ∈ D(xi). A solution of a CSP ⟨X ,D, C⟩ is a valid, globally consistent assignment
of X . We write D|x←v for the set of domains where x is mapped to {v} and equal to D on
all other variables, and D′ ⊆ D when ∀x ∈ X , D′(x) ⊆ D(x).

The notion of consistency is key to solving constraint satisfaction problems. We define
here three consistencies that we shall relate to historical methods for attacking Enigma’s code.
These definitions are standard generalisations to non-binary constraints. In particular, the
definition of consistency of an assignment for a constraint as its projection to the constraint’s
scope being extendable to the constraint’s relation is useful to generalize path consistency.

▶ Definition 1. A support for a constraint c is a valid and consistent assignment of S(c).

▶ Definition 2 (Arc Consistency (AC) [6]). A variable x is arc consistent (AC) with respect
to a constraint c if and only if, for each v ∈ D(x), there exists a support for c that contains
x ← v. A constraint c is AC if and only if every variable x ∈ S(c) is AC with respect to c.
A CSP (X ,D, C) is AC if and only if every constraint c ∈ C is AC.

▶ Definition 3 (Singleton Arc Consistency (SAC) [3]). An instantiation x ← v is singleton
arc consistent (SAC) if and only if there exists D′ ⊆ D|x←v such that the CSP (X ,D′, C) is
AC. A variable x is SAC if and only if, and for each v ∈ D(x), x ← v is SAC. A CSP
(X ,D, C) is SAC if and only if every variable x ∈ X is SAC.

1 https://acp-iaro-school.sciencesconf.org/
2 We use functions instead of tuples to make variable ordering irrelevant.

https://acp-iaro-school.sciencesconf.org/
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▶ Definition 4 (Path Support). Given a CSP (X ,D, C) and three distinct variables x1, x2
and x3, the assignment {x3 ← v3} is a path support of assignment {x1 ← v1, x2 ← v2} for
variable x3 if and only if the assignment {x1 ← v1, x2 ← v2, x3 ← v3} is valid and globally
consistent.

▶ Definition 5 (Path Consistency (PC) [7]). An assignment {x1 ← v1, x2 ← v2} of two
variables is path consistent (PC) if and only if it has a path support for every variable.

A CSP (X ,D, C) is PC if and only if every valid and globally consistent assignment of
every pair of variables is path consistent.

Enforcing (singleton) AC on a CSP (X ,D, C) means finding the largest domain D′, in
the sense of inclusion as defined above, such that D′ ⊆ D and (X ,D′, C) is (singleton) AC.
Notice that there is a single such fix point, since the set of possible domains forms a lattice
where infimum and supremum are obtained respectively by the intersection and the union.

3 The Enigma Code

In its simplest form, Enigma’s encryption system is composed of three rotor wheels and a
reflector wheel. A rotor wheel can be seen as a simple substitution cipher whereby every letter
is mapped to a given letter, forming a permutation of the alphabet. The signal then goes
through the two other wheels, then through the reflector and finally through the three rotors
but backwards. Figure 1a illustrates, on a reduced alphabet, the rotor wheels (first three
boxes) and reflectors (last box) wiring the input keyboard to an output system composed
of lightbulbs indicating the substituted letter. In this case, pressing the key A eventually
lights the bulb E. In other words, this mechanism is a simple substitution cipher whereby the
alphabet is applied a permutation, e.g., (AE)(BD)(CF) in Figure 1a. Notice that the reflector
wheel is symmetric and antireflexive. As a result, the overall permutation is symmetric
and the same machine can therefore be used to decipher: pressing the key E lights bulb A.
Moreover, it is antireflexive: no letter is mapped to itself, which proved to be a weakness.

A
B
C
D
E
F

(a) Original rotors and reflector wiring.

A
B
C
D
E
F

(b) The same machine after one key stroke.

Figure 1 Illustration of Enigma’s rotors and reflector.

However, the feature that made Enigma such a strong cryptographic system is that rotors
are not static: they advance at every key stroke. More precisely, at every key stroke the
“fast” rotor (leftmost) advances one step. Figure 1b shows the same machine after one key
stroke. The fast rotor is shifted down by one position: the wire that was connecting B to A
nows connects A to F, and so forth. As a result, pressing the same letter A now lights bulb D.

Moreover, when the fast rotor has completed a turn and is back to its reference position,
a turnover notch is activated, and the middle rotor advances one step. Similarly, when the
middle rotor has completed a turn, the “slow” (rightmost) rotor advances one step. Figure 2
shows the same machine after 6 key strokes (the fast rotor has made a full turn and is back

CP 2021
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to its original position and the middle rotor has advanced 1 step), or after 95 key strokes
(the fast rotor has advanced 5 steps from its reference position, the middle rotor 3 steps and
the slow rotor 2 steps). The simple substitution cipher in the latter position is (AD)(BC)(EF).

A
B
C
D
E
F

(a) After 3 key strokes.

A
B
C
D
E
F

(b) After 95 key strokes.

Figure 2 Illustration of the same machine as in Figure 1a.

