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Lyapunov Functions for Singularly Perturbed Hybrid Systems
with Frequent Jump Dynamics

Aneel Tanwani Hyungbo Shim

Abstract— This article considers the stability analysis for a
class of hybrid systems with the focus being on the frequently
occurring jump dynamics. The system class is modelled as a sin-
gularly perturbed hybrid system where the singular perturba-
tion parameter governs the frequency of jumps. Consequently,
this results in a quasi steady-state system modeled by a dif-
ferential equation without any jumps, and the boundary-layer
system described by purely discrete dynamics. By imposing
appropriate assumptions on the quasi steady-state system and
the boundary-layer system, we derive results showing practical
convergence to a compact attractor when the jumps occur
frequently often. Our system class is motivated by the control
design problem in a network of second-order continuous-time
coupled oscillators, where each agent communicates the infor-
mation about its position to the neighbors at discrete times. As
a corollary to our main result, we show that if the information
exchange between the agents and their neighbors is frequent
enough, then the oscillators achieve practical consensus.

Index Terms— Hybrid system; Singular perturbation; Prac-
tical stability; Heterogeneous agents; Coupled nonlinear oscil-
lators; Sampled-data system.

I. INTRODUCTION

Hybrid systems, which comprise continuous and discrete
dynamics, have found utility in modeling of a broad class
of physical systems and algorithms. Conventional results on
stability of hybrid systems, like [2, Theorem 3.18], require
the continuous and discrete dynamics to be asymptotically
stable. However, it is natural to develop stability conditions
which provide an interplay between stability of continuous
and discrete dynamics. Taking switched systems as an ex-
ample of hybrid systems, it is seen that if the continuous
dynamics are stable but discrete dynamics are not, then we
can obtain stability conditions by constraining the frequency
of switching times in the form of upper bound on average
dwell-time (ADT) [8, Chapter 3]. On the other hand, if the
continuous dynamics are not stable but the discrete dynamics
compensate for the growth of the state during continuous-
time evolution, then the overall system is asymptotically
stable if the number of discrete jumps over each bounded
interval is large enough [3]. This article considers an inter-
connected hybrid system where one subsystem has stable
continuous dynamics, and the other subsystem has stable
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discrete dynamics only. The particular structure that we
consider in our work is analyzed using singular perturbation
methods [4, Chapter 11].

Singular perturbation techniques have been conventionally
studied for analysis of ordinary differential equations with
slow and fast dynamics [4]. The basic idea is to see the sys-
tem as a perturbation of a nominal system that comprises the
boundary-layer system (describing the limit of fast dynamics)
and the quasi steady-state system (described by slow system
with limiting value of fast dynamics). More recently, we have
seen the use of singular perturbation methods for a class of
hybrid systems where fast evolution appears in continuous-
time dynamics only [13], [16]. The solutions resulting from a
continuous-time boundary-layer system generate an average
vector field which approximates the slow subsystem. Us-
ing the stability of the average dynamics, with appropriate
hypotheses on system data, the authors show semiglobal
practical stability for original system.

Moreover, we see the use of singular perturbation methods
for analysis in different applications. One such application
of these methods, which is also studied in this article, is the
synchronization problem in networked systems. For multi-
agent systems with diffusive coupling and continuous-time
heterogeneous agents [5], [12], it is observed that the agents
achieve practical convergence if the coupling strength is large
enough. One can view the coupling parameter as a singular
perturbation parameter [7], [10]. More recently, we have also
seen the use of discontinuous coupling for synchronization
of networked system in [1]. Our work actually proposes
singular perturbation methods for analysis of networked
systems where the discontinuity in coupling arises due to
time-sampled information exchange between neighbors.

Based on this last remark, another research direction which
is particularly relevant for our paper is the stability of
dynamical systems under fast switching or frequent impulses.
A related application in this direction is studied in [11],
where the authors propose the use of fast switching round-
robin protocol for stability of a nonlinear controlled system.
However, to the best of authors’ knowledge, the use of
singular perturbation methods for analysis of fast switch-
ing/impulses has not appeared in the literature, and this paper
makes a contribution in this direction. An exception in this
direction is the paper [17], where the authors take sampling
period as the singular perturbation parameter but the resulting
analysis is carried out entirely in discrete domain, which is
completely different from the approach adopted in this paper.

