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Derandomization and Absolute Reconstruction
for Sums of Powers of Linear Forms

Pascal Koiran∗ Mateusz Skomra†

July 15, 2021

Abstract

We study the decomposition of multivariate polynomials as sums
of powers of linear forms. As one of our main results, we give a
randomized algorithm for the following problem: given a homogeneous
polynomial f(x1, . . . , xn) of degree 3, decide whether it can be written
as a sum of cubes of linearly independent linear forms with complex
coefficients. Compared to previous algorithms for the same problem,
the two main novel features of this algorithm are:

(i) It is an algebraic algorithm, i.e., it performs only arithmetic op-
erations and equality tests on the coefficients of the input polyno-
mial f . In particular, it does not make any appeal to polynomial
factorization.

(ii) For f ∈ Q[x1, . . . , xn], the algorithm runs in polynomial time
when implemented in the bit model of computation.

The algorithm relies on methods from linear and multilinear algebra
(symmetric tensor decomposition by simultaneous diagonalization).
We also give a version of our algorithm for decomposition over the
field of real numbers. In this case, the algorithm performs arithmetic
operations and comparisons on the input coefficients.

Finally we give several related derandomization results on black
box polynomial identity testing, the minimization of the number of
variables in a polynomial, the computation of Lie algebras and factor-
ization into products of linear forms.

∗Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France. Email:
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1 Introduction

Let f(x1, . . . , xn) be a homogeneous polynomial of degree d, also called a
degree d form. In this paper we study decompositions of the type:

f(x1, . . . , xn) =
r∑
i=1

li(x1, . . . , xn)d (1)

where the li are linear forms. Such a decomposition is sometimes called a
Waring decomposition, or a symmetric tensor decomposition. We focus on
the case where the linear forms li are linearly independent. This implies that
the number r of terms in the decomposition is at most n. When r = n we
have f(x) = Pd(Ax) where A is an invertible matrix of size n and

Pd(x1, . . . , xn) = xd1 + xd2 + · · ·+ xdn (2)

is the “sum of d-th powers” polynomial. If f can be written in this way,
we say that f is equivalent to a sum of n d-th powers. More generally,
two polynomials f, g in n variables are said to be equivalent if they can
be obtained from each other by an invertible change of variables, i.e., if
f(x) = g(Ax) where A is an invertible matrix of size n. As pointed out
in [37], the case d = 3 (equivalence to a sum of n cubes) can be tackled
with the decomposition algorithm for cubic forms in Saxena’s thesis [48].
Equivalence to Pd for arbitrary d was studied by Kayal [37]. This paper
also begins a study of equivalence to other specific polynomials such as the
elementary symmetric polynomials; this study is continued in [20, 23, 24,
38, 39], in particular for the permanent and determinant polynomials. The
contributions of the present paper are twofold:

(i) We give efficient tests for equivalence to a sum of n cubes over the fields
of real and complex numbers. In particular, for an input polynomial
with rational coefficients we give the first polynomial time algorithms
in the standard Turing machine model of computation. As explained
below in Section 1.1, this is not in contradiction with the polynomial
time bounds from [37, 48] because we do not address exactly the same
problem or work in the same computation model as these two papers.

More generally, we can test efficiently whether the input f can be
written as in (1) as a sum of cubes of linearly independent linear
forms. This follows easily from our equivalence tests and the algo-
rithms from [37, 48] for the minimization of the number of variables in
a polynomial.

(ii) Our first equivalence algorithm for the fields of real and complex num-
bers is randomized. We derandomize this algorithm in Section 5, and
we continue with several related derandomization results on black box
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polynomial identity testing, the minimization of the number of vari-
ables in a polynomial, the computation of Lie algebras and factoriza-
tion into products of linear forms.

1.1 Equivalence to a sum of cubes

Our algorithm for equivalence to a sum of n cubes over C is algebraic in
the sense that the input polynomial may have arbitrary complex coefficients
and we manipulate them using only arithmetic operations and equality tests.
Over the field of real numbers we also allow inequality tests. We therefore
work in the “real RAM” model; an appropriate formalization is provided by
the Blum-Shub-Smale model of computation [6, 7]. We can provide algebraic
algorithms only because we are considering a decision problem: it is easy to
see that if the input f(x1, . . . , xn) is equivalent to a sum of n cubes, the
coefficients of the linear forms li in the corresponding decomposition need
not be computable from those of f by arithmetic operations (see Examples 16
and 17 at the beginning of Section 3).

Polynomial factorization is an important subroutine in many if not most
reconstruction algorithms for arithmetic circuits, see e.g. [18, 19, 36, 37, 39,
40, 51]. It may even seem unavoidable for some problems: reconstruction of
ΠΣ circuits is nothing but the problem of factorization into products of linear
forms, and reconstruction of ΠΣΠ circuits is factorization into products of
sparse polynomials. Useful as it is, polynomial factorization is clearly not
feasible with arithmetic operations only, even for polynomials of degree 2.
We therefore depart from the aforementioned algorithms by avoiding all use
of such a subroutine.

For an input polynomial f with rational coefficients, our algebraic algo-
rithms run in polynomial time in the standard bit model of computation,
i.e., they are “strongly polynomial” algorithms (this is not automatic due to
the issue of coefficient growth during the computation). We emphasize that
even for an input f ∈ Q[x1, . . . , xn] we are still considering the problem of
equivalence to a sum of n cubes over the real or complex numbers. Consider
by contrast Kayal’s equivalence algorithm [37], which appeals to a polyno-
mial factorization subroutine. We can choose to factor polynomials over, say,
the field of rational numbers. We can then run Kayal’s algorithm without
any difficulty on a probabilistic polynomial time Turing machine, but the
algorithm will then reject the polynomial of Example 17 whereas our algo-
rithm will accept it.1 At first sight this difficulty seems to have a relatively
simple solution: for an input with rational coefficients, instead of factoring

1Alternatively, one can run Kayal’s algorithm in a computation model over C where,
in addition to arithmetic operations over complex numbers, root finding of univariate
polynomials is considered an atomic operation (as suggested in a footnote of [20]). The
algorithm would then give the same answer as our algorithm, but it would not operate
anymore within the Turing machine model (or within the BSS model).
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polynomials in Q[X] we will factor in a field extension of Q containing the
coefficients of the linear forms li (for instance in Q[

√
2] for Example 17).

It is unfortunately not clear that this approach yields a polynomial time
algorithm because it might lead to computations in a field extension of ex-
ponential degree. We explain this point in more detail in Section 3.1. For
the same reason (reliance on a polynomial factorization subroutine) similar
issues arise in the analysis of Saxena’s decomposition algorithm. A complete
analysis of these two algorithms for equivalence to a sum of powers over C
in the Turing machine model would entail good control of coefficient growth
and good bounds on the degrees of the field extensions involved. This has
not been done yet to the best of our knowledge.

1.2 Derandomization

We give a deterministic black box identity testing algorithm for polynomials
which can be represented as in (1) as a sum of powers of linearly independent
linear forms. As we will see in Section 6.2, the problem is really to decide
whether the (unknown) number of terms r in the decomposition is equal to
0. Indeed, for r ≥ 1 such a polynomial can never be identically zero (and the
PIT problem for this family of polynomials can therefore be solved by a trivial
algorithm in the white box model). In contrast to our equivalence algorithms,
this black box PIT applies to homogeneous polynomials of arbitrary degree.

There is already a significant amount of work on identity testing for sums
of powers of linear forms. In particular, Saxena [47] gave a polynomial time
algorithm in the white box model (where we have access to an arithmetic
circuit computing the input polynomial). Subsequently, several algorithms
were given for the black box model [1, 15, 14, 16] but they do not run in
polynomial time. The current state of the art is in [16], with a black box
algorithm running in time sO(log log s). We obtain here a polynomial running
time under the assumption that the li are linearly independent. Without this
assumption, designing a black box PIT algorithm running in polynomial time
remains to the best of our knowledge an open problem.

In Section 7 we build on our black box PIT to derandomize Kayal’s algo-
rithm for the minimization of the number of variables in a polynomial [37].
Like our black box PIT, this result applies to polynomials that can be written
as sums of powers of linearly independent linear forms. For such a polyno-
mial, the minimal (or "essential") number of variables is just the number
r of terms in the corresponding decomposition (1). We continue with the
computation of Lie algebras of products of linear forms. Finally, our de-
terministic algorithm for this task is applied to the derandomization of a
factorization algorithm from [41] and of Kayal’s algorithm for equivalence
to Pd [37].
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1.3 Our approach

We obtain our equivalence algorithms by viewing the coefficients of the input
polynomial f(x1, . . . , xn) as the coefficients of a symmetric tensor T of size n
and order 3 (since f is of degree 3). Equivalence to a sum of n cubes then
amounts to a kind of diagonalizability property of T . This approach is
explained in detail in Section 3. It can be viewed as a continuation of previous
work on orthogonal tensor decomposition [42] (the present paper is more
algorithmic, is not limited to orthogonal decompositions and can be read
independently from [42]).

We work on a tensor of size n by cutting it into n "slices"; each slice
is a symmetric matrix of size n. We therefore rely on methods from linear
algebra. This explains the presence of a section of preliminaries on simul-
taneous reduction by congruence (which is then applied to the slices of T ).
Despite these rather long preliminaries, the resulting randomized algorithm
is remarkably simple: it is described in just 3 lines at the beginning of Sec-
tion 4.

Our deterministic algorithms also rely on important insights from Kayal’s
paper [37]. In particular we rely on the factorization properties of the Hessian
determinant of the input f , which we manage to use without appealing
explicitly to a factorization subroutine (as explained in Section 1.1, this is
ruled out in our approach). Our deterministic algorithm for the minimization
of the number of variables is directly inspired by the randomized algorithm
for this problem in the same paper.

1.4 Comparison with previous tensor decomposition algo-
rithms

There is a vast literature on tensor decomposition algorithms, most of them
numerical (see [4] for a recent paper showing that many of these algorithms
are numerically unstable). From this literature, two papers by De Lathauwer
et al. [12, 13] are closely related to the present work since they already rec-
ognized the importance of simultaneous diagonalization by congruence for
tensor decomposition. Jennrich’s algorithm is also closely related for the
same reason. One can find a presentation of this algorithm in the recent
book by Moitra [44] but it goes back much further to Harschman [27], where
it is presented as a uniqueness result. There are nevertheless important dif-
ferences between the settings of [12, 13, 44] and of the present paper. In
particular, these three works do not phrase tensor decomposition as a deci-
sion problem but as an optimization problem which is solved by numerical
means (one suggestion from [12, 13] is to perform the simultaneous diago-
nalization with the extended QZ iteration from [52]; Jennrich’s algorithm as
presented in [44] relies on pseudoinverse computations and eigendecomposi-
tions). All these numerical algorithms attempt to produce a decomposition
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of a tensor T̃ which is close to the input tensor T . If one tries to adapt
them to the setting of the present paper there is a fundamental difficulty:
given T̃ and its decomposition, it is not clear how we can decide whether
or not T admits an exact decomposition. This is the main reason why we
need to design a new algorithm. As an alternative, one could attempt to run
Jennrich’s algorithm in symbolic mode. In particular, eigenvalues and the
components of eigenvectors would be represented symbolically as elements
of a field extension. This leads exactly to the same difficulty as with Kayal’s
algorithm: as explained in Section 1.1 and in more detail in Section 3, the
resulting algorithm might not run in polynomial time because it might lead
to computations in field extensions of exponential degree. Note finally that
[12, 13, 44] deal with decompositions of ordinary rather than symmetric ten-
sors. Algorithms for symmetric tensor decomposition can be found in the
algebraic literature, see e.g. [8, 5]. Like [12, 13], these two papers do not
provide any complexity analysis for their algorithms.