All Enigma machines shared the same set of three rotor wheels and the same reflector
wheel, however, rotors could be rearranged in any order and initialised in any position. For
instance, the daily settings could be given as “312, CSP”. In that case, on that day, the 3rd
rotor wheel would placed on the left, the 1st wheel on the middle and the 2nd wheel on the
right. Moreover, before (de)ciphering any message, the left, middle and right rotor wheels
would be positionned respectively so that the letters C, S and P showed up in some windows
designed for this purpose. Additionally, the positions of the turnover notches of the left and
middle rotor wheels, indicating the reference position at which the next rotor to the right
would advance, could also be changed. The cryptographic key shared by the sender and
receiver of the message was therefore the 3! rotor orders and the 263 rotor positions, as well
as the 262 reference positions.3 Therefore, there are 3!× 263× 262 = 72188256 possible keys.4

The first versions of the machine, commercialised in the 1920’s operated on those principles,
and hence had relatively few possible cryptographic keys. The version used by the German
military added one sophistication: a plugboard (or steckerbrett) inserted between the input
keyboard and the rotor scrambler, and also between the scrambler and the output light bulbs.
The plugboard is also a simple substitution cipher, mapping L letters to another – different –
letter, and the remaining 26− 2L to themselves. However, this further cipher could easily be
changed manually and was therefore part of the cryptographic key. For L = 10 plugs, the
number of possibilities is 150, 738, 274, 937, 250, and the total number of possible settings is
thus 158, 962, 555, 217, 826, 360, 000 and even 262 times more counting the reference positions.

Breaking the code entails finding, for a given ciphertext, the rotor settings (the choice of
rotors, their order, the reference position of the two leftmost rotors, and their initial position)
and the plugboard configuration. Those settings can be seen as the cryptographic key that one
needs to recover in order to decipher the messages. However, if every component contributes
to combinatorial number of keys, the rotor position is the most important. Indeed, the
reference positions do not affect the first letters of the message. As long as the middle rotor
does not advance, the text is unchanged. Moreover, the reference position of the first rotor
can be deduced from when the text starts being gibberish. The plugboard configuration
only affects part of the letters, for instance with six plugs, fourteen letters are not changed.
Therefore given a correct guess on the order and position for the rotors, setting up the
reference position arbitrary (say to AA) and the plugboard to the identity, would be sufficient

3 Only the left and middle rotors have a turnover notch.
4 Later versions introduced two more rotors to choose from, raising this number to 3P5 × 265 = 721882560.
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to decrypt a small portion of the message. Therefore, verifying that this guess is correct is
relatively easy, as well as deducing the reference position and the plugboard configuration.
Finally, the rotor ordering (and choice thereof) was often guessed by other means than
computation, or the attack was repeated for every possible order until it succeeded.

4 A Constraint Programming Model

In this section we introduce a constraint model that emulates the Enigma machine, and can
be used to break its code. This model assumes that the rotors and their order are known.
Since it is actually unknown, the problem might have to be solved 3! = 6 (resp. 3P5 = 60)
times for three rotor wheels (resp. three out of five).

Let ciphertext be a string of K letters; rotor be the rotor wiring, whereby rotor[j][x] is
the output letter, on input x, of rotor j in its reference position; and reflector be the reflector
wiring, whereby reflector[x] is the output of the reflector on input x. In the following, we
use N for the size of the alphabet and M for the number of rotor wheels (respectively 26
and 3 for Enigma). Moreover, we write [a, b] for the discrete interval {a, a + 1, . . . , b} and [b]
as a shortcut for [0, b− 1]. The model uses four sets of variables:

plaintext : plaintexti ∈ [N ] ∀i ∈ [K]
key : keyj ∈ [N ] ∀j ∈ [M ]
ref : refj ∈ [N ] ∀j ∈ [M − 1]

plugboard : plug[x] ∈ [N ] ∀x ∈ [N ]

The variables plaintext stand for the original message. The other variables stand for the
settings of the machine used to cipher it: the variables key stand for the rotor position (rotor
wheel j was advanced by keyj steps) the variables ref stand for the reference position of the
two leftmost rotor wheels (rotor j + 1 advances one step when rotor j returns to position
refj), and the variables plugboard stand for the plugboard connection (plug[x] is the letter
“steckered” to x by the plugboard). In a nutshell it ensures that an Enigma machine with
rotors rotor that have been setup with reference position ref , in initial position key and
with plugboard configuration plugboard ciphers plaintext to ciphertext. We use the
auxiliary variables x with xi,j ∈ [N ] ∀i ∈ [K],∀j ∈ [2M + 2], with xi,j standing for the
output of the scrambling device j for the letter at position i in the plaintext. The scrambling
devices are ordered as explained in Section 3: plugboard first, then the three rotors, followed
by the reflector, the three rotors backwards, and finally the plugboard again. We also use
the auxiliary variables p with pi,j ∈ [K + K/N j ],∀i ∈ [K],∀j ∈ [M ], to represent the total
number of steps that the j + 1-th rotor wheel has advanced when reading the i + 1-th letter.
Finally, the auxiliary variables offset with, for j ∈ [2], offsetj represent the reduction in
number of steps to advance for rotor j to reach its reference position refj for the first time.5

In the reminder of the section, we will extensively use the Element constraint [4]:

▶ Definition 6 (Element). Let x = {x1, . . . , xK} be a set of variables, and k, y be two
variables. The constraint Element(x, k, y) is the pair (S, R) where the relation R contains
all assignments of S = x ∪ {k, y} satisfying the predicate xk = y.