This article proposes singular perturbation techniques for a
class of hybrid systems, where frequency of jump dynamics



is associated with the singular perturbation parameter. In
particular, as the parameter gets smaller, the frequency of
jumps increases. We construct an appropriate Lyapunov
function for the interconnection between slow continuous
dynamics and fast discrete dynamics, and show practical
convergence under mild assumptions on system data. Such
constructions are inspired from the analysis of sampled-
data systems [15]. As an application of our main result, we
study a heterogeneous multi-agent system where each node is
described by a second order nonlinear oscillator. Each agent
communicates one of its states (the output) to its neighbors at
discrete times. We show that if the frequency of time instants,
at which agents exchange information, is large enough then
the oscillators achieve practical consensus.

II. SINGULAR PERTURBATION THEOREMS FOR
A CLASS OF HYBRID SYSTEMS

In this article, we are interested in studying a class of
hybrid systems, parameterized by a scalar ε ∈ (0, 1],

ẋ = fx(x, y, ε),

ẏ = fy(x, y, ε),

ετ̇ = σ, for (x, y, τ) ∈ Cx × Cy × [0, 1],
x+ = x,

y+ = gy(x, y),

τ+ ∈ [0, γ], for (x, y, τ) ∈ Cx × Cy × {1},

(1)

where x ∈ Rn, y ∈ Rm, and τ ∈ R. The sets Cx ⊂ Rn
and Cy ⊂ Rm are assumed to be closed, and contained in
open and connected domains Dx ⊂ Rn and Dy ⊂ Rm,
respectively. The vector fields fx : Dx×Dy×R≥0 → Rn and
fy : Dx×Dy×R≥0 → Rm, and the function gy : Dx×Dy →
Rm are assumed to be continuously differentiable in their
arguments. The constant γ is assumed to belong to [0, 1), and
σ is a positive constant. In the terminology of hybrid systems
used in [2], it is seen that the flow set is Cx × Cy × [0, 1]
and the jump set is Cx × Cy × {1}.

For the problems studied in this paper, the parameter ε
appearing in (1) is taken to be small, which implies that the
jumps occur frequently, and thus, the evolution of y relies
highly on the jump dynamics. Since the jumps correspond
to rapid evolution, we call x the slow variable and y the fast
variable. The evolution of the timer τ , determined by the
parameters ε, γ, and σ, describes the interplay between the
flow and the jump. The evolution of system (1) guarantees
that, over an interval [0, T + τ(0)], there are at least Tσ/ε
jumps, and after every jump, the system flows for at least
(1−γ)ε/σ units of time. Therefore, there is no accumulation
time of jumps (i.e., there are finitely many jumps in any
finite continuous-time interval) and the time domain of every
complete solution has unbounded continuous-time element.

If ε is sufficiently small, the behavior of the solution1

1According to the framework of [2], one writes the solution at a given
time instant as (x(t, j), y(t, j)) using the hybrid time index (t, j). In our
case, we find it convenient to write (x(t), y(t)), which implicitly refers to
(x(t, j), y(t, j)) for some j ∈ N≥0. The choice is motivated by the fact
that, in this paper, the complete solutions have unbounded t. Whenever t is
a jump instant, we indicate the value of y after the jump with y(t+).