1.5 Future work

In the current literature there is apparently no polynomial time algorithm
(deterministic or randomized) in the Turing machine model for the following
problem: given a homogeneous polynomial f(x1, . . . , xn) of degree d ≥ 4 with
rational coefficients, decide whether it is equivalent to xd1+· · ·+xdn over C. It
will be shown in a forthcoming paper that this can be done by extending the
tensor-based approach of the present paper to higher degree. This results
in a black box algorithm with running time polynomial in n and d [43].
Alternatively, one could try to modify Kayal’s equivalence algorithm [37]
or provide a better analysis of the existing algorithm. As we have argued
in Section 1.1 this has not been done at present even for degree 3. One
could also try an approach based on Harrison’s work [26] like in Saxena’s
thesis [48].

More generally, we suggest to pay more attention to absolute circuit re-
construction, i.e., arithmetic circuit reconstruction over C.2 Circuit recon-
struction over Q or over finite fields has a number-theoretic flavour, whereas
circuit reconstruction over R or C is of a more geometric nature.

One goal could be to obtain algebraic decision algorithms; as we have ex-
plained, this requires the removal of all polynomial factorization subroutines.
In principle, this is always possible since the set of polynomials computable
by arithmetic circuits of a given shape and and size is definable by polyno-
mial (in)equalities, i.e., it is a constructible set (over C) or a semi-algebraic
set (over R).3 Another goal would be to obtain good complexity bounds
for the Turing machine model when they are not available in the existing

2The name is borrowed from absolute factorization, a well studied problem in computer
algebra (see e.g. [10, 11, 17, 50]).

3This argument does not provide by itself an efficient decision algorithm.
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literature.

1.6 Organization of the paper

Section 2 is devoted to preliminaries on simultaneous diagonalization, by
similarity transformations and especially by congruence. In Section 3 we
review Kayal’s equivalence algorithm and explain why it does not yield a
polynomial time bound in the bit model of computation. We also present
our tensor-based approach to the equivalence problem. In Section 4 we give
a polynomial time randomized algorithm for equivalence to a sum of cubes
based on this approach. We derandomize this algorithm in Section 5. In
Section 6 we give a PIT algorithm for polynomials that can be written as
sums of d-th powers of linearly independent linear forms. As mentioned be-
fore, our algorithm runs in polynomial time in the black box model. We give
a randomized algorithm to decide whether a polynomial can be expressed
under that form in Section 7 (Proposition 41). The remainder of Section 7 is
devoted to the derandomization of several algorithms from [37, 38] related to
sums of powers of linear forms. We begin in Section 7.1 with the computa-
tion of linear dependencies between polynomials. Then we give applications
to the minimization of the number of variables in sums of powers of linear
forms (in Section 7.2), and to the computation of Lie algebras of products of
linear forms (in Section 7.3). This leads to the derandomization of a factor-
ization algorithm from [41] and of the equivalence algorithm by Kayal [37]
described in Section 3.1. The resulting equivalence algorithm runs in poly-
nomial time for every fixed value of the degree d. For the computation of the
Lie algebras of products of linear forms, we give as an intermediate result
(see Proposition 47 and Remark 48) an identity testing algorithm for a cer-
tain class of rational functions (rather than polynomials as is done usually).
In the commutative setting, this is to the best of our knowledge the first
result of this type.

2 Preliminaries

This section is devoted to preliminaries from linear algebra, and more specifi-
cally to simultaneous diagonalization by congruence. We begin with complex
symmetric matrices in Section 2.1 and consider real symmetric matrices in
Section 2.3. Section 2.2 is devoted to some refinements that are not strictly
necessary for our main algorithms (they lead to an interesting connection
with semidefinite programming, though; see Theorem 14 and the remarks
following it). Upon first reading, if one wishes to understand only our re-
sults for the field of complex numbers it will therefore be sufficient to read
Section 2.1 only (or even just the statement of Theorem 4; the corresponding
result for the field of real numbers is Theorem 10).
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A proof of the following lemma for the case of two matrices can be found
in [41]. As shown in [42], the general case then follows easily. Note that this
lemma is about the "usual" notion of diagonalization (by similarity) rather
than by congruence (where one attempts to diagonalize a matrix A by a
transformation of the form A 7→ RTAR). That is, we say that an invertible
matrix T diagonalizes A if T−1AT is diagonal.

Lemma 1. Let A1, . . . , Ak ∈ Mn(K) be a tuple of simultaneously diagonal-
izable matrices with entries in a field K, and let S ⊆ K be a finite set of size
|S| > n(n− 1)/2. Then there exist α2, . . . , αk in S such that any transition
matrix which diagonalizes A1 + α2A2 + . . .+ αkAk must also diagonalize all
of the matrices A1, . . . , Ak.

See Proposition 11 in Section 2.3 for an improvement of this lemma. In
the next lemma we give an explicit description of a set of suitable choices
for the tuple (α2, . . . , αk) in Lemma 1. This description will be needed for a
derandomization result in Section 7.3.

Lemma 2. Let A1, . . . , Ak ∈ Mn(K) be a tuple of simultaneously diago-
nalizable matrices with entries in a field K. There exists a set of at most
n(n − 1)/2 hyperplanes of Kn−1 such that the following properties hold for
any point (α2, . . . , αn−1) ∈ Kn−1 which does not belong to the union of the
hyperplanes:

(i) Any eigenvector of A1 +α2A2 + · · ·+αkAk must also be an eigenvector
of the k matrices A1, . . . , Ak.

(ii) Any transition matrix which diagonalizes A1 +α2A2 + . . .+αkAk must
also diagonalize all of the matrices A1, . . . , Ak.

Proof. Since A1, . . . , Ak are simultaneously diagonalizable, in order to es-
tablish (i) we may as well work in a basis where these matrices become
diagonal. Let us therefore assume without loss of generality that Ai =
diag(λ1i, . . . , λni). For any α2, . . . , αn−1, the matrix A1 +α2A2 + · · ·+αkAk
is diagonal and its i-th diagonal entry is λi1+α2λi2+ · · ·+αkλik. It therefore
suffices to avoid the (proper) hyperplanes of Kn−1 of the form:

λi1 + α2λi2 + · · ·+ αkλik = λj1 + α2λj2 + · · ·+ αkλjk

where (i, j) ∈ [n]2 ranges over all the pairs such that (λi1, . . . , λik) 6=
(λj1, . . . , λjk). Indeed, there are at most n(n − 1)/2 hyperplanes of this
form, and outside of their union there is no “collision of eigenvalues.” More
precisely, the eigenspace of A1 + α2A2 + · · ·+ αkAk associated to the eigen-
value λi1 + α2λi2 + · · · + αkλik is equal to

⋂k
j=1Eij , where Eij denotes

the eigenspace of Aj associated to λij . In particular, any eigenvector of
A1 + α2A2 + · · ·+ αkAk is also an eigenvector of A1, . . . , Ak.

8



Finally, we show that any point (α2, . . . , αn−1) which satisfies (i) also
satisfies (ii). For any invertible matrix T , T−1(A1 +α2A2 + · · ·+αkAk)T is
diagonal iff all the column vectors of T are eigenvectors of A1 +α2A2 + · · ·+
αkAk. By (i) this implies that each column vector of T is also an eigenvector
of A1, . . . , Ak. As a result, the k matrices T−1AiT are all diagonal.

We note that Lemma 1 directly follows from Lemma 2.(ii) via e.g. the
Schwartz-Zippel lemma.

2.1 Simultaneous diagonalization by congruence

The following result is from Horn and Johnson [28]. The first part is just
the statement of Theorem 4.5.17(b), and the additional properties in (ii) are
established in the proof of that theorem (see [28] for details).

Theorem 3. Let A,B ∈Mn(C) be two complex symmetric matrices of size n
with A nonsingular, and let C = A−1B.

(i) C is diagonalizable if and only if there are complex diagonal matrices
D and ∆ and a nonsingular R ∈ Mn(C) such that A = RDRT and
B = R∆RT .

(ii) Moreover, if C = SΛS−1 where S is nonsingular and Λ diagonal then
the matrix R in (i) can be taken of the form R = S−TV T where V is
unitary and commutes with Λ.

The next result generalizes Theorem 3 and provides a solution to the
second part of Problem 4.5.P4 in [28].

Theorem 4 (simultaneous diagonalization by congruence). Let A1, . . . , Ak
be complex symmetric matrices of size n and assume that A1 is nonsingu-
lar. The k − 1 matrices A−11 Ai (i = 2, . . . , k) form a commuting family of
diagonalizable matrices if and only if there are diagonal matrices Λi and a
nonsingular matrix R ∈Mn(C) such that Ai = RΛiR

T for all i = 1, . . . , k.

Proof. Suppose that Ai = RΛiR
T where the Λi are diagonal and R nonsin-

gular. Then the matrices A−11 Ai = R−TΛ−11 ΛiR
T indeed form a commuting

family of diagonalizable matrices. For the converse, assume that the ma-
trices A−11 Ai form such a family. Then these matrices are simultaneously
diagonalizable, and by Lemma 1 there is a tuple (α3, . . . , αk) such that any
transition matrix that diagonalizes the matrix

C = A−11 A2 + α3A
−1
1 A3 + . . .+ αkA

−1
1 Ak

diagonalizes all of the k−1 matrices Ci = A−11 Ai. Now we apply Theorem 3
to A = A1 and B = A2 + α3A3 + . . . + αkAk. Write C = SΛS−1 where
S is nonsingular and Λ diagonal. By part (ii) of Theorem 3 we can write
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A1 = RDRT and B = R∆RT where R is nonsingular, D and ∆ are diagonal,
R = S−TV T , V commutes with Λ and is unitary. By choice of the tuple α,
we can write Ci = SΛiS

−1 where Λi is diagonal. We will show that Ai =
RDΛiR

T for i ≥ 2, thereby completing the proof of the theorem. First,
we note that V commutes with the Λi. Indeed, V and Λ are simultaneously
diagonalizable since they commute and are diagonalizable (Λ is diagonal and
V unitary). But any transition matrix which diagonalizes simultaneously V
and Λ will diagonalize simultaneously V and the Λi (this follows from the
choice of α and the relations Ci = SΛiS

−1, C = SΛS−1). These matrices
must therefore commute. We can now complete the proof: for i ≥ 2 we have

Ai = A1Ci = (S−TV TDV S−1)(SΛiS
−1) = S−TV TDV ΛiS

−1.

Since V commutes with Λi, Ai = S−TV TDΛiV S
−1 = RDΛiR

T as an-
nounced.

2.2 A refinement of Theorem 4

In this section we give a more "invariant" formulation of Theorem 4. Note
indeed that this theorem assigns a special role to A1. In Theorem 8 we give
a formulation that depends only on the space spanned by the Ai and not
on the choice of a specific spanning family A1, . . . , Ak. Some of the results
in this section apply to K = R as well as K = C.

The role of A1 in Theorem 4 could of course be played by any other
invertible matrix in the tuple. As it turns out, for our k − 1 matrices the
commutation property alone is also independent of the choice of the invertible
matrix in the tuple. More precisely, we have:

Proposition 5. Let A1, . . . , Ak ∈Mn(K); assume that A1 and Ak are non-
singular. The k − 1 matrices A−1k Ai (i = 1, . . . , k − 1) commute if and only
if the same is true of the k − 1 matrices A−11 Ai (i = 2, . . . , k).