When we write the expression “xk”, with k a variable and x = x1, . . . , xn an array of variables,
this should be read as an extra variable y constrained with Element(x, k, y). Similarly, for
any arithmetic operator ⊕ ∈ {+,−, ∗, /, mod}, the expression “x1 ⊕ x2” should be read as
an extra variable y with the constraint defined by the predicate x1 ⊕ x2 = y.

5 We include these variables for completeness, although they are often both set to the constant 0 (A).

CP 2021
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4.1 Forward Rotor Model

If rotor[j][x] is the letter read after going through rotor j from input x, then after advancing
k turns, the rotor produces the letter (rotor[j][(x + k) mod N ] − k) mod N on the same
input. The relation between the input letter xi,j and the output letter xi,j+1 of the forward
traversal of rotor j can therefore be encoded as follows:

pi,0 = key0 + i ∀i ∈ [K] (1)

offsetj =
{
−refj if refj ≤ keyj

N − refj otherwise
∀j ∈ [M − 1] (2)

pi,j = keyj + pi,j−1 + offsetj−1

N
∀i ∈ [K],∀j ∈ [1, M ] (3)

xi,j+1 = (rotor[j][(xi,j + pi,j) mod N ]− pi,j) mod N ∀i ∈ [K],∀j ∈ [M ] (4)

Constraints (1, 2 and 3) channel the auxiliary variables p, where pi,j stands for the number
of times the rotor j has turned starting for position 0 when reading the i-th letter, to the
initial positions key of the rotors and to their reference position ref via the variables offset.
Constraints (4) represent the substitution cipher used with input letter xi,j and output letter
xi,j+1: if rotor j advanced p steps, the wire that initially connected the letter α to the letter
β now connects the letter α− p to the letter β − p (modulo N = 26).

4.2 Reflector Model & Backward Rotor Model

The reflector is also a substitution cipher, but static (it does not change from a letter to
the next), symmetric (∀x, ∀y reflector[x] = y ⇐⇒ reflector[y] = x) and antireflexive
(∀x reflector[x] ̸= x). Constraints 5 model the relation between the input xi,M+1 of the
reflector (the signal corresponding to the i-th letter after going through the all rotors forward)
and its output xi,M+2 with another Element constraint. Then, the signal travels through
the rotors, but backward. Constraints 6 are similar as for the forward pass.

xi,M+1 = reflector[xi,M ] ∀i ∈ [K] (5)
xi,M+j+1 =
(rotor[j][(xi,M+j+2 + pi,M−j) mod N ]− pi,M−j) mod N ∀i ∈ [K],∀j ∈ [M ] (6)

4.3 Plugboard Model

Finally, we need to model the plugboard of the military version. Since it is composed of L

plugs, each one connecting two letters, it is a symmetric permutation with N−2L fixed points,
i.e., it leaves N − 2L letters unchanged. Unlike the reflector (which is fully known) or the
rotors (for which the only unknowns are their positions), the plugboard is not known for the
attacker: its configuration is part of the cryptographic key to be computed during the attack.
It is encoded as a vector plugboard = ⟨plug[1], . . . , plug[N ]⟩ of variables with domain [N ]
where plug[x] stands for the letter mapped to letter x, and the following constraints:
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AllDifferent(plugboard) (7)
(plug[x] = y)⇔ (plug[y] = x) ∀x, y ∈ [N ] (8)

N∑
x=1

(plug[x] = x) = N − 2L (9)

plug[plaintexti] = xi,0 ∀i ∈ [K] (10)
plug[ciphertext[i]] = xi,2M+1 ∀i ∈ [K] (11)

Constraints (8), (9) and (9) ensure that the plugboard is in a legal configuraton by stating
that plugboard is a permutation (7); with N − 2L identities (9)6; and is symmetric (8).
Constraints (10) represent the transformation of the input by the plugboard, and Constraints
(11) the final transformation, also by the plugboard, yielding the ciphertext as output.

4.4 Breaking the Code
So far, the model introduced in this section emulates the Enigma machine: a solution stands
for a plaintext x whose cipher with message key key and plugboard plugboard is the given
ciphertext. However, there are too many consistent assignments of x, key and plugboard
to consider enumerating the solutions in order to find the original text.

In order to actually break the code, we use the same technique used by cryptanalyst
at Bletchley Park in the 1940s. We suppose that we are somehow given a “crib”, that is,
a portion of deciphered message.7 For instance, suppose that we know that the plaintext
corresponding to the portion of ciphertext IRSJYTCORS starting at position s is in fact
CONSTRAINT. Plaintext and ciphertext can therefore be aligned as shown in Table 1.

Table 1 A crib: an alignment of plaintext and ciphertext.

s s + 1 s + 2 s + 3 s + 4 s + 5 s + 6 s + 7 s + 8 s + 9

C O N S T R A I N T
I R S J Y T C O R S

Given a string of plaintext T and a string of ciphertext C such that |T| = |C| starting at
position s corresponding to a crib, we can find compatible initial rotor positions key, and
plugboard configurations plugboard, by solving the model introduced in this section8 with
K = |C|, Constraints (1–11), as well as the equalities:

plaintexti = T[i] ∀i ∈ [s, s + K] (12)

This model may have several solutions, and only one corresponds to the actual cryptographic
key. In practice, however, even small cribs can have a reasonable number of solutions, and
verifying them manually can be done by deciphering the rest of the ciphertext with the same
key. Experimental evaluations show that solving this model using standard CSP solvers is

6 The number of connections L went from 6 to 10 depending on Enigma’s versions. The equality
“plug[x] = x” is read as its natural conversion from Boolean to {0, 1}.