(x(t), y(t)) can be approximated by two different dynamic
systems. The first system is called the boundary-layer system
given by, for y ∈ Cy ,

y+ = gy(x, y) for a fixed value of x ∈ Cx. (2)

When ε is sufficiently small, there are many jumps within
a small continuous-time interval. This means that, from an
initial condition (x(0), y(0)), while the solution x(t) remains
close to x(0), the solution y(t) obeys y+ = gy(x, y) which
is approximated by (2). If (2) has a unique equilibrium for
each fixed x ∈ Cx, then we may consider a continuously
differentiable function h : Rn → Rm such that

gy(x, h(x)) = h(x), ∀ x ∈ Cx. (3)

If, in addition, the equilibrium h(x) is asymptotically stable,
then we can imagine that the solution y(t) rapidly approaches
h(x(0)) after some jumps, and remains near h(x(t)) as time
goes on. In order to approximate the behavior of x(t), we
define the quasi steady-state system given by

ẋ = fx(x, h(x), 0), x ∈ Cx (4)

which basically approximates the evolution of x(t) on the
slow manifold {(x, y) ∈ Rm × Rn : y = h(x)}. In the
following, let us clarify the intuition discussed so far.

A. Main Results

The basic problem studied in this paper relates to the
stability of system (1). Toward this end, we work under the
assumption that the quasi steady-state system (4) and the
boundary-layer system (2) are both stable. As a principal
result, we show that by choosing ε small enough, system (1)
achieves stability in an appropriate sense under aforemen-
tioned assumption.

Assumption 1: The boundary-layer system (2) is uni-
formly (in the fixed variable x) exponentially stable at the
equilibrium h(x) ∈ Cy; that is, there exists a continuously
differentiable function Vy : Dx ×Dy → R such that

b|y − h(x)|2 ≤ Vy(x, y) ≤ b|y − h(x)|2,
Vy(x, gy(x, y))− Vy(x, y) ≤ −b|y − h(x)|2,

|∇yVy(x, y)| ≤ ly|y − h(x)|, |∇xVy(x, y)| ≤ lx|y − h(x)|2

for all (x, y) ∈ Cx×Cy where b, b, b, ly , and lx are positive
constants. C

Theorem 1: Suppose that Assumption 1 holds and the
quasi steady-state system (4) admits an asymptotically stable
compact attractor A ⊂ Cx, in the sense that there exists a
continuously differentiable function Vx : Dx → R such that,
for all x ∈ Cx,

α(|x|A) ≤ Vx(x) ≤ α(|x|A), (5)
∇xVx(x)fx(x, h(x), 0) ≤ −α(|x|A), (6)

where α and α are class K∞ functions, and α is a class K
function. Then, for any compact sets Kx ⊂ Cx and Ky ⊂ Cy
and for every ρ > 0, there exists ε∗ > 0 such that, for
any 0 < ε ≤ ε∗ and for any x(0) ∈ Kx, y(0) ∈ Ky , and



τ(0) ∈ [0, γ], the solution (x(t), y(t)) to (1) does not have
finite escape time and satisfies2

lim sup
t→∞

|x(t)|A ≤ ρ, (7)

lim sup
t→∞

|y(t)− h(x(t))| ≤ ρ. (8)

B. Comparisons with Existing Literature

Let us draw some comparisons between the system
class (1) and some related frameworks from the literature.

1) Singularly perturbed hybrid systems: We observe that,
by letting τ̃ = ετ , τ -dynamics can be similarly written as

˙̃τ = σ, τ̃ ∈ [0, ε]

τ̃+ ∈ [0, γε], τ̃ ∈ {ε}.

Because we work with very small value of the parameter ε,
it is natural to think of (1) as a singularly perturbed hybrid
system, as studied in [16]. The quasi steady-state system is
a hybrid system, described as,

ẋ = fx(x, h(x), 0), x ∈ Cx
x+ = x, x ∈ Cx.

The boundary-layer system is also a hybrid system, with
x ∈ Cx fixed, and described as{

ẏ = fy(x, y, 0), y ∈ Cy
˙̃τ = σ, τ̃ ∈ {0}{
y+ = gy(x, y), y ∈ Cy
τ̃+ = 0, τ̃ ∈ {0}.

In other words, this reformulation is consistent with our ear-
lier observation that the quasi steady-state system is purely
continuous-time, and the boundary-layer system is purely
discrete-time. This particular observation differentiates our
system class from the one studied in [16].