The proof will use the following simple fact.

Lemma 6. If A and B commute and A is invertible, then A−1 and B com-
mute as well.

Proof of Proposition 5. Suppose that the A−1k Ai commute. We can write:

(A−11 Ai)(A
−1
1 Aj) = (A−1k A1)

−1(A−1k Ai)(A
−1
k A1)

−1(A−1k Aj).

It follows from our hypothesis and from Lemma 6 that the four factors on
the right hand side commute. We can therefore rewrite this equation as:

(A−11 Ai)(A
−1
1 Aj) = (A−1k A1)

−1(A−1k Aj)(A
−1
k A1)

−1(A−1k Ai),

and now the right hand side is equal to (A−11 Aj)(A
−1
1 Ai).
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Let V be the space of matrices spanned by A1, . . . , Ak. The matrices
A−11 Ai commute if and only if A−11 V is a commuting subspace of Mn(K).
With Proposition 5 in hand, we can characterize this property in a way that
is completely independent of the choice of a spanning family A1, . . . , Ak for
V.

Theorem 7. Let V be a nonsingular subspace of matrices of Mn(K) (i.e., V
does not contain singular matrices only). The two following properties are
equivalent:

(i) There exists a nonsingular matrix A ∈ V such that A−1V is a commut-
ing subspace.

(ii) For all nonsingular matrices A ∈ V, A−1V is a commuting subspace.

Proof. Since V is nonsingular, (ii) implies (i). For the converse, assume that
A−11 V is a commuting subspace and that A1, . . . , Ak is a spanning family
of V. Let A ∈ V be a nonsingular matrix. We can add A to our spanning
family and apply Proposition 5 to (A1, . . . , Ak, A), with A playing the role
of Ak in that proposition.

As a result, we can dissociate the commutativity test from the diagonal-
izability test in Theorem 4:

Theorem 8. Let A1, . . . , Ak be complex symmetric matrices of size n and
assume that the subspace V spanned by these matrices is nonsingular. The
two following properties are equivalent:

(i) There are diagonal matrices Λi and a nonsingular matrix R ∈ Mn(C)
such that Ai = RΛiR

T for all i = 1, . . . , k.

(ii) V satisfies the two equivalent properties of Theorem 7, and there exists
an invertible B ∈ V such that the matrices B−1Ai (i = 1, . . . , k) are
all diagonalizable.

Proof. Let A ∈ V be nonsingular, and suppose that there are diagonal matri-
ces Λi and a nonsingular matrix R ∈Mn(C) such that Ai = RΛiR

T for all i.
Note that we have the same form for A, i.e., A = RΛRT with Λ diagonal.
As a result, we may assume without loss of generality that A is one of the
matrices in the tuple A1, . . . , Ak (we add it if necessary), and we may even
assume that A = A1. We may then take B = A by Theorem 4.

Let us now prove the converse. We therefore assume that V satisfies the
two properties of Theorem 7, and that B ∈ V is an invertible matrix such
the matrices B−1Ai (i = 2, . . . , k) are all diagonalizable. From property (ii)
in Theorem 7 it follows that the matrices B−1Ai commute. We conclude by
applying Theorem 4 to the tuple (B,A1, . . . , Ak).

11



2.3 Real matrices

Here we study the existence of decompositions similar to those of Theorem 3
and Theorem 4 for real matrices. We begin with a real version of Theorem 3.

Theorem 9. Let A,B ∈ Mn(R) be two real symmetric matrices of size n
with A nonsingular, and let C = A−1B.

(i) C is diagonalizable and has real eigenvalues if and only if there are real
diagonal matrices D and ∆ and a nonsingular R ∈ Mn(R) such that
A = RDRT and B = R∆RT .

(ii) Moreover, if C = SΛS−1 where S is a real nonsingular matrix and Λ
diagonal then the matrix R in (i) can be taken of the form R = S−TV T

where V is orthogonal and commutes with Λ.

Proof. If a decomposition of the pair (A,B) as in (i) exists, it is clear that C
must be diagonalizable with real eigenvalues since C = R−TD−1∆RT . The
converse and part (ii) can be obtained by a straightforward adaptation of
the proof of Theorem 4.5.17(b) in [28].

The next result generalizes Theorem 9 and provides a real version of
Theorem 4.

Theorem 10 (simultaneous diagonalization by congruence). Let A1, . . . , Ak
be real symmetric matrices of size n and assume that A1 is nonsingular. The
k − 1 matrices A−11 Ai (i = 2, . . . , k) form a commuting family of diagonal-
izable matrices with real eigenvalues if and only if there are real diagonal
matrices Λi and a nonsingular matrix R ∈ Mn(R) such that Ai = RΛiR

T

for all i = 1, . . . , k.

Proof. The proof of Theorem 4 applies almost verbatim: we just need to
work everywhere with real matrices instead of complex matrices (and with
real coefficients αi), and appeal to Theorem 9 instead of Theorem 3. There
is just one point in the proof where a little care is needed. Namely, in the
proof of Theorem 4 we used the fact that Theorem 3.(ii) provides us with
a unitary matrix V , and that unitary matrices are diagonalizable. In the
real case we get an orthogonal matrix instead (as per Theorem 9.(ii)), and
orthogonal matrices are not necessarily diagonalizable over R. Nevertheless,
real orthogonal matrices are diagonalizable over C since they are unitary.
We can therefore conclude like in the proof of Theorem 4 that our real
orthogonal matrix V commutes with the Λi. The remainder of the proof is
unchanged.

In the proofs of Theorems 4 and 10 we have used the fact that V is a
unitary matrix. These arguments can be somewhat simplified at the expense
of proving the following improvement to Lemma 1. First we recall that the
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centralizer of a matrix M , denoted Z(M), is the subspace of matrices that
commute with M .

Proposition 11. Let A1, . . . , Ak and α2, . . . , αk be as in Lemma 1; let A =
A1 + α2A2 + . . .+ αkAk. Then

Z(A) =

k⋂
i=1

Z(Ai).

This result applies to real as well as complex matrices. Before giving
the proof, let us explain how it can be used in Theorems 4 and 10. Ap-
plying Proposition 11 to the tuple of simultaneously diagonalizable matrices
C2, . . . , Ck, we see that

Z(C) =
k⋂
i=2

Z(Ci).

Since Ci = SΛiS
−1 and C = SΛS−1, this implies Z(Λ) =

⋂k
i=2 Z(Λi). Since

V ∈ Z(Λ), we conclude that V commutes with the Λi. Therefore, we have
established this commutation property without using the fact that V can be
taken unitary.

Proof of Proposition 11. The inclusion from right to left obviously holds for
any choice of the αi. For the converse, let B ∈ Z(A) and assume as a first
step that B is diagonalizable. Since A and B commute and both matrices
are diagonalizable, there exists a transition matrix T such that T−1AT and
T−1BT are diagonal. By choice of the αi, all of the matrices T−1AiT are
diagonal as well. We conclude that B and Ai commute since they are si-
multaneously diagonalizable. To complete the proof, we just need to observe
that diagonalizable matrices are dense in Z(A). This follows from the fact
that A itself is diagonalizable (observe indeed that the centralizer of a di-
agonal matrix takes a block-diagonal from, and diagonalizable matrices are
dense in each block).

Like in the complex case, we can dissociate the commutativity test in
Theorem 10 from the diagonalizability test:

Theorem 12. Let A1, . . . , Ak be real symmetric matrices of size n and as-
sume that the subspace V spanned by these matrices is nonsingular. The
two following properties are equivalent:

(i) There are diagonal matrices Λi and a nonsingular matrix R ∈ Mn(R)
such that Ai = RΛiR

T for all i = 1, . . . , k.

(ii) V satisfies the two equivalent properties of Theorem 7, and there exists
an invertible B ∈ V such that the matrices B−1Ai (i = 2, . . . , k) are
all diagonalizable with real eigenvalues.
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The proof is identical to the proof of Theorem 8, except that we appeal
to Theorem 10 instead of Theorem 4. The criterion in Theorem 12 takes a
particularly simple form when V contains a positive definite matrix. Before
explaining this, we recall the following lemma.

Lemma 13. Let A and B be two real symmetric matrices with B positive
definite. Then B−1A is diagonalizable with real eigenvalues.

Proof. Since B is positive definite, we can write B = HHT where H is a
real invertible matrix. Hence B−1A = H−TH−1A = H−T (H−1AH−T )HT .
Since H−1AH−T is real symmetric it is diagonalizable with real eigenvalues.
This is true of B−1A as well since the two matrices are similar.

As an immediate consequence of Lemma 13 and Theorem 12 we have:

Theorem 14 (simultaneous diagonalization by congruence, positive definite
case). Let A1, . . . , Ak be real symmetric matrices of size n and assume that
the subspace V spanned by these matrices contains a positive definite matrix.
The 3 following properties are equivalent:

(i) There exists a nonsingular matrix A ∈ V such that A−1V is a commut-
ing subspace.

(ii) For all nonsingular matrices A ∈ V, A−11 V is a commuting subspace.

(iii) There are real diagonal matrices Λi and a nonsingular matrix R ∈
Mn(R) such that Ai = RΛiR

T for all i = 1, . . . , k.

A related characterization can be found in [33, Theorem 3.3]. As we will
see at the end of Section 3, the significance of Theorem 14 is that when
a polynomial is equivalent to a sum of n real cubes, the corresponding V
always contains a positive definite matrix.

3 The equivalence problem

In this section we review Kayal’s equivalence algorithm and present our
tensor-based approach. We first recall the following definition from the in-
troduction.

Definition 15. A polynomial f ∈ K[x1, . . . , xn] is said to be equivalent to a
sum of n d-th powers if f(x) = Pd(Ax) where Pd(x1, . . . , xn) = xd1 + . . .+xdn
and A ∈Mn(K) is a nonsingular matrix.

As explained before, our equivalence algorithms in Sections 4 and 5 deal
only with the case d = 3 (equivalence to a sum of cubes). More generally,
one could ask whether two forms of degree 3 given as input are equivalent
(by an invertible change of variables as above). This problem is known to
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be at least as hard as graph isomorphism [2, 37] and is "tensor isomorphism
complete" [24]. By contrast, equivalence of quadratic forms is "easy": it
is classically known from linear algebra that two real quadratic forms are
equivalent iff they have the same rank and signature (this is "Sylvester’s law
of inertia") and two quadratic forms over Cn are equivalent iff they have the
same rank.4

Note that when K = R, Definition 15 requires the changes of variables
matrix A as well as the input polynomial f to be real. It also makes sense
to ask if an input f ∈ R[x1, . . . , xn] is equivalent to a sum of n cubes as
a complex polynomial. The following example shows that these are two
distinct notions of equivalence.

Example 16. Consider the real polynomial

f(x1, x2) = (x1 + ix2)
3 + (x1 − ix2)3 = 2x31 − 6x1x

2
2.

This decomposition shows that as a complex polynomial, f is equivalent to a
sum of two cubes. Moreover, there is no decomposition as a sum of 2 cubes
of real linear forms since the above decomposition is essentially the unique
decomposition of f . This follows from Corollary 20 below: in any other
decomposition f = l31 + l32, the linear forms l1 and l2 must be scalar multiples
of x1 + ix2 and x1 − ix2.5 Note that this is very different from the case of
degree 2 forms: any real quadratic form in n variables can be written as a
linear combinations of n real squares.

A similar example shows that for a polynomial f(x1, x2) with rational
coefficients, equivalence to a sum of two cubes over Q or other R are distinct
notions:

Example 17. Consider the rational polynomial

f(x1, x2) = (x1 +
√

2x2)
3 + (x1 −

√
2x2)

3 = 2x31 + 12x1x
2
2.