7 Cribs were obtained by guessing that a word or a sentence was likely to be in the message, and using
the fact that a letter is never ciphered to itself to align that portion of plaintext with the ciphertext.

8 Notice that the definition of several constraints must take into account the positional offset s.
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13:8 On How Turing and Singleton Arc Consistency Broke the Enigma Code

not trivial (see Section 7). In the two following sections, we review how the code was broken
in practice and show how those ideas can be mapped to the notion of consistency. These
observations directly lead to an efficient CP based method to break Enigma’s code.

5 Breaking Enigma’s Code: The British Method

The method developped by Alan Turing (and improved by Gordon Welchman) computes the
rotor position and the plugboard configuration used to cipher the message. It ignores the
reference positions, however, and actually fails if there was a turnover (i.e., if the middle rotor
advanced when ciphering the crib). A very advanced machine for its time, called “Bombe”
was built for that purpose at Bletchley Park. The Bombe was not only capable of quickly
simulating several rotor positions in parallel, but it could also either rule out a message key,
or (partially) compute a plugboard configuration consistent with that message key.

The method used by British cryptanalists also relied on acquiring a crib, that is, a string
T of original text aligned to a string C of same length in the ciphertext, as shown in Table 1.
A menu for the Bombe was then extracted from the crib:

▶ Definition 7 (Menu). Given a string of plaintext T and a string of ciphertext C such that
|T| = |C|, the menu obtained from matching them is a graph with one vertex per letter in
T ∪C, and an edge for each pair of matched letters T[i], C[i] labelled by their position, i.e.,
G = (T ∪C, {({T[i], C[i]}, i) | i ∈ [|T|]}). We write NG(x) = {(y, i) | ({x, y}, i) ∈ G} for
the neighborhood of letter x in the menu. Notice that it carries the edge labels.

T

S

RY

N

O

J

I

CA

0

1

23

4 5

6

7

89

Figure 3 Illustration of the Bombe’s menu from the crib in Table 1.

Figure 3 illustrates the menu extracted from the crib of Example 1.9 An edge, say ({A, C}, 6),
of the menu indicates the letter A (resp. C) at position 6 is ciphered to C (resp. A). Now,
observe that given some positions for the rotors, the Bombe can compute the scramble function
(i.e., permutation of the alphabet) Si : [N ] 7→ [N ] corresponding to the Enigma machine,
ignoring the plugboard. It is then possible to make some inference on the configuration of
the plugboard, as sketched in Figure 4. Indeed, suppose that the plugboard associates A to B.
We can compute Si(B), and in particular S6(B), let it be R. Now thanks to the crib, we know
that the cipher for A at position 6 is C, therefore the plugboard must associate R to C. This
process can be repeated starting from any edge of the menu ending in R or C, yielding more
deductions. Eventually, a contradiction might be found, or a fixed point might be reached.
This is Turing and Welchman’s inference rule, which can be formalised as follows:

▶ Definition 8 (Plugboard configuration). Let P be a collection of subsets of [N ] such that
|p| ≤ 2 ∀p ∈ P. We say that P is valid if and only if elements of P are pairwise disjoint
and contains no more than L pairs and no more than N − 2L singletons. We say that P is
complete if and only if

⋃
p∈P p = [N ]. The collection P is valid and complete if and only

if it corresponds to a legal plugboard configuration where, for every {α, β} ∈ P the letters α

and β are connected, and for every {α} ∈ P, the letter α is not changed by the plugboard.

9 For the sake of the example, we let the first index s be 0
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α β γ δ

A B? S6(B) = R C

plugboard Si plugboard

Ei

Figure 4 Illustration of Enigma’s encryption scheme: the input character (here α) is mapped to
β by the plugboard; then scrambled to γ by going through the rotors forward, the reflector and the
rotors backward; and finally mapped to δ by the plugboard.

▶ Proposition 9 (Inference rule). Let S be a scrambler (Enigma without the plugboard) and
G a menu. If P is the valid and complete plugboard configuration used during encryption of
G, then, for every {α, β} ∈ P:

for every (δ, i) ∈ NG(α), {δ, Si(β)} ∈ P, and
for every (δ, i) ∈ NG(β), {δ, Si(α)} ∈ P.

Proof. Suppose that the first rule does not hold, i.e., {α, β} ∈ P , ∃(δ, i) ∈ NG(α) such that
{δ, Si(β)} ̸∈ P. The letter α is mapped to β by the plugboard and is scrambled to Si(β).
However, since there is an edge ({α, δ}, i) in the menu, we know that the encryption setup
was such that the input letter α at position i yields letter δ. Therefore, the plugboard must
match the letters Si(β) and δ. If there is no p ∈ P such that β ∈ p, then P is not complete,
and otherwise, it is not consistent, hence a contradiction.