2) Impulsive systems with reverse average dwell-time:
One can also think of (1) as an impulsive system as studied
in [3]. We find stability conditions for impulsive systems in
terms of average dwell-time and reverse average dwell-time
associated with the sequence of impulse times. For every
solution of system (1), if N(t, s) denotes the number of
jumps on the interval (s, t], then

N(t, s) ≥ σ(t− s)
ε

which essentially associates a reverse average dwell-time
property to our system. However, rapid switching does not
stabilize x-dynamics, and the slow switching may lead to
instability of y-dynamics. Due to this reason, the tools from
[3] cannot be directly applied here.

In other words, our system (1) is an interconnection of
a hybrid system with state x ∈ Rn having asymptotically
stable continuous-time dynamics but not necessarily stable

2In equations (7) and (8), we provide bounds on forward complete
solutions (x(t), y(t)) for t going to +∞. It may happen that, for certain
initial conditions, the resulting solution is defined only over a finite time
interval, and the aforementioned bounds do not apply for such solutions.

discrete dynamics, and another hybrid system with state
y ∈ Rm having stable jump dynamics but possibly unsta-
ble continuous dynamics. From this viewpoint, small gain
theorems for hybrid systems from [9] are more suited for
stability analysis of (1). However, for the applications studied
in this article, imposing input-to-state stability assumptions
on x and y subsystems is restrictive, and for this reason
we propose analysis based on singular perturbation methods
which results in practical stability rather than asymptotic
stability.

III. NETWORK OF HETEROGENEOUS OSCILLATORS

As a by-product of our theoretical result in Theorem 1, we
study the problem of synchronization of coupled nonlinear
oscillators. We consider N continuous-time controlled oscil-
lators, which are connected to each other by an undirected
and connected graph. The control action is chosen as a
function of the states of their neighbors at discrete times.
If this control is updated sufficiently often, then we show
that all the oscillators converge to each other in practical
sense.

Each of the N oscillators (the agent) has a two dimen-
sional state (ωi, ξi) ∈ R2, for i = 1, . . . , N , whose dynamic
equation is written as

ω̇i = −ωi + ξi

ξ̇i = φi(ωi, ξi) := (1− fi(ωi))(−ωi + ξi)− gi(ωi)
(9a)

where the functions fi, gi are assumed to be smooth. For
example, if the agent i has fi(ωi) = µi(ω

2
i −1) and gi(ωi) =

ωi with µi > 0, then the agent i is a well-known Van der
Pol oscillator [4].

Now we suppose that the agents are connected through an
undirected and connected graph, and the state ξi is updated
from time to time as a functions of its neighbors’ state ξj ,
j ∈ Ni, where Ni is the index set of neighboring agents of
the agent i. In particular, we describe the update model as

ω+
i = ωi

ξ+
i =

∑
j∈Ni

wijξj (9b)

where wij is the (i, j)-th entry of a doubly stochastic matrix
W ∈ RN×N . If the network is modeled by a symmetric
adjacency matrix A, and D is the diagonal matrix that
describes the degree of each node, then W is given by
I − ϕD + ϕA, for which every row and column sums to
1 by construction and the weight ϕ > 0 is chosen small
enough such that the matrix W becomes non-negative.

The time when the update (9b) occurs is governed by a
timer modeled as

τ̇ = σ/ε, τ ∈ [0, 1], (9c)
τ+ ∈ [0, γ], τ ∈ {1}, (9d)

where ε ∈ (0, 1], γ ∈ [0, 1), and σ > 0. This model implies
that all the states ωi, ξi, and τ are updated by (9b) and (9d)
whenever τ(t) becomes 1, and after the update, the timer
state τ(t+) is chosen arbitrarily in [0, γ]. Such a framework



for updating the state of agents at discrete times has been
proposed in [14].

Now, let R ∈ RN×(N−1) be a matrix such that R>R = I
and 1>NR = 0. Then, it is seen that Λ := R>WR ∈
R(N−1)×(N−1) is a positive definite Schur stable matrix.
With the matrix R, we can write (9) in the form of
(1). Let us introduce the new coordinates (s, ζ) for ξ :=
col(ξ1, . . . , ξN ) ∈ RN as

s =
1

N

N∑
i=1

ξi ∈ R, ζ = R>ξ ∈ RN−1.