This polynomial is equivalent to a sum of two cubes over R but not over Q.

3.1 Review of Kayal’s equivalence algorithm

Let f ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree d ≥ 3.
Recall that the Hessian matrix of f is the symmetric matrix of size n
with entries ∂2f/∂xi∂xj , and that the Hessian determinant of f , denoted
Hf , is the determinant of this matrix. Kayal’s equivalence algorithm is

4This paper is focused on the fields of real and complex numbers but equivalence of
quadratic forms has been an active topic of study for other fields as well, especially from
the point of view of number theory: see for instance [45, 49].

5More precisely one must have l1 = α1(x1 + ix2), l2 = α2(x1 − ix2) (or vice versa)
where α3

1 = α3
2 = 1.
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based on the factorization properties of the Hessian determinant. Note that
Hf = [d(d − 1)]n(x1 · · ·xn)d−2 for f = Pd. It is shown in [37] that we still
have a factorization as a product of linear forms after an invertible change
of variables:

Lemma 18. Suppose that f(x1, . . . , xn) =
∑n

i=1 aili(x1, . . . , xn)d where the
li are linear forms and ai ∈ C \ {0}. The Hessian determinant of f is of the
form

Hf (x1 . . . , xn) = c

n∏
i=1

li(x1, . . . , xn)d−2

for some constant c. Moreover, c 6= 0 iff the li are linearly independent.

As a consequence we have the uniqueness result of Corollary 20 below,
which generalizes Corollary 5.1 in [37]. First, we need the following lemma:

Lemma 19. Suppose that f can be written as in (1) as a sum of powers of
linearly independent linear forms. If r ≥ 1 then f is not identically zero.

Proof. We already know this for r = n: Lemma 18 shows that Hf is not
identically 0. For a more direct proof of the result in this case, one can
simply observe that f is equivalent to Pd but Pd is not equivalent to 0.

The general case can be reduced to the case r = n by setting n− r of the
variables of f to 0. In this way, we obtain a sum of powers of r linear forms
l′i in r variables, Moreover, it is always possible to choose the variables of f
that are set to 0 so that the l′i remain linearly independent like the forms li
in (1). Indeed, this follows from the fact that a r× n matrix of rank r must
contain a r × r submatrix of rank r.

Corollary 20. Suppose that f(x1, . . . , xn) =
∑r

i=1 li(x1, . . . , xn)d where
the li are linearly independent linear forms. For any other decomposi-
tion f(x1, . . . , xn) =

∑r
i=1 `i(x1, . . . , xn)d the linear forms `i must satisfy

`i = ωilπ(i) where ωi is a d-th root of unity and π ∈ Sn a permutation.

Proof. Consider first the case r = n. By Lemma 18 and uniqueness of
factorization we must have `i = cilπ(i) for some constants ci and some per-
mutation π. Plugging this relation into the two decompositions of f shows
that:

n∑
i=1

ldi =

n∑
i=1

cdi l
d
π(i).

Moving all terms to the left-hand side we obtain:
n∑
i=1

(1− cdπ−1(i))l
d
i = 0,

and Lemma 19 then implies that cdi = 1 for all i. Assume now that r < n.
Since the li are linearly independent, we can extend this family into a family
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of n linearly independent linear forms l1, . . . , ln. Our two decompositions of
f yield two decompositions for the polynomial g = f + ldr+1 + · · · + ldn, and
we can apply the result for the case r = n to g. Another way to reduce to
this case would be to decrease n by setting n − r of the variables of f to 0
as in the proof of Lemma 19.

Kayal’s algorithm can be summarized by the 3 following steps. It takes
as input a degree d form f ∈ K[x1, . . . , xn] and determines whether f is
equivalent to Pd over K, where K ⊆ K are two subfields of C. If f is equiva-
lent to Pd it determines linearly independent linear forms `i ∈ K[x1, . . . , xn]
such that f(x1, . . . , xn) =

∑n
i=1 `i(x1, . . . , xn)d. This presentation general-

izes slightly [37], which focuses on the case K = K = C.

1. Check that the Hessian determinant Hf is not identically 0 and can be
factorized in K[x1, . . . , xn] as Hf (x1 . . . , xn) = c

∏n
i=1 li(x1, . . . , xn)d−2

where the li are linear forms and c ∈ K. If this is not possible, reject.

2. Try to find constants ai ∈ K such that

f(x1, . . . , xn) =
n∑
i=1

aili(x1, . . . , xn)d.

If this is not possible, reject.

3. Check that all the ai have d-th roots in K. If this is not the case, reject.
Otherwise, declare that f is equivalent to Pd over K and output the
linear forms `i = αili where αdi = ai and αi ∈ K.

The correctness of the algorithm follows from Lemma 18 and Corollary 20.
Note in particular that if the algorithm accepts, the forms li must be lin-
early independent (or else Hf would be identically 0 by Lemma 18, and the
algorithm would have rejected at step 1); and the constants ai at step 2 are
unique if they exist.

For d = 3, or more generally for small degree, the constants ai at step 2
can be found efficiently by dense linear algebra assuming an algebraic model
of computation (for the Turing machine model, see the comments below).
For large d we can instead evaluate f and the powers ldi at random points
(see Section 7 on linear dependencies or [37] for details).

At step 1, the Hessian determinant can be factorized by Kaltofen’s algo-
rithm [35] for the factorization of arithmetic circuits as suggested in [37], or
by the black box factorization algorithm of Kaltofen and Trager [34]. These
two algorithms assume access to an algorithm for the factorization of uni-
variate polynomials (one of the algorithms in [41] reduces instead to the
closely related task of matrix diagonalization). For K = K = C one can just
assume the ability to factor univariate polynomials as part of our computa-
tion model. This yields a polynomial time algorithm, which is clearly not
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designed to run on a Turing machine. Another option is to take K = K = Q,
and we obtain a polynomial time algorithm for the Turing machine model.

Assume now that K = Q, K = C and that we wish to design again an
algorithm for the Turing machine model. As mentioned in Section 1.1, a
natural approach would be to factor Hf symbolically at step 1, i.e., to con-
struct an extension K ′ of Q of finite degree where we can find the coefficients
of the linear forms li. The linear algebra computations of step 2 would then
be carried out symbolically in K ′. It is not clear that this approach yields a
polynomial time algorithm even for d = 3 because these computations could
possibly take place in an extension of exponential degree (recall indeed that
the splitting field of a univariate polynomial of degree r may be of degree as
high as r!). We provide polynomial time algorithms for this problem (and
for K = R) in Sections 4 and 5. In order to stay closer to Kayal’s original
algorithm, a plausible approach would be to stop his algorithm at step 1.
Note indeed that step 3 is not necessary for K = C, and it is not immediately
clear whether step 2 is necessary. Namely, it is not obvious whether there
are polynomials that pass the factorization test of step 1 but fail at step 2.
This led us to the following question:

Question 1. Let f ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree
d ≥ 3. If the Hessian determinant of f is equal to (x1x2 · · ·xn)d−2, must f
be of the form f(x1, . . . , xn) = α1x

d
1 + · · ·+ αnx

d
n?

A positive answer would yield a polynomial time decision algorithm for
the equivalence problem since the existence of a suitable factorization at
step 1 can be decided in polynomial time [41]. Representation of polynomi-
als by Hessian determinants has proved to be a delicate topic: see [22] for a
famous mistake by Hesse about his eponymous determinant. Hesse’s mis-
take was about polynomials with vanishing Hessian, a topic that remains of
interest to this day [29]. One of the authors of [29] came accross Question 1
in an earlier version of the present paper, and managed to obtain a negative
answer for many cases of interest [53]: n ≥ 2 and d ≥ 4 even, or n ≥ 3 and
3 ≤ d ≤ n, or n ≥ 3 and and d = kn for some k > 1. The approach pursued
in our paper, based on simultaneous diagonalization by congruence, there-
fore remains the only way of testing equivalence to a sum of cubes over C in
polynomial time. We now present this approach in detail.

3.2 Equivalence by tensor decomposition

In the remainder of this section we explain our approach to the equivalence
problem. Like in most of the paper, we work in a field K which is either
the field of real or complex numbers. Recall that we can associate to a
symmetric tensor T of order 3 the homogeneous polynomial f(x1, . . . , xn) =∑n

i,j,k=1 Tijkxixjxk. This correspondence is bijective, and the symmetric
tensor associated to a homogeneous polynomial f can be obtained from the
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relation:
∂3f

∂xi∂xj∂xk
= 6Tijk. (3)

The i-th slice of T is the symmetric matrix Ti with entries (Ti)jk = Tijk.
By abuse of language, we will also say that Ti is the i-th slice of f . Note
that (3) is the analogue of the relation

∂2q

∂xi∂xj
= 2Qij

which connects the entries of a symmetric matrix Q to the partial derivatives
of the quadratic from q(x) = xTQx. Comparing these two equations shows
that the matrix of the quadratic form ∂f/∂xk is equal to 3Tk.

Remark 21. The slices of a polynomial of the form

g(x1, . . . , xn) = α1x
3
1 + . . .+ αnx

3
n (4)

are the diagonal matrices diag(α1, 0, . . . , 0), . . . ,diag(0, . . . , 0, αn). Con-
versely, if all the slices of a degree 3 homogeneous polynomial g are diagonal
then g must be of the above form (in particular, such a g is equivalent to a
sum of n cubes iff the coefficients αi are all nonzero; this follows from the
fact that for K ∈ {R,C}, any element of K has a cube root in K). Indeed,
the presence of any other monomial in g would yield an off-diagonal term in
some slice: for the monomial m = x2ixj with i 6= j we have ∂m/∂xi = 2xixj
and for m = xixjxk with all indices distinct we have ∂m/∂xi = xjxk.

In light of Definition 15, it is important to understand how slices behave
under a linear change of variables. This was done for symmetric and ordinary
tensors in [42, Section 2.1 and Proposition 48]. In particular, for symmetric
tensors the following result can be obtained from (3):

Proposition 22. Let g be a degree 3 form with slices S1, . . . , Sn and
let f(x) = g(Ax). The slices T1, . . . , Tn of f are given by the formula:
Tk = ATDkA where Dk =

∑n
i=1 aikSi and the aik are the entries of A.

In particular, if g is as in (4) we have Dk = diag(α1a1k, . . . , αnank).

A similar property appears in the analysis of Jennrich’s algorithm [44,
Lemma 3.3.3]. The action on slices given by the formula Tk = ATDkA in
this proposition seems at least superficially related to the action on tuples of
symmetric (and antisymmetric) matrices studied by Ivanyos and Qiao [30].
They consider an action of GLn sending a tuple (S1, . . . , Sm) to the tuple
(T1, . . . , Tm) where Ti = ATSiA. Two tuples are said to be isometric if there
exists an invertible matrix A realizing this transformation. Some of the main
differences with our setting are:
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(i) The number of elements in our matrix tuples is the same as the dimen-
sion n of the matrices, but in their setting m and n are unrelated.

(ii) The matrices in our tuples must come from a symmetric tensor but
they allow arbitrary tuples of symmetric matrices.

(iii) They act independently on each component of a matrix tuple, whereas
we "mix" components with the transformation Dk =

∑n
i=1 aikSi. In

spite of this difference, the actions on the space of matrices spanned
by the tuple’s components are the same, see Lemma 23 below.