The second rule follows from the same reason but starting from letter β. ◀

This inference rule can be used to discard a guessed plugboard connection. The Bombe is an
electro-mechanical device that automatises this process. It is composed of several clones of
the Enigma machine, each capable of emulating the encryption of all 26 letters in parallel for
a given rotor setting, and wires for every possible plugboard connection. Given a message key
key, and a menu, the Bombe was initialised by setting up one of the clones to emulate the
scrambler Si for every edge label i in the menu. Then a connection {α, β} could be “guessed”
by sending a current flow through the corresponding wire into the Bombe. The inference rule
described in Proposition 9 would then be applied as the current flowed through the input β

of the clone Si, for each (δ, i) ∈ NG(α). The current would in turn flow to the connection
between Si(β) and δ and again to some clones of Enigma as indicated in the menu. This can
either result in a fixed point where P is closed under that rule, or yields an invalid plugboard
configuration. In the latter case, the connection {α, β} can be ruled out, and another guess
can be made. If there exists a letter for which no matching is possible, the message key is
ruled out and the same process is repeated for another message key. Otherwise, key is a
candidate key and a (partial) plugboard configuration is given by the connection in which
the current flows.

▶ Definition 10 (The Bombe method). The Bombe made it possible, starting from a tentative
connection {α, β}, to enforce the inference rule described in Proposition 9 until either it fails
(P is no longer valid), or succeeds (it does not fail and reaches a fixed point). In the former
case, the connection {α, β} can be ruled out.

The Bombe method denotes the process where, for each rotor position, every possible
plugboard connection involving a letter in the crib is ruled out if the process above fails. The
Bombe method causes a stop if and only if it reaches a fixed point where every letter can
appear in at least one connection. In that case, the current rotor position might be the correct
one (the message key) and it is checked by other means. Otherwise, this key is ruled out and
the process resume with another of the 263 positions.
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▶ Lemma 11. Let (X ,D, C) be the CSP of Section 4. If the rule of Proposition 9 deduces the
connection {δ, γ} from menu G and P = {{α, β}} then enforcing AC on (X ,D|plug[α]←β , C),
reduces the domain of plug[δ] to {γ} and of plug[γ] to {δ}.

Proof. Suppose that the rule of Proposition 9 deduces the connection {δ, γ}. We assume
first that the first rule triggered and hence (δ, i) ∈ NG(α) and Si(β) = γ.

Constraints (1 – 6) and (10 – 12) are all functional: when all but one of their variables
are fixed, the last variable has a single consistent value.

Since (δ, i) ∈ NG(α), the letter α in the plaintext of the crib is matched to δ in the
ciphertext at position i. By enforcing AC on Constraint 12, we have D(plaintexti) = {α},
and since D(plug[α]) = {β}, by enforcing AC on Constraint (10) we have D(xi,0) = {β}.

Moreover, since key is constant, so is p, by enforcing AC on Constraint (1) since only
one non-constant variable remains. As a result, enforcing AC on Constraints (4) reduces the
domains of variables xi,1, xi,2 and xi,3 to single values. The same is true for Constraint (5)
and Constraints (6). The variable xi,2M+1 is therefore assigned, and it must be to value
Si(β) = γ. Enforcing AC on Constraint (11) sets the domain of variable plug[δ] to {γ}.
Finally, Constraint (8) set the domain of plug[γ] to {δ}.

If it was the second rule that triggered, the same demonstration applies, although the
chain of propagations to consider goes in the reverse direction: from xj,2M+1 to xj,0. ◀

The implication in Lemma 11 is not an equivalence simply because in some cases, Constraints
7, 8 and 9 might trigger and more connections could then be deduced via propagation.
For instance if L = 1 and α ̸= β, then all variables in plugboard would be assigned by
propagation of Constraint 9. The following theorem is also an implication for the same
reasons, and in this case these constraints are even more likely to be relevant since the
domains are reduced while enforcing SAC.

▶ Theorem 12. If the Bombe method does not produce a stop, then enforcing singleton arc
consistency on the model described in Section 4, with the variables key assigned, also fails.

Proof. Let CN = (X ,D, C) be the CSP described in Section 4. In particular, plugboard ⊆
X , however, plaintext and key are constant under the theorem’s hypothesis.

Suppose that the Bombe method rules out a connection {α, β}. It means that the rule of
Proposition 9 produces an invalid plugboard configuration P. However, from Lemma 11 we
know that for every {α, β} ∈ P, after enforcing AC on the CSP (X ,D|plug[α]←β , C), all but
the value β (res.p α) are removed from D(plug[α]) (resp. D(plug[β])). It entails that there
exist two elements of P that are not disjoint, e.g., {α, β} ∈ P and {α, γ} ∈ P. In this case,
the corresponding domain D(plug[α]) is wiped out.