Then, the system (9) can be written as

ω̇i = −ωi + s+Riζ, i = 1, . . . , N,

ṡ =
1

N

N∑
i=1

(1− fi(ωi))(−ωi + s+Riζ)− gi(ωi)

ζ̇ = R>φ(ω, 1Ns+Rζ)

ετ̇ = σ

(10a)

with the flow set R2N × [0, 1], and

ω+
i = ωi, for i = 1, . . . , N, (10b)

s+ = s, ζ+ = Λζ, τ+ ∈ [0, γ] (10c)

with the jump set R2N × {1}. In (10), Ri denotes the i-th
row of R, and with ω := col(ω1, . . . , ωN ),

φ(ω, 1Ns+Rζ) =

 φ1(ω1, s+R1ζ)
...

φN (ωN , s+RNζ)

 .
Here, if we treat (ω1, . . . , ωN , s) = (ω, s) as the slow
variable and ζ as the fast variable with both the flow set
and the jump set for (ω, s, ζ) are the same as R2N , then the
system is now in the form of (1).

On the other hand, the quasi steady-state (QSS) system is

ω̇i = −ωi + s, i = 1, . . . , N,

ṡ =
1

N

N∑
i=1

(1− fi(ωi))(−ωi + s)− gi(ωi),
(11)

which corresponds to (4). The following assumption and
lemma assures that this QSS system3 satisfies the assumption
of Theorem 1.

Assumption 2: The second order dynamical system

χ̇ = −χ+ s

ṡ = (1− f(χ))(−χ+ s)− g(χ)
(12)

where

f(χ) :=
1

N

N∑
i=1

fi(χ), g(χ) :=
1

N

N∑
i=1

gi(χ) (13)

has a locally exponentially stable attractive compact set
A0 ⊂ R2 (i.e., a stable limit cycle). C

3The QSS system (11) is called ‘blended dynamics’ in the context of
heterogeneous multi-agent systems [7].

Lemma 1: Under Assumption 2, the QSS system (11) has
a locally asymptotically attractive compact set A ⊂ RN+1,
which is a stable limit cycle for (11), given by

A = {(χ, . . . , χ, s) ∈ RN+1 : (χ, s) ∈ A0}. (14)

Moreover, there exists V that satisfies (5) and (6) on a
neighborhood Ω of A.

Proof: The basic idea for the proof comes from [6,
Theorem 1]. Let

χ :=
1

N
1>Nω, χ̃ := R>ω

so that ωi = χ+Riχ̃. Then, we obtain

χ̇ = −χ+ s, ˙̃χ = −χ̃,

ṡ =
1

N

N∑
i=1

(1− fi(χ+Riχ̃))(s− χ−Riχ̃)− gi(χ+Riχ̃)

= (1− f(χ))(−χ+ s)− g(χ) +
1

N

N∑
i=1

ψi(s, χ, χ̃)

where ψi vanishes when χ̃ = 0 because

ψi = fi(χ+Riχ̃)Riχ̃+ (fi(χ+Riχ̃)− fi(χ))(χ− s)
+ (gi(χ)− gi(χ+Riχ̃)).

By continuous differentiability of φi, there is a con-
tinuous function Ψ(s, χ, χ̃) ∈ R1×(N−1) such that
(1/N)

∑N
i=1 ψi(s, χ, χ̃) = Ψ(s, χ, χ̃)χ̃.

By Assumption 2, there is a Lyapunov function W (χ, s)
and a constant c > 0 such that c1|(χ, s)|A0 ≤
W (χ, s) ≤ c2|(χ, s)|A0

, Ẇ |along (12) ≤ −c3|(χ, s)|A0
,

and |∇W (χ, s)| ≤ c4|(χ, s)|A0
on the set {(χ, s) :

W (χ, s) ≤ c}. With any C > 0, let M :=
maxW (χ,s)≤c,|χ̃|≤C |Ψ(s, χ, χ̃)|, and let

V (s, χ, χ̃) = W (χ, s) + k|χ̃|2 (15)

where k := c24M
2/(2c3). Then,

V̇ ≤ −c3|(χ, s)|2A0
+ c4|(χ, s)|A0

M |χ̃| − 2k|χ̃|2

≤ −c3
2
|(χ, s)|2A0

− k|χ̃|2

on the set

Ω :=
{

(s, χ, χ̃) : V (s, χ, χ̃) < min{c, kC2}
}
. (16)

This completes the proof.
We can now establish the following result about the

networked system (9).