Also we note that their algorithm for isometry testing is not algebraic since
it requires the construction of field extensions as explained e.g. in the para-
graph on the representation of fields and field extensions in [30].6

Lemma 23. Let f(x1, . . . , xn) and g(x1, . . . , xn) be two forms of degree 3
such that f(x) = g(Ax) for some nonsingular matrix A.

(i) If U and V denote the subspaces of Mn(K) spanned respectively by the
slices of f and g, we have U = ATVA.

(ii) In particular, for g = P3 the subspace V is the space of diagonal ma-
trices and U is a nonsingular subspace, i.e., it is not made of singular
matrices only.

Proof. Proposition 22 shows that U ⊆ ATVA. Since g(x) = f(A−1x), the
same argument shows that V ⊆ A−TUA−1. The inclusion U ⊆ ATVA there-
fore cannot be strict. The second part of the lemma follows immediately
from the first and from Remark 21.

For the next theorem, we recall from the beginning of Section 3.2 that
one may take either K = R or K = C.

Theorem 24. A degree 3 form f ∈ K[X1, . . . , Xn] is equivalent to a sum
of n cubes if and only if its slices T1, . . . , Tn span a nonsingular matrix space
and the slices are simultaneously diagonalizable by congruence, i.e., there
exists an invertible matrix Q ∈ Mn(K) such that the n matrices QTTiQ are
diagonal.

Proof. Let U be the space spanned by T1, . . . , Tn. If f is equivalent to a
sum of n cubes, Proposition 22 shows that the slices of f are simultaneously
diagonalizable by congruence and Lemma 23 shows that U is nonsingular.

Let us show the converse. Since the slices are simultaneously diagonaliz-
able by congruence, there are diagonal matrices Λk and a nonsingular matrix

6An algebraic algorithm does not require the construction of field extensions since by
definition all operations take place in the ground field. In [30] they only need to construct
extensions of polynomially bounded degree. As explained in Section 3.1, this is not clear
for Kayal’s algorithm.
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R ∈Mn(K) such that Tk = RΛkR
T for all k = 1, . . . , n. Let g(x) = f(R−Tx).

By Proposition 22 the slices of g are linear combinations of the Λk, i.e., they
are all diagonal. By Remark 21, g must be as in (4). It therefore remains to
show that the coefficients αi are all nonzero. This must be the case due to
the hypothesis on U . Indeed, this hypothesis implies that the matrix space
V spanned by the slices of g is nonsingular (apply again Lemma 23, this time
in the other direction). But if some αi vanishes, V is included in the space
of diagonal matrices with a 0 in the i-th diagonal entry.

Corollary 25. Let f be a degree 3 form with slices T1, . . . , Tn and assume
that T1 is nonsingular. Then f is equivalent to a sum of n cubes if and only
if the n − 1 matrices T−11 Tk (k = 2, . . . , n) commute and are diagonalizable
over K.

Proof. This follows from Theorem 24 as well as Theorem 4 for K = C and
Theorem 10 for K = R.

We conclude this section with an alternative characterization of equiva-
lence to a sum of cubes for the field of real numbers.

Theorem 26. Let f be a real form of degree 3 and let V be the subspace
of Mn(R) spanned by the slices of f . The 3 following properties are equiva-
lent:

(i) f is equivalent as a real polynomial to a sum of n cubes.

(ii) There exist two invertible matrices A,B ∈ V such that A−1V is a
commuting subspace and B is positive definite.

(iii) V contains a positive definite matrix, and A−1V is a commuting sub-
space for any invertible matrix A ∈ V.

Proof. Suppose that f is equivalent to a sum of n cubes, i.e., f(x) = P3(Qx)
where Q ∈Mn(R) is invertible. We have seen in Lemma 23 that the slices of
P3 span the space D of diagonal matrices, and that those of f span QTDQ.
The latter span contains the positive definite matrix B = QTQ. Moreover,
according to Proposition 22 the slices of f are simultaneously diagonalizable
by congruence. By Theorem 12, A−1V is a commuting subspace for any in-
vertible matrix A ∈ V. Hence we have shown that (i) implies (iii). That (iii)
implies (ii) is clear since V is nonsingular (by hypothesis, it contains a posi-
tive definite matrix). Finally, let us show that (ii) implies (i). By hypothesis,
V contains a positive definite matrix B hence we can apply Theorem 14. It
follows that the slices are simultaneously diagonalizable by congruence. By
Theorem 24, f must be equivalent to a sum of n cubes.

Compared to Theorem 24 or Corollary 25, Theorem 26 does not involve
any diagonalizability test. One can check that V contains a positive def-
inite matrix using semi-definite programming. Unfortunately, no efficient
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algebraic algorithm is known for semi-definite programming (famously, this
is already an open problem for linear programming). For this reason, the
equivalence algorithms of this paper will be based on Corollary 25 rather
than Theorem 26.

4 Randomized equivalence algorithm

As a test for equivalence to a sum of n cubes, Corollary 25 is not quite satis-
factory due to the hypothesis on T1 (note indeed that this hypothesis is not
even satisfied by f = P3). This restriction can be overcome by performing
a random change of variables before applying Corollary 25. This yields the
following simple randomized algorithm with one-sided error. The input is
a degree 3 form f ∈ K[x1, . . . , xn]. We recall from Section 3.2 that K = R
or K = C (except in Proposition 27 where any field of characteristic 0 is
allowed).

1. Pick a random matrix R ∈Mn(K) and set h(x) = f(Rx).

2. Let T1, . . . , Tn be the slices of h. If T1 is singular, reject. Otherwise,
compute T ′1 = T−11 .

3. If the matrices T ′1Tk commute and are all diagonalizable over K, accept.
Otherwise, reject.

Before proving the correctness of this algorithm, we explain how the diago-
nalizability test at step 3 can be implemented efficiently with an algebraic
algorithm. This can be done thanks to the following classical result from
linear algebra (see e.g. [28, Corollary 3.3.8] for the case K = C).

Proposition 27. Let K be a field of characteristic 0 and let χM be the char-
acteristic polynomial of a matrix M ∈ Mn(K). Let PM = χM/gcd(χM , χ

′
M )

be the squarefree part of χM . The matrix M is diagonalizable over K iff
PM (M) = 0. Moreover, in this case M is diagonalizable over K iff all the
roots of PM lie in K.

Over the field of complex numbers it therefore suffices to check that
PM (M) = 0. Over R, we need to check additionally that all the roots of PM
are real. This can be done for instance with the help of Sturm sequences,
which can be used to compute the number of roots of a real polynomial on
any real (possibly unbounded) interval. Alternatively, the number of real
roots of a real polynomial can be obtained through Hurwitz determinants
[46, Corollary 10.6.12], and is given by the signature of the Hermite quadratic
form [3, Theorem 4.48]. The arithmetic cost of these methods is polynomially
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bounded, and they can also be implemented to run in polynomial time in
the bit model.7

Theorem 28. If an input f ∈ K[X1, . . . , Xn] is accepted by a run of the
above randomized algorithm then f must be equivalent to a sum of n cubes.

Conversely, if f is equivalent to a sum of n cubes then f will be accepted
with high probability over the choice of the random matrix R at step 1. More
precisely, if the entries rij are chosen independently at random from a finite
set S the input will be accepted with probability at least 1− 2n/|S|.

Proof. Assume that f is accepted for some choice of R ∈Mn(C). Since T1 is
invertible, it follows from Proposition 22 that R must be invertible as well.
Moreover, h must be equivalent to a sum of n cubes by Corollary 25. The
same is true of f since f(x) = h(R−1x).

For the converse, assume that f is equivalent to a sum of n cubes. We can
obtain the slices Tk of h from the slices Sk of f by Proposition 22, namely,
we have Tk = RTDkR where Dk =

∑n
i=1 rikSi and the rik are the entries

of R. Therefore T1 is invertible iff R and D1 are invertible. By Lemma 23.(ii)
there is a way to choose the entries ri1 so that D1 is invertible. In fact, D1

will be invertible for most choices of these entries. This follows from the fact
that as a polynomial in the entries r11, . . . , rn1, det(D1) is not identically
zero. Therefore, by the Schwartz-Zippel lemma D1 will fail to be invertible
with probability at most n/|S|. Likewise, R will fail to be invertible with
probability at most n/|S| and the result follows from the union bound.

Remark 29. In Theorem 28 and in the corresponding algorithm, we can
reduce the amount of randomness by picking random matrices R of the fol-
lowing special form: R is lower triangular with 1’s on the diagonal (except
possibly for r11), r11, . . . , rn1 are drawn independently and uniformly from S,
and all the other entries are set to 0. The same analysis as before shows that
D1 will fail to be invertible with probability at most n/|S|. Moreover, R will
fail to be invertible with probability at most 1/|S| since det(R) = r11. By the
union bound, f will be accepted with probability at least 1− (n+ 1)/|S|.

We will use a similar construction in the deterministic algorithm of the
next section.

7For Sturm sequences this is not obvious because in a naive implementation, the bit
size of the numbers involved may grow exponentially. There is however an efficient im-
plementation based on subresultants [3]. The same issue of coefficient growth already
occurs in the computation of the gcd of two polynomials, and can also be solved with
subresultants.
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5 Deterministic equivalence algorithm

In the analysis of our randomized algorithm we have invoked the Schwartz-
Zippel lemma to argue that a polynomial of the form

H(r1, . . . , rn) = det(r1S1 + . . .+ rnSn)

does not vanish for most of the random choices r1, . . . , rn (recall from the
proof of Theorem 28 that S1, . . . , Sn denoted the slices of f). In this section
we will obtain obtain our deterministic equivalence algorithm by derandom-
izing this step. Namely, we will use the fact that we are not trying to solve an
arbitrary instance of symbolic determinant identity testing: as it turns out,
the polynomial H can be factored as a product of linear forms. This fact was
already at the heart of Kayal’s equivalence algorithm. Indeed, his algorithm
is based on the factorization of the Hessian determinant of f [37, Lemma
5.2] and as pointed out in [42], the symbolic matrix r1S1 + . . . + rnSn is a
constant multiple of the Hessian. The point where we depart form Kayal’s
algorithm is that we do not explicitly factor H as a product of linear forms
(recall indeed that this is not an algebraic step). Instead, we will use the
existence of such a factorization to find deterministically a point where H
does not vanish. We can then conclude as in the previous section.

First, we formally state this property of H as a lemma and for the sake of
completeness we show that it follows from Proposition 22 (one can also make
this argument in the opposite direction, see Section 2.1 of [42] for details).

Lemma 30. Let f be a degree 3 form with slices S1, . . . , Sn and let
H(x1, . . . , xn) = det(x1S1 + . . . + xnSn). If f is equivalent to a sum of n
cubes then H is not identically 0 and can be factored as a product of n linear
forms.

Proof. Let A be the invertible matrix such that f(x) = P3(Ax). By Propo-
sition 22, H(x) = (detA)2 detD(x) where

D(x) =
n∑
k=1

xkDk = diag(a11x1 + · · ·+ a1nxn, . . . , an1x1 + · · ·+ annxn).

This gives the required factorization. In particular, H is nonzero since A is
invertible.

The non vanishing of H means that the slices span a nonsingular matrix
space. We have given in Theorem 24 a slightly different proof of the fact that
this space is indeed nonsingular when f is equivalent to a sum of n cubes.
By Lemma 30, the zero set of H is a union of n hyperplanes. We can avoid
the union of any finite number of hyperplanes by a standard construction
involving the moment curve γ(t) = (1, t, t2, . . . , tn−1).
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Lemma 31. Let M ⊆ Cn be a set of (n − 1)p + 1 points on the moment
curve. For any set of p hyperplanes H1, . . . ,Hp ⊆ Cn there is at least one
point of M which does not belong to any of the Hi.