Therefore, every connection that is ruled out by the Bombe method is also ruled out by
enforcing SAC. The Bombe method fails if all the connections involving a particular letter
have been ruled out. If this happens for letter α, then the domain of the variable plug[α] is
emptied, and therefore SAC fails. ◀

The Bombe can therefore be seen as a CSP solver that branches on the variables key, and
enforces singleton arc consistency on leaves of this search tree. When SAC fails, the rotor
position corresponding to that branch is ruled out, otherwise the machine stops. Then,
the (partial) plugboard configuration is verified manually. If it cannot be extended to a
configuration that correctly deciphers the message, then this rotor position is ruled out as
well, and the Bombe resumes its search with a new assignment of key. It was therefore
important to reduce the likelihood of such false stops.
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6 Breaking Enigma’s Code: The Polish Method

The Enigma code was actually first broken, before the war, by Polish mathematicians Marian
Rejewski, Jerzy Różycki and Henryck Zygalski [5], who also succesfully reconstructed, from
partial and indirect intelligence, the Enigma machine and built mechanical devices to emulate
it. Their insights later proved essential to the British effort. Turing and Welchman’s method
relied on a crib and would guess the rotor position and the plugboard configuration used to
encrypt the message regardless of how it was chosen (in particular we shall see that this rotor
position is different to the one given in the daily settings). The method of the Polish Cipher
Bureau, on the other hand, relied on intercepting several messages sent with the same daily
settings, and would compute not directly the message key, but the daily settings.

Using repeatedly the same encryption key would be a serious security flaw. Operators
were thus instructed to randomly choose a 3-letter message key. This key (e.g., SAT) would
be encrypted twice10 using the rotor position indicated in the daily settings (e.g., the text
SATSAT would be ciphered using the key CSP to some 6-letter ciphertext). Then, the machine
would be reset to position SAT and the message woud be ciphered using that message key, and
both ciphers (6-letter prefix and text) sent in the same message. The receiver would then set
its own Enigma machine to postion CSP, decipher the prefix, reset its machine to the obtained
position SAT, and finally decrypt the message. This method still had the weakness of using
the same key (here, CSP) to encrypt all messages keys for a given day. Rejewski devised a
first method, involving a dedicated machine, the cyclometer, that partially automated the
design of a lookup table (the cards catalog) from which the daily rotor positions could easily
be found, provided several prefixes encrypted with the same daily settings [1].

The procedure was therefore upgraded: the sender chose a plaintext key besides the
message key. Then, the rotors were positioned according to the daily rotor settings shifted by
the plaintext key. In other words, the actual encryption key was equal to rotor settings +
plaintext key, where “+” stands for the modular, component-wise addition. This key was
used to encrypt the message key and it was sent in plaintext with the encrypted message.
For instance, if the rotor setting is CSP, the chosen plaintext key MIP, then the rotors would
be put in position OAE = CSP + MIP to cipher the chosen message key (say SAT). The text
SATSAT would yield, for instance, DGFAGX. Then the rotors were reset to position SAT and
the actual message was ciphered to “ciphertext”. Finally, the message sent would be:

MIP DGFAGX ciphertext

The receiver would add the plaintext key to the daily setting to recover the actual rotor
position, then, as previously, decipher the message key, reset the machine to the corresponding
rotor position and decipher the message. The difference with the previous practice, however,
was that the rotor position used to cipher the 6-letter prefix was never twice the same. The
fact that the message key was repeated twice, however, proved nonetheless to be a fatal flaw.

When rotors and plugboard are in a given configuration, Enigma corresponds to a
symmetric permutation, although the permutation changes with every letter since the rotors
advance. Let EXYZ

i stand for the permutation applied by Enigma to the i-th letter with
initial rotor position XYZ.11 Consider the prefix MIP DGFAGX and let key = {key1, key2, key3}
denote the unknown rotor setting common to all messages of a given day. We know that a

10 This practice was abandoned May 1st 1940, hence making the Polish attack irrelevant.
11 The plugboard is ignored here.
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letter (say x) is mapped to the letter D in Ekey+MIP
1 and to A in Ekey+MIP

4 . Moreover, since
Ekey+MIP

1 is symmeric, it maps A to x. Therefore, the composition Ekey+MIP
1 Ekey+MIP

4 maps D
to A and vice versa. Because the plugboard is unknown we do not learn anything from that.

However, observe that Ekey+MIP
2 Ekey+MIP

5 transforms the letter G to itself. Mathematician
Henryk Zygalski noticed that this was relevant because the plugboard changes the letter but
conserve the fixed points of permutation Ekey+MIP

2 Ekey+MIP
5 (an element unchanged by the

permutation), and because not all rotor settings have such fixed points [5].
A device, “the Bomba”,12 was designed and built by the Polish Cipher Bureau to go over

all of the 263 rotor settings, and record which settings could allow such a fixed point in one
of the three composed permutations. Only 40% of the rotor positions had a composition
fixed point. A set of 26 perforated sheets (known as the Zygalski sheets) were to be produced
for each of the 6 possible rotor orders.13 Each sheet corresponds to a letter, standing for the
first letter of the unknown rotor position, and contains a 26× 26 Boolean matrix standing
for whether the second and third letters could extend the first letter to a position allowing a
fixed point. We denote Z[α, β, γ] the fact that there is a hole at positions β, γ in the Zygalski
sheet for letter α, which is true if and only if the rotor position αβγ has a composition fixed
point (and hence may encode the two occurrences of a letter in the prefix to the same code).