Theorem 2: Under Assumption 2, suppose that the ini-
tial condition of the multi-agent system (9) is such that
(ω1, ω2, . . . , ωN , (1/N)

∑N
i=1 ξi) ∈ Ω given in (16). Then,

for each η > 0, there is ε∗ > 0 such that, for each 0 < ε ≤ ε∗,

lim sup
t→∞

|(ωi(t), ξi(t))− (ωj(t), ξj(t))| ≤ η,

lim sup
t→∞

|(ωi(t), ξi(t))|A0
≤ η, ∀i, j = 1, . . . , N.

The proof follows from Theorem 1 and the fact that, if
ζ ≡ 0 then ξi = s and limt→∞ |ωi(t) − ωj(t)| = 0 by



(10a) for all i, j = 1, . . . , N . Indeed, the boundary-layer
system is ζ+ = Λζ, which corresponds to (2) and satisfies
Assumption 1 (with the function h being the zero function).
The stability of QSS system (11) follows from Lemma 1.

Example 1: We have simulated four Van der Pol os-
cillators (9a) with fi(ωi) = µi(ω

2
i − 1) where µ1 = 1,

µ2 = 1.5, µ3 = 2, and µ4 = 2.5, and gi(ωi) = ωi for i =
1, . . . , 4. The oscillators are connected through an undirected
and connected graph, for which the adjacency matrix A is[

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

]
and the matrix W in (9b) is W = 0.6I + 0.2A.

For the timer, we work with, σ = 1, γ = 0.9, and study
different cases for ε ∈ {0.05, 0.2, 1}. At every jump time,
τ+ is randomly chosen according to a uniform distribution
on [0, γ]. The state trajectories of all the agents are plotted
in Figure 1 for two different values of ε.

Fig. 1. Plot of (ωi(t), ξi(t)) for four agents. Numbers are time stamps, and
all trajectories circulate clock-wise. (Top left): Case of no coupling; Started
from four different initial conditions (time stamps ‘0’), their motions are
not synchronized, and the black agent does not have a stable limit cycle so
that it converges to the origin. (Top right): Coupled with ε = 1; Jumps are
observed and they approximately synchronize. (Bottom left): Coupled with
ε = 0.2. (Bottom left): Coupled with ε = 0.05. The animated version can
be seen at https://youtu.be/f_TYWumAD-w.

IV. ANALYSIS AND PROOFS

For convenience of the proof, let us define z := y − h(x)
and consider the closed set

Cxz := {(x, y − h(x)) : (x, y) ∈ Cx × Cy}.

With the state (x, z, τ) ∈ Cxz × [0, 1], we can rewrite the
flow dynamics as

ẋ = fx(x, h(x), 0) + [fx(x, z + h(x), ε)− fx(x, h(x), 0)]

=: fx(x, h(x), 0) + Fx(x, z, ε),

ż = fy(x, z + h(x), ε)− ∂h

∂x
(x)fx(x, z + h(x), ε)

=: Fz(x, z, ε)

ετ̇ = σ,

and the jump dynamics, for (x, z, τ) ∈ Cxz × {1}, as

x+ = x,

z+ = gy(x, z + h(x))− h(x) =: gz(x, z),

τ+ ∈ [0, γ].