Proof. Let li(x1, . . . , xn) = 0 be the equation of Hi. The moment curve has
at most n − 1 intersections with Hi since li(1, t, t2, . . . , tn−1) is a nonzero
polynomial of degree n−1. For the p hyperplanes we therefore have a grand
total of p(n− 1) intersection points at most.

The size ofM in this lemma is the smallest that can be achieved in such a
blackbox construction. Indeed, for any set of (n− 1)p points one can always
find a set of p hyperplanes which covers them all.

We can now describe our deterministic algorithm. As in Section 4 the
input is a degree 3 form f(x1, . . . , xn) with slices S1, . . . , Sn.

1. Pick an arbitrary set M of n(n− 1) + 1 points on the moment curve.

2. Enumerate the elements of M to find a point r = (1, r2, . . . , rn) ∈ M
such that the matrix D1 = S1 + r2S2 . . . + rnSn is invertible. If there
is no such point, reject.

3. Construct the following matrix R ∈Mn(K): R is lower triangular with
1’s on the diagonal, r21 = r2, . . . , rn1 = rn and all the other entries are
set to 0.

4. Compute h(x) = f(Rx), the slices T1, . . . , Tn of h and T ′1 = T−11 .

5. If the matrices T ′1Tk commute and are all diagonalizable, accept. Oth-
erwise, reject.

Theorem 32. A degree 3 form f(x1, . . . , xn) is accepted by the above algo-
rithm if and only if f is equivalent to a sum of n cubes.

Proof. As a preliminary observation, we note that if the algorithm reaches
step 4 the matrix T ′1 is well-defined since T1 is invertible. Indeed, we have
seen in the proof of Theorem 28 that T1 = RTD1R; moreover, D1 is invertible
since the algorithm has not failed at step 2 and R is clearly invertible as well.

Suppose now that an input f(x1, . . . , xn) is accepted by the algorithm.
The same argument as in the proof of Theorem 28 shows that f is equivalent
to a sum of n cubes. Namely, h must be equivalent to a sum of n cubes by
Corollary 25. The same is true of f since R is an invertible matrix.

For the converse, suppose that an input f(x1, . . . , xn) is equivalent to a
sum of n cubes. By Lemma 30 and Lemma 31, there exists a point r ∈ M
where the polynomial H(r) = det(r1S1 + . . .+ rnSn) does not vanish. As a
result, the algorithm will not reject at step 2. Since the matrix R constructed
at step 3 is invertible, the polynomial h at step 4 is equivalent to a sum of n
cubes and the algorithm will accept at step 5 by Corollary 25.

25



Remark 33. Some of the results in the paper by Ivanyos and Qiao [30]
mentioned after Proposition 22 are motivated by an application to symbolic
determinant identity testing (SDIT). In our setting we only need to consider
very simple determinants (as explained at the beginning of this section, they
factor as a product of linear forms). As a result we can use the simple black
box solution provided by Lemma 31. More connections between group actions
and SDIT can be found in [21, 31, 32].

6 Polynomial Identity Testing

It is a basic fact that black box PIT for a class of polynomials C is equivalent
to constructing a hitting set for C, i.e., a set of points H such that every
polynomial in C which vanishes on all points of H must vanish identically.
Indeed, from a hitting set we obtain a black box PIT algorithm by querying
the input polynomial f at all points of H. Conversely, for any black box
PIT algorithm the set of points queried on the input f ≡ 0 must form a
hitting set. Note that the validity of this simple argument depends on the
hypothesis that 0 ∈ C (otherwise we can declare that f 6≡0 without making
any query).

In this section we first consider the following scenario. An algorithm is
provided with black box access to a polynomial f that is either identically
0 or equivalent to Pd, and must decide in which of these two categories its
input falls (note that these are indeed two disjoint cases). This is equivalent
to constructing a hitting set for the equivalence class of Pd, a task that
we carry out in Section 6.1. Then in Section 6.2 we generalize this hitting
set construction to a larger class of polynomials, namely, those that can be
written as sums of d-th powers of linearly independent linear forms.

6.1 A hitting set for the equivalence class of Pd

Here we construct a polynomial size hitting set for the set of polynomials
f ∈ C[X1, . . . , Xn] that are equivalent to Pd. Let S = {s0, s1, . . . , sd} be a
set of d+ 1 complex numbers with s0 = 0. We denote by Si the set of points
(x1, . . . , xn) ∈ Cn with xi ∈ S and all other coordinates equal to 0. Pick an
arbitrary nonzero point p ∈ Cn, and form the set Gp = p +

⋃n
i=1 Si, of size

nd+ 1.

Proposition 34. For any d ≥ 2 and any nonzero point p ∈ Cn, Gp is a
hitting set for the set of polynomials f ∈ C[X1, . . . , Xn] that are equivalent
to Pd.

Proof. Let f(x) = Pd(Ax) where A is an invertible matrix. The proof is
based on the fact that the gradient ∇f = (∂f/∂x1, . . . , ∂f/∂xn) does not
vanish anywhere except at x = 0. Indeed, this property clearly holds true
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for Pd, and is preserved by an invertible change of variables since

∇f(x) = AT∇Pd(Ax) (5)

by the chain rule. In particular, ∇f(p) 6= 0 since p 6= 0. This implies that f
does not vanish on all of Gp. Indeed, if f vanishes on p+Si then f vanishes
on the whole line going through p+ Si, hence ∂f

∂xi
(p) = 0.

Let K be a subfield of C. The same construction yields a hitting set for
the set of polynomials in K[x1, . . . , xn] that are equivalent to a polynomial
of the form

∑n
i=1 aix

d
i where ai ∈ K \ {0}. Such polynomials are indeed

equivalent to Pd as complex polynomials.

6.2 Fewer powers

We now give a black box PIT algorithm for a bigger class of polynomials,
namely, those that can be written as sums of d-th powers of linearly inde-
pendent linear forms. These polynomials therefore admit decompositions as
in (1) where the forms li are linearly independent and the number r ≤ n of
forms in the decomposition is unknown. We will generalize the approach
from Section 6.1. In particular, we will see that the gradient of f does not
vanish outside of a certain (unknown) linear subspace V . We can find deter-
ministically a point outside of V with the help of the moment curve like in
Section 5. This leads to the construction of the following hitting set: for an
arbitrary set M of n points on the moment curve, we construct the union of
the Gp’s as p ranges over M (recall that Gp is the hitting set of Section 6.1).
This set G ⊆ Cn is of size n(nd+ 1).

Theorem 35. For any d ≥ 2, G is a hitting set for the set of polynomials
f ∈ C[X1, . . . , Xn] that can be written as sums of d-th powers of linearly
independent linear forms.

Proof. Suppose that f can be written as a sum of r d-th powers for some
r ≥ 1. We have f(x) = Pd,r(Ax) where A is an invertible matrix and

Pd,r(x1, . . . , xn) = xd1 + · · ·+ xdr .

We will use the fact that the gradient of f vanishes only on a (proper) linear
subspace V of dimension n − r. This property clearly holds true for Pd,r,
and it is preserved for f since we now have

∇f(x) = AT∇Pd,r(Ax)

instead of (5). By Lemma 31, M contains at least one point p lying outside
of V . At this point ∇f(p) 6= 0, and the same argument as in the proof of
Proposition 34 shows that f does not vanish on Gp.
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7 Linear dependencies, essential variables and Lie
algebras

In this section we build on the results from Section 6 to derandomize several
algorithms from [37, 38]. We begin in Section 7.1 with the computation of
linear dependencies between polynomials. Then we give applications to the
minimization of the number of variables in sums of powers of linear forms
(in Section 7.2), and to the computation of Lie algebras of products of linear
forms (in Section 7.3). This leads to the derandomization of a factorization
algorithm from [41] and of the equivalence algorithm by Kayal [37] described
in Section 3.1.

7.1 From black box PIT to linear dependencies

We first recall from [37] the notion of linear dependencies among polynomials.
It has found applications to the elimination of redundant variables [37], the
computation of the Lie algebra of a polynomial [38], the reconstruction of
random arithmetic formulas [25], full rank algebraic programs [39] and non-
degenerate depth 3 circuits [40].

Definition 36. Let f = (f1, . . . , fm) be a tuple of m polynomials of
K[X1, . . . , Xn]. The space of linear dependencies of f , denoted f⊥, is the
space of all vectors v = (v1, . . . , vm) ∈ Km such that v1f1 + · · · + vmfm is
identically 0.

As a computational problem, the POLYDEP problem consists of finding
a basis of f⊥ for a tuple f given as input. If the fi are verbosely given as
sum of monomials, this is a simple problem of linear algebra. The problem
becomes more interesting if the fi are given by arithmetic circuits or black
boxes. In Section 7.1 we present a simple and general relation between this
problem and black box PIT.

A natural approach to POLYDEP consists of evaluating the fj at certain
points a1, . . . , ak of Kn to form a k×m matrix M with the fj(ai) as entries.
Note that f⊥ ⊆ ker(M) for any choice of the evaluation points. We would
like this inclusion to be an equality since this will allow to easily compute a
basis of f⊥. This motivates the following definition.

Definition 37. The points a1, . . . , ak form a hitting set for the linear
dependencies of f if the above matrix M = (fj(ai))1≤i≤k,1≤j≤m satisfies
f⊥ = ker(M).

Kayal [37] showed (without using explicitly this terminology) that if k =
m and the ai are chosen at random, a hitting set for the linear dependencies
of f will be obtained with high probability.

Here we point out that constructing deterministically a hitting set for the
linear dependencies of f is equivalent to solving black box PIT for the family
of polynomials in Span(f) (the space of linear combinations of f1, . . . , fm):
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Proposition 38. Let f = (f1, . . . , fm) be a tuple of m polynomials of
K[X1, . . . , Xn]. For any tuple (a1, . . . , ak) of k points of Kn, the two fol-
lowing properties are equivalent:

(i) The points a1, . . . , ak form a hitting set for the linear dependencies of f .

(ii) They form a hitting set for Span(f).

Proof. This is immediate from the definitions. Suppose indeed that (i) holds,
and that some polynomial f = v1f1 + . . .+ vmfm of Span(f) vanishes at all
of the ai. This means that v ∈ kerM , hence v ∈ f⊥ by (i). We conclude
that f is identically 0 and (ii) holds.

To prove the converse we can take the same steps in reverse. Suppose
that (ii) holds and that v ∈ kerM . This means that f = v1f1 + . . .+ vmfm
vanishes at all the ai, hence f is identically 0 by (ii). We have shown that
v ∈ f⊥, i.e., f⊥ = kerM .

In Section 7.2 we will use this observation and the black box PIT algo-
rithm of Section 6.2 to minimize the number of variables in sums of powers
of linearly independent linear forms. In Section 7.3 we give an application
to the computation of Lie algebras and factorization into products of linear
forms.

7.2 Minimizing variables

We first recall the notion of redundant and essential variables studied by
Carlini [9] and Kayal [37].

Definition 39. A variable xi in a polynomial f(x1, . . . , xn) is redundant if f
does not depend on xi, i.e., xi does not appear in any monomial of f .

We say that f has t essential variables if t is the smallest number for
which there is an invertible matrix of size n such that f(Ax) depends on t
variables only.