Consider now a prefix MIP VNEVSX. There is a fixed point at position (1, 4), hence the
Zygalski sheets allowed some inference: one would first guess the order of the rotors and a
first letter key1 indicating the position of the first rotor. Then, let α = key1 + M. The α-th
sheet would be taken from the box standing for the chosen order. The matrix on that sheet
(shifted by I and P in the respective dimensions14) thus stands for the possible values of
key2 and key3. This narrows down the number of possibilities by 60%. Now, suppose that a
message with prefix: SMT DGFAGX is intercepted the same day. This prefix also has a fixed
point, but at position (2, 5). Therefore, the same reasoning applies, using sheet key1 +S+1 in
the same box, but shifted by M and T. The “+1” models that the fixed point is on the 2nd and
5th letters, which is equivalent to observing it on the 1st and 4th letters, however with the
position of the left rotor advanced one step. The subset of holes that allow both fixed points
is obtained by shining light through the two sheets, properly shifted and aligned. Usually, a
dozen messages including a fixed point (and as many sheets) were necessary to narrow down
the number of possibilities to either 0, in which case the guess was proven wrong; or 1, in
which case the rotor position key and the rotor order could be easily retrieved.

This method does not take the plugboard into consideration. However, since 14 letters
were not affected by the plugboard15, it is possible to reconstruct the message manually. It
also fails in case a turnover of the middle rotor happens before the end of the 6-letter prefix.

Aligning several Zygalski sheets corresponds to solving the following CSP:

▶ Definition 13 (Zygalski’s CSP). We call Zygalski’s CSP the constraint satisfaction problem
with set of variables key = {key1, key2, key3}, and for each message with plaintext key
αβγ containing a fixed point at positions (1 + i, 4 + i), a constraint given by the predicate
Z[key1 + α + i, key2 + β, key3 + γ].

▶ Theorem 14. The letter α for the position of the first rotor is refuted by the Zygalski
sheets method if and only if no pair of instantiations {key2 ← β, key3 ← γ} has key1 ← α

as path support in Zygalski’s CSP.

12 An aggregate of six Enigma machines, one for each permutations of the prefix.
13 The process was long and difficult, even with the Bomba: only 2 sets had been completed when the

invasion of Poland began, but the sheets were eventually finalized at Blechtley Park.
14 The sheets had 25 repeated rows and columns to allow for shifting modulo 26.
15 Only 6 plugs were used when the Polish began to attack Enigma.
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Proof. By definition, a hole with coordinates β, γ will let the light shine through all sheets, if
and only if {key1 ← α, key2 ← β, key3 ← γ} is consistent with every constraint of Zygalski’s
CSP, that is, if and only if key1 ← α is a path support of {key2 ← β, key3 ← γ}. ◀

The process of superimposing several Zygalski sheets corresponding to a guess of the letter α

for the position of the first rotor is an efficient method to compute the 2-tuples which have
key1 ← α as path consistent support. Moreover, since there are only three variables in the
network, if key1 ← α is a path support of {key2 ← β, key3 ← γ} then key2 ← β is a path
support of {key1 ← α, key3 ← γ} and key3 ← γ is a path support of {key1 ← α, key2 ← β}.
Therefore path consistency can be achieved by only checking the values of a single variable
in this way, there is a solution if and only there is a tuple with a path support.

Path consistency is usually only applied to binary constraints. However, the definition
we use naturally extends this consistency to non-binary constraints and in that context, the
analogy stands. For instance, consider two Zygalski sheets: one allowing the keys ABC, ADE,
BBE and BDC and one allowing the keys ABE, ADC, BBC and BDE. There is no solution, and indeed
the Zygalski CSP is not PC (e.g., the consistent and valid assignemnt {key1 ← A, key2 ← B}
cannot be extend to the third variable), yet the CSP is AC and SAC.

7 Experimental Evaluation

We ran experiments to verify the impact of SAC on this problem. The constraint model was
implemented using the toolkit Choco [8].16 To emulate the Bombe, we force the heuristic
to select the variables standing for the positions of the rotors (key) before other variables.
In the version denoted Choco+SAC, we run SAC only once these variables are all assigned.
When SAC does not fail, which corresponds to a stop of the Bombe, or in the default version
denoted Choco, we let the constraint solver either find a solution for the variables plugboard,
or prove that no solution exists for the current rotor position. For both methods we treated
every variable in ref as the constant 0 as was done in the methods we discussed previously.
Not doing so would increase the search space, and the number of solutions, by a factor 262.

In order to generate benchmark instances, we used many cribs of length 12 from wikipedia
texts that we ciphered using a random position of the rotors I, II and III of the first Enigma
machine that was introduced in 1930 [9], and a random reflector.

Fast: E K M F L G D Q V Z N T O W Y H X U S P A I B R C J
Middle: A J D K S I R U X B L H W T M C Q G Z N P Y F V O E
Slow: B D F H J L C P R T X V Z N Y E I W G A K M U S Q O
Reflector: P R Y Z L X O S Q K J E N M G A I B H W V U T F C D

We selected 260 cribs, so that we uniformly cover a range of values for the following parameters:
size of the menu (size), i.e., the number of vertices in the graph of the extracted menu and
number of cycles (#cycle). The idea is that sparse or acyclic menus produce more stops. In
particular Turing made an analysis of how many stops would occur according to the values
of these parameters [2]. Therefore, higher number of cycles and lower menu size should make
the problem easier. Moreover, we ignored menus with four or more connected components.
We average the results on instances with same size and number of cycles.

16 The source code is available here: https://gitlab.laas.fr/vantuori/sacnigma.git.
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Table 2 Results of Choco and Choco+SAC on a range of cribs.

Crib Choco Choco+SAC

#inst. #cycle size #stops #sol. #solved CPU #fail #solved CPU #fail

10 0 12 128.4 17912 3 378 388790.7 10 1197 17448.6
10 0 13 242.8 12214 7 901 1036519.1 10 922 17334.3
10 0 14 5.6 593 7 989 968841.6 10 866 17570.4
10 0 15 2.0 26 8 438 414718.2 10 607 17574.0
10 0 16 1.0 14 8 1208 1251729.9 10 813 17575.0
10 1 11 68.6 124111 5 475 542790.6 10 908 17507.5
10 1 12 156.2 33912 6 958 1435607.2 10 751 17421.3
10 1 13 1.8 1182 5 604 693048.2 10 1061 17574.2
10 1 14 1.9 166 8 606 580758.1 10 748 17574.1
10 1 15 1.0 77 8 369 350508.9 10 560 17575.0
10 1 16 1.0 40 8 1057 1239245.6 10 832 17575.0
10 2 10 18.2 165837 4 604 585009.0 9 1048 17557.8
10 2 11 63.0 45071 7 637 958325.9 10 796 17515.3
10 2 12 1.2 2141 7 476 544253.6 10 734 17574.8
10 2 13 2.0 4002 4 391 378688.0 10 793 17574.0
10 2 14 1.0 85 9 391 376638.7 10 578 17575.0
10 2 15 1.0 39 7 715 798622.9 10 755 17575.0
10 2 16 1.0 32 9 352 349036.6 10 618 17575.0
10 3 9 7.6 240639 6 437 338330.8 9 907 17573.2
10 3 10 27.7 192315 2 451 659440.0 10 1267 17551.4
10 3 11 1.1 10001 5 719 987604.6 10 959 17574.9
10 3 12 2.1 19165 4 560 679398.8 10 916 17573.9
10 3 13 1.0 341 7 341 331790.3 10 696 17575.0
10 3 14 1.0 127 9 390 359362.0 10 534 17575.0
10 3 15 1.0 486 8 358 342439.2 10 528 17575.0
10 3 16 1.0 31 9 524 513744.6 10 612 17575.0

All experiments were run on 4 cluster nodes, with Intel Xeon CPU E5-2695 v4 2.10GHz
cores running Linux Ubuntu 16.04.4. We ran both models for one hour or until completion
on every instance. We report in Table 2 the characteristics of the cribs, the average number
of solutions (#sol.), and the average number of solutions with distinct rotor positions, that
is, the number of “stops” (#stops). Then, for both methods, we report the number of
instances solved (#solved), that is, where all solutions have been enumerated within the
one hour cutoff, the average CPU time (in seconds) over solved instances (CPU) and the
average number of fails during search (#fail). We can observe that using SAC significantly
improves the model: Choco solves about 69% of the instances in less than one hour, whereas
Choco+SAC solves 99% of the instances in about 15 minutes in average. The number of fails
of Choco+SAC shows clearly that, as expected, constraint propagation does not actually cut
the search tree for the rotor positions. All of the 17576 possible keys are explored. However,
it also shows that in the few cases where SAC does not fail (the stops), virtually every
singleton arc consistent permutation of the plugboard is consistent with the crib. Indeed the
solver does not fail, and the number of solutions may become relatively large in that case.
On the other hand, the number of fails of Choco shows a more conventional picture where
plugoard configurations are ruled out by a blend of propagation and search.

The number of stops is lower than we would expect of the Bombe by about one or two
orders of magnitude for low number of cycles. This is because we count only rotor positions
for which a consistent plugboard configuration exists, whereas the Bombe stops as soon as a
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Figure 5 Cumulative probability to break the code in less than X seconds.

(slightly weaker form of) SAC can be enforced. Moreover, enforcing SAC on the constraint
model takes advantage of propagation of the constraints modeling the plugboard (e.g., the
AllDifferent constraint). Finally, the Bombe only takes into account the letters of the
menu, i.e., it does not check that these extra letters too must have a legal plug connection.

Interestingly, we observe that the number of solutions tends to be larger for denser and
more cyclic menus, even though the number of consistent rotor positions decreases, as we
would expect from the Bombe. It shows that there are many more consistent plugboard
configurations in this case. Overall, those parameters have a lower impact on the constraint
model as they seem to have had on the Bombe. Overall, the method Choco+SAC is not
extremely fast, but it is very robust. The graph in Figure 5 shows that in the most favorable
cases, not enforcing singleton arc consistency can be the most efficient approach.

8 Conclusion

We have shown that the method designed by Alan Turing and Gordon Welchman at Bletchley
Park to break the Enigma code has uncanny similarities with applying Singleton Arc
Consistency on a constraint satisfaction problem modeling the machine. Experiments show
that indeed, Singleton Arc Consistency significantly reduces the computation time required
to decipher a message. Moreover, the method designed by Marian Rejewski et al. before
that can also be related to achieving Path Consistency on another constraint satisfaction
problem.
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