A randomized algorithm for minimizing the number of variables is given
in [37, Theorem 4.1]. More precisely, if the input f has t essential variables
the algorithm finds (with high probability) an invertible matrix A such that
f(Ax) depends on its first t variables only. It is based on the observation
from [9, 37] that t = n − dim(∂f)⊥ = dim(∂f) where ∂f denotes the tuple
of n partial derivatives ∂f/∂xi (and dim(∂f) denotes the dimension of the
spanned subspace). As recalled in Section 7.1, a basis of the space of lin-
ear dependencies (∂f)⊥ can be found by a randomized algorithm from [37].
Moreover, a suitable invertible matrix A is easily found from such a basis by
completing it into a basis of the whole space Kn (see appendix B of [37] for
details).

29



Example 40. If f can be written as a sum of r powers of linearly inde-
pendent linear forms then the number of essential variables of f is equal
to r. This is clear for f(x1, . . . , xn) = xd1 + · · · + xdr since ∂f is spanned by
xd−11 , . . . , xd−1r . In the general case, f is equivalent to xd1 + · · ·+ xdr and two
equivalent polynomials have the same number of essential variables.

The next proposition is a consequence of the above variable minimization
algorithm. The input f to the algorithm of Proposition 41 can be described
by an arithmetic circuit like in [37] or more generally by a black box. Here
we assume (in contrast with Sections 4 and 5) that we have access to an
oracle for the factorization of univariate polynomials. This is a prerequisite
for running Kaltofen’s factorization algorithms for the arithmetic circuit [35]
and black box models [34].

Proposition 41. There is a randomized polynomial time algorithm that
decides whether a homogeneous polynomial f(x1, . . . , xn) can be written as
in (1) as a sum of powers of linearly independent linear forms.

Proof. First compute the number r of essential variables in f using the ran-
domized algorithm from [37], and make the corresponding change of vari-
ables to obtain a polynomial g(x1, . . . , xr). Then test whether g is equiva-
lent to xd1 + · · · + xdr using the equivalence algorithm from [37]. To prove
that this algorithm is correct, we show that f can be written as a sum
of r powers of linearly independent linear forms if and only if g can be
written in such a form. Let A ∈ Kn×n be an invertible matrix such that
f(Ax) = g(x1, . . . , xr) for all x ∈ Kn. Suppose that g(Bx) = xd1 + · · · + xdr

for some invertible matrix B ∈ Kr×r. If we denote C =

(
B 0
0 I

)
∈ Kn×n

where I ∈ K(n−r)×(n−r) is the identity matrix, then the matrix AC is in-
vertible and we have f(ACx) = g

(
B(x1, . . . , xr)

T
)

= xd1 + · · ·+ xdr for every
x ∈ Kn. Conversely, suppose that there exists an invertible matrix B ∈ Kn×n

such that f(Bx) = xd1 + · · · + xdr′ . We have r′ = r by Example 40. More-
over, for all x ∈ Kn we have xd1 + · · · + xdr = f(Bx) = f(AA−1Bx) =
g
(
(A−1Bx)1, . . . , (A

−1Bx)r
)
. Thus, by setting xr+1 = . . . = xn = 0, we

get xd1 + · · · + xdr = g(Cx) for all x ∈ Kr, where C ∈ Kr×r is the subma-
trix of A−1B obtained by taking the first r rows and columns. To show
that C is invertible, suppose that this is not the case. Then, there exists
an invertible matrix D ∈ Kr×r such that D(0, . . . , 0, 1)T ∈ kerC. Hence, for
every x ∈ Kr we have g(CD(x1, . . . , xr−1, 0)T ) = g(CDx) = h(Dx), where
h(x) = xd1 + · · · + xdr . In particular, h has less than r essential variables,
which gives a contradiction with Example 40. Therefore, the matrix C is
invertible.

In this algorithm it is essential to compute the number of essential vari-
ables in f before calling the equivalence algorithm from [37]. Indeed, this
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algorithm is based on the factorization of the Hessian determinant of f ; but
Hf is identically 0 for any polynomial with fewer than n essential variables.
Hence looking at detHf does not yield any useful information for r < n.

Remark 42. We can minimize the number of variables of a degree 3 form
f(x1, . . . , xn) in deterministic polynomial time using dense linear algebra.
Indeed, as pointed out in Section 7.1 this is true more generally for the POLY-
DEP problem with inputs that are verbosely given as sums of monomials.8

Combining this observation with the deterministic equivalence algorithm from
Section 5 we obtain , as in Proposition 41, a deterministic algorithm to de-
cide whether a degree 3 form can be written as in (1) as a sum of cubes of
linearly independent (real or complex) linear forms.

The second result of this section is the following derandomization of
Kayal’s algorithm for finding the number of essential variables, under the
assumption that the input polynomial is a sum of powers of independent
linear forms:

Theorem 43. Let f(x1, . . . , xn) be a homogoneous polynomial of degree d
and let {a1, . . . , ak} be the hitting set of Theorem 35 corresponding to poly-
nomials of degree d−1 in n variables (recall that it is of size O(n2d)). Let fj
be the partial derivative ∂f/∂xj. We consider like in Section 7.1 the matrix
M = (fj(ai))1≤i≤k,1≤j≤n.

If f can be written as in (1) as a sum of r powers of linearly independent
linear forms then kerM = (∂f)⊥. In particular, the number of essential
variables of such an f can be computed deterministically from a black box for
f by the formula: r = n− dim kerM .

Proof. We recall that a black box for fj can be easily obtained from a black
box for f by polynomial interpolation. It therefore remains to show that
kerM = (∂f)⊥. By Proposition 38 it suffices to show that {a1, . . . , ak} is
a hitting set for Span(∂f). This is clear from the definition of {a1, . . . , ak}
since the elements of Span(∂f) can be written as linear combinations of at
most r (d − 1)-th powers of linearly independent linear forms (namely, the
same forms that appear in the decomposition of f).

7.3 Lie algebras and polynomial factorization

One can associate to a polynomial f ∈ K[X1, . . . , Xn] the group of invertible
n × n matrices A that leave f invariant, i.e., such that f(Ax) = f(x). One
can in turn associate to this matrix group its Lie algebra. This is a linear
subspace ofMn(K), which we call simply “the Lie algebra of f .” It turns out
that elements of this Lie algebra correspond to linear dependencies between

8Variable minimization for forms of degree 3 is also studied in Saxena’s thesis [48,
Proposition 3.1]. He attributes the corresponding deterministic algorithm to Harrison [26].
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the n2 polynomials xj ∂f∂xi . A proof can be found in [38, Section 7.2], and
we will take this characterization as our definition of the Lie algebra for the
purpose of this paper:

Definition 44. The Lie algebra of a polynomial f ∈ K[x1, . . . , xn] is the
subspace of all matrices C ∈Mn(K) that satisfy the identity:∑

i,j∈[n]

cijxj
∂f

∂xi
= 0 .

A randomized algorithm for the computation of the Lie algebra was given
in [38], with applications to the reconstruction of affine projections of polyno-
mials. In this section we study the deterministic computation of Lie algebras
of polynomials, a topic which has not been studied in the literature as far as
we know.

The Lie algebra of a homogenous polynomial f consists of all matrices
of Mn(K) if and only if f is identically 0. This shows that one cannot
hope to compute the Lie algebra in deterministic polynomial time without
derandomizing Polynomial Identity Testing (and these two problems are in
fact equivalent in the black box setting by Proposition 38). Nevertheless,
it makes sense to search for deterministic algorithms for specific classes of
polynomials. We take a first step in this direction in Theorem 49, for poly-
nomials that factor as products of linear forms. Taking again our cue from
Proposition 38, we will do this by constructing a hitting set for a related
family of polynomials. As it turns out, it is convenient to first design a hit-
ting set for a certain family of “simple” rational functions. Those are defined
as follows:

Definition 45. Let p1, . . . , pm ∈ Cn, q1, . . . , qm ∈ Cn \ {0} be a collection of
2m vectors in Cn. Furthermore, let H =

⋃m
i=1{x ∈ Cn : 〈qi, x〉 = 0}.

We associate to this collection of 2m vectors an oracle which for any
x ∈ Cn returns the value

f(x) =


m∑
i=1

〈pi, x〉
〈qi, x〉

if x /∈ H,

NaN otherwise.

(6)

In the commutative setting, there does not seem to be a lot of literature
on rational identity testing (there is however the deep result that rational
identity testing can be done in deterministic polynomial time in the non-
commutative setting [21]). For (commutative) arithmetic circuits with divi-
sions, deterministic rational identity testing is easily seen to be equivalent to
PIT for ordinary (division free) arithmetic circuits. Nevertheless, it makes
sense to investigate it for specific families of rational functions such as those
in Definition 45.
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Remark 46. According to the above definition, the oracle returns NaN when
we evaluate f on a point x where qi(x) = 0, and this remains true even if
the corresponding vector pi is equal to 0. This convention is useful for the
proof of Proposition 47 below.

For every n, k ∈ N, let P(n, k) ⊂ Cn be the set of k(n − 1) + 1 points
defined as

P(n, k) = {(1, 1, . . . , 1), (1, 2, 22, . . . , 2n−1),

. . . , (1, k(n− 1) + 1, (k(n− 1) + 1)2, . . . , (k(n− 1) + 1)n−1)} .

Recall from Lemma 31 that these points cannot be all contained in a union
of k hyperplanes since they lie on the moment curve. Moreover, for every
m,n ≥ 1 let

Λ(m,n) = {u+ λv : v ∈ P(n,m), u ∈ P(n,m2) ∪ {0}, λ ∈ [2m+ 1]} .

The next result shows that the set Λ(m,n) is a hitting set for the rational
functions of Definition 45.

Proposition 47. The function f(x) in (6) is equal to 0 for every x /∈ H if
and only if f(x) ∈ {0,NaN} for every x ∈ Λ(m,n).

Proof. The “only if” implication is trivial. To prove the other direction,
suppose that f(x) ∈ {0,NaN} for every x ∈ Λ(m,n). First we observe that
it is enough to assume that {q1, . . . , qm} are pairwise linearly independent.
Indeed, if qi = µqj for some i, j ∈ [m] and µ ∈ C \ {0}, then we can put
p̃i = pi + µpj , replace pi by p̃i and forget pj and qj . This does not change
the function f (in particular, by Remark 46 the domain of definition of f
is unchanged). By repeating this procedure, we can write f in such a way
that the denominators are pairwise linearly independent (and their number
m does not increase).

From now on, we assume that {q1, . . . , qm} are pairwise linearly inde-
pendent. By Lemma 31, there exists v ∈ P(n,m) such that 〈qi, v〉 6= 0 for
all i ∈ [m]. For every i ∈ [m], denote ai = 〈pi, v〉/〈qi, v〉 ∈ C. We will
show that pi = aiqi for all i ∈ [m]. To do so, suppose that there exists at
least one i such that pi − aiqi 6= 0. For every pair (i, j) ∈ [m]2 such that
i 6= j let dij = 〈qi, v〉/〈qj , v〉. Using Lemma 31 one more time, there exists
u ∈ P(n,m2) satisfying the following two conditions:

(i) 〈pi − aiqi, u〉 6= 0 for every i ∈ [m] such that pi − aiqi 6= 0;

(ii) 〈qi − dijqj , u〉 6= 0 for every (i, j) such that i 6= j. (We note that
qi − dijqj 6= 0 because the {qi}i are pairwise linearly independent.)
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Let bi = 〈pi−aiqi, u〉 for all i ∈ [m] and consider the univariate function g(λ)
defined as g(λ) = f(u+λv). Note that for every λ ∈ C such that u+λv /∈ H
we have

g(λ) =
m∑
i=1

〈pi, u+ λv〉
〈qi, u+ λv〉

=
m∑
i=1

ai +
m∑
i=1

bi
〈qi, u〉+ λ〈qi, v〉

.

Observe that the function g(λ) attains the value NaN for at most m values
of λ. Furthermore, since we assumed that 〈qi − dijqj , u〉 6= 0, the functions
λ 7→ 〈qi, u〉+ λ〈qi, v〉 have distinct zeros. In particular, if bi 6= 0, then |g(λ)|
approaches +∞ as λ approaches −〈qi, u〉/〈qi, v〉. Since we assumed that at
least one bi is nonzero, it follows that the function g(λ) attains some values
not in {0,NaN}. Moreover, g(λ) has at most m zeroes, because it can be
written in the form g(λ) = P (λ)/Q(λ) where P,Q are nonzero polynomials of
degree at mostm. In particular, at least one of the values g(1), . . . , g(2m+1)
does not belong to {0,NaN}, contradicting our assumption. Therefore, we
have pi = aiqi for all i ∈ [m]. In particular, for every x /∈ H we have f(x) =
a1 + · · ·+ am. To conclude, we observe that f(v) = 0 since v ∈ Λ(m,n). It
follows that f(x) = a1 + · · ·+ am = 0 for all x /∈ H.

Remark 48. One can derive from the above proof a syntactic characteriza-
tion of the rational functions in Definition 45 that are identically 0. Namely,
assuming that the qi are pairwise linearly independent, the following condi-
tion is necessary and sufficient: there exist constants a1, . . . , am ∈ C such
that a1 + . . .+ am = 0 and pi = aiqi for all i = 1, . . . ,m.

Let P (x) ∈ C[X1, . . . , Xn] be a polynomial that factors as a product of
linear forms, i.e., P (x) = 〈q1, x〉〈q2, x〉 . . . 〈qd, x〉 for some vectors q1, . . . , qd
in Cn. From Proposition 47 we can derive the following characterization of
the Lie algebra of P .

Theorem 49. Let P (x) ∈ C[X1, . . . , Xn] be a polynomial of degree d ≥ 1
that factors as a product of linear forms. Then, a matrix C ∈ Cn×n belongs
to the Lie algebra of P if and only if∑

i,j∈[n]

cijxj
∂P

∂xi
(x) = 0 (7)

for every x ∈ Λ(d, n). In particular, a basis of the Lie algebra can be com-
puted deterministically in polynomial time with black box access to P .

Proof. The “only if” direction follows immediately from Definition 44. To
prove the opposite implication, let us now assume that (7) holds for every
x ∈ Λ(d, n). We need to show that C belongs to the Lie algebra of f . Let
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us write P (x) = 〈q1, x〉〈q2, x〉 . . . 〈qd, x〉 where the qi are nonzero vectors, and
consider the function

fC(x) =


1

P (x)

∑
i,j∈[n]

cijxj
∂P

∂xi
(x) if x /∈ H,

NaN otherwise.

Here H denotes the union of the m hyperplanes {x ∈ Cn : 〈qi, x〉 = 0} as in
Definition 45. Note that we have fC(x) ∈ {0,NaN} for every x ∈ Λ(d, n).
Furthermore, observe that for every x /∈ H we have

1

P (x)

∑
i,j∈[n]

cijxj
∂P

∂xi
(x) =

∑
i,j∈[n]

cijxj
∑
k∈[d]

qki
〈qk, x〉

=
∑
k∈[d]

∑
i,j∈[n] cijqkixj

〈qk, x〉
.

Since this rational fraction is of form (6), we can apply Proposition 47
and conclude that fC(x) is equal to zero for every x /∈ H. This implies
that

∑
i,j∈[n] cijxj

∂P
∂xi

(x) = 0 for all x /∈ H. By continuity we obtain∑
i,j∈[n] cijxj

∂P
∂xi

(x) = 0 for all x ∈ Cn, which implies that C belongs to
the Lie algebra of P .

Let us now turn to the second part of the theorem. It is well known
that a black box for ∂P/∂xi can be constructed from a black box for P (by
interpolating P on a line). By the first part, the determination of the Lie
algebra therefore boils down to the resolution of a system of |Λ(d, n)| linear
equations in n2 variables.

Remark 50. We have stated Proposition 47 and Theorem 49 for the field of
complex numbers only because the proof of Proposition 47 uses the absolute
value. Nevertheless, it follows from general principles that these two results
apply to any field K of characteristic 0. Indeed, K can be embedded in an
algebraically closed field K which must satisfy the same first order formulas
as C.

For our final derandomization results we will need to perform simultane-
ous diagonalization in polynomial time over Q.

Proposition 51. There is a polynomial time deterministic algorithm which
takes as input a tuple (A1, . . . , Ak) of matrices of size n with rational entries,
and:

(i) decides whether A1, . . . , Ak are simultaneously diagonalizable over Q;

(ii) if they are, constructs an invertible matrix T ∈Mn(Q) such that the k
matrices T−1AiT are all diagonal.

This result is not particularly surprising but we could not find it in the
literature.
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Proof. For k = 1 this is quite standard. We can for instance compute the
characteristic polynomial of A1, compute its roots (which should all be ra-
tional) and attempt to construct a basis of eigenvectors by solving the cor-
responding linear systems.

For k > 1, we can check that the matrices are simultaneously diago-
nalizable by checking that each matrix is diagonalizable, and that the Ai
pairwise commute (Theorem 1.3.21 in [28]). In this case, in order to con-
struct a transition matrix T which diagonalizes the Ai, we will use Lemma 2
to reduce to the case k = 1. Namely, we will construct a finite set S of points
(α2, . . . , αn) ∈ Qn−1, and for each α ∈ S we will:

1. Diagonalize Aα = A1 + α2A2 + · · ·+ αkAk as: Aα = TαDαT
−1
α , where

Dα is diagonal and Tα invertible.

2. Check whether T−1α AiTα is diagonal for all i = 1, . . . , k.

When the Ai are simultaneously diagonalizable, Lemma 2.(ii) guarantees
that this test will will succeed for at least one α ∈ S if S is not included in a
certain union of n(n−1)/2 hyperplanes. In order to avoid these hyperplanes
we can proceed as in Section 5 and pick any set S of 1 + n(n− 1)(n− 2)/2
points on the moment curve as per Lemma 31.

An alternative to the above algorithm can possibly be extracted from the
proof of Theorem 1.3.21 in [28].

Let f(x1, . . . , xn) be a polynomial that can be written as

f(x) = λl1(x)α1 · · · ln(x)αn (8)

where λ is a constant, the li are linearly independent linear forms and the
exponents αi are all nonzero. A randomized algorithm which finds such a
factorization from black box access to f was proposed in [41, Section 4]. This
algorithm appealed to randomization for the computation of the Lie algebra
of f and also, following [38], for simultaneous diagonalization. In this paper
we have given deterministic algorithms for these two tasks, in Theorem 49
and Proposition 51 respectively. This leads to the following polynomial time
deterministic factorization algorithm, which we call the derandomized Lie-
algebraic factorization algorithm (or DerandLie for short):

1. Compute a basis B1, . . . , Bk of the Lie algebra of f .

2. Reject if k 6= n− 1, i.e., if the Lie algebra is not of dimension n− 1.

3. Check that the matrices B1, . . . , Bn−1 commute and are all diagonal-
izable over Q. If this is not the case, reject. Otherwise, declare the
existence of a factorization f(x) = λl1(x)α1 · · · ln(x)αn where the lin-
ear forms li are linearly independent and αi ≥ 1 (λ, the li and αi will
be determined in the last 3 steps of the algorithm).
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4. Perform a simultaneous diagonalization of the Bi’s, i.e., find an invert-
ible matrix A such that the n− 1 matrices ABiA−1 are diagonal.

5. At the previous step we have found a matrix A such that g(x) =
f(A−1x) has a Lie algebra gg which is an (n−1)-dimensional subspace
of the space of diagonal matrices. Then we compute the orthogonal
of gg, i.e., we find a vector α = (α1, . . . , αn) such gg is the space of
matrices diag(d1, . . . , dn) satisfying

∑n
i=1 αidi = 0. We normalize α so

that
∑n

i=1 αi = d.

6. We must have g(x) = λ.m where λ ∈ Q∗ and m is the monomial
xα1
1 · · ·xαn

n (in particular, α must be a vector with integral entries).
We therefore have f(x) = λ.m(Ax) and we output this factorization.

Theorem 52. Let f(x1, . . . , xn) be a polynomial that can be written as in (8)
as a product of powers of linearly independent linear forms, where λ and
the coefficients of the linear forms are in Q. From a black box for f , the
above DerandLie algorithm computes this factorization deterministically in
polynomial time.

See [41, Section 4] for a correctness proof. As mentioned above, in order
to obtain a deterministic algorithm we appeal to Theorem 49 in Step 1 and
to Proposition 51 in Step 4. In order to find the scaling factor λ at step 6,
we evaluate f at a point x where f(x) 6= 0. From Lemma 31, we can find
such a point deterministically by trying at most 1 +n(n− 1) on the moment
curve since we need to avoid the n hyperplanes li(x) = 0. Note that
DerandLie may fail if f does not factor as a product of linear forms since
this is a prerequisite of Theorem 49. The fact that DerandLie fails on some
inputs may seem at first sight like a weakness of the algorithm, but this is in
fact unavoidable for any deterministic polynomial-time black box algorithm
(see [41, Section 1.5] for details).

Recall from Section 3.1 that Kayal’s algorithm for equivalence to a sum of
powers relies on factorization into products of linear forms. If this factoriza-
tion is performed with the DerandLie algorithm, we obtain a deterministic
version of Kayal’s algorithm. Let us call LieEquivalence this deterministic
equivalence algorithm. As our final result, we observe that LieEquivalence
will work correctly on all inputs due to the presence of the verification step
in Kayal’s algorithm:

Theorem 53. Let f ∈ Q[X1, . . . , Xn] be a homogeneous polynomial of de-
gree d given verbosely as a sum of monomials. The LieEquivalence algo-
rithm determines whether f is equivalent over Q to Pd, the “sum of d-th
powers” polynomial from (2). If this is the case, it outputs an invertible ma-
trix A with rational entries such that f(x) = Pd(Ax). Moreover, for any
fixed d the algorithm runs in polynomial time in the Turing machine model.
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Proof. Since we are interested in equivalence over the field of rational num-
bers, we will run the 3-step algorithm from Section 3.1 with K = K = Q.
First we establish the correctness of LieEquivalence. If the algorithm ac-
cepts its input f , it explicitly finds at step 2 and step 3 linearly indepen-
dent linear forms `i ∈ Q[x1, . . . , xn] such that f =

∑n
i=1 `

d
i . The algo-

rithm’s answer must therefore be correct in this case. Conversely, assume
that such a decomposition exists. Then the Hessian determinant Hf fac-
tors as Hf = c

∏n
i=1 `

d−2
i where c is a nonzero constant. Since the `i are

linearly independent, we are in the situation where DerandLie works cor-
rectly. Therefore, by Theorem 52 we will find the `i (or actually constant
multiples li of the `i) at step 1 of the algorithm of Section 3.1. Finally, the
decomposition f =

∑n
i=1 `

d
i is obtained at steps 2 and 3.

We now turn to the algorithm’s complexity. Since DerandLie runs in
polynomial time, the first step of the algorithm from Section 3.1 will also
run in polynomial time. At step 2 we can afford to expand the powers ldi as
sums of monomials (this takes polynomial time for constant d), and then we
find the constants ai by dense linear algebra. Finally, the extraction of d-th
roots of rational numbers at step 3 also takes polynomial time.
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