A. Proof of Theorem 1

For the stability analysis of the hybrid system in the
translated coordinates, let us consider the Lyapunov function
candidate V , in an open neighborhood of [0, 1]× Cxz ,

V (τ, x, z) := ecxετVx(x) + e−czτVz(x, z) (17)

where Vz(x, z) := Vy(x, z + h(x)), and the positive scalars
cx and cz are chosen to be sufficiently small (less than 1)
and will be specified later. The maximum value ε∗ of the
parameter ε is also to be chosen less than or equal to 1. Since
τ ∈ [0, 1], the function V satisfies the following inequalities:

α(|x|A) + e−1b|z|2 ≤ V (τ, x, z) ≤ e1α(|x|A) + b|z|2

and hence the lower and upper bounds on V are class K∞
functions with respect to distance from the set [0, 1]×A×
{0}. In particular, for any η > 0, define the following
compact sets:

Ωη :=

{
(x, z) ∈ Cxz : |x|A ≤ α−1

( η
2e

)
, |z| ≤

√
η

2b

}
Ωη(τ) := {(x, z) ∈ Cxz : V (τ, x, z) ≤ η}

Ωη :=

{
(x, z) ∈ Cxz : |x|A ≤ α−1(η), |z| ≤

√
eη

b

}
.

Then, an immediate consequence is that

Ωη ⊂ Ωη(τ) ⊂ Ωη ⊂ Cxz, ∀τ ∈ [0, 1].

Now, pick κ large enough so that Kxz ⊂ Ωκ where
Kxz := {(x, y − h(x)) : (x, y) ∈ Kx × Ky}. Then, we
restrict our Lyapunov analysis to the compact set Ωκ.

With the given ρ, take η = min{κ, α(ρ), ρ2b/e}. From
now on, we show that V̇ < 0 and ∆V := V (τ+, x+, z+)−
V (τ, x, z) < 0, for every (x, z) ∈ Ωκ \ Ωη , and every
τ ∈ [0, 1]. This allows us to conclude that the state variables
(x, z) converge to Ωη as long as the maximal solution exists
(see [2, Theorem 3.18]), and thus, proves Theorem 1.

Now, by the compactness of Ωκ, there exist constants Mx

and Mz such that

|fx(x, z + h(x), ε)| ≤Mx, |Fz(x, z, ε)| ≤Mz,

|∇xVx(x)| ≤MV

for all (x, z, ε) ∈ Ωκ× [0, 1]. Also, by invoking Lemma 2 in
Appendix, there exist Nx and Nε such that

|Fx(x, z, ε)| ≤ Nx|z|+Nεε

for all (x, z, ε) ∈ Ωκ × [0, 1].
To analyze ∆V along the jump dynamics, we observe that

∆V = V (τ+, x+, z+)− V (τ, x, z)

≤ecxεγVx(x)− ecxεVx(x) + Vz(x, gz(x, z))− e−czVz(x, z)
≤ −(ecxε − ecxεγ)Vx(x) + Vz(x, gz(x, z))− Vz(x, z)

+ (1− e−cz )Vz(x, z)
≤ −(ecxε − ecxεγ)α(|x|A)− b|z|2 + (1− e−cz )b|z|2.

https://youtu.be/f_TYWumAD-w


Let the positive scalar cz be sufficiently small such that

(1− e−cz )b < b.

Then, since γ < 1, for the chosen cz and for any cx > 0
and ε > 0,

∆V < 0, ∀(τ, x, z) ∈ [0, 1]× Ωκ.

Next we compute the bound on the derivative of V along
the flow dynamics as follows:

V̇ = cxσe
cxετVx(x) + ecxετ∇xVx · fx(x, h(x), 0)

+ ecxετ∇xVx · Fx(x, z, ε)− czσ

ε
e−czτVz(x, z)

+ e−czτ
(
∇zVz · Fz(x, z, ε) +∇xVz · fx(x, z + h(x), ε)

)
≤ cxσecxεα(|x|A)− α(|x|A) + ecxεMV (Nx|z|+Nεε)

− czσ

ε
e−czb|z|2 +Mzly|z|+Mxlx|z|2.

Using Lemma 3 in Appendix, with s = max(x,z)∈Ωκ
|x|A, it

follows that for every ox > 0, there exists vx > 0 such that
α(|x|A) ≤ vxα(|x|A) + ox. Using this bound and Young’s
inequality, it follows that

V̇ ≤ (cxσe
cxεvx − 1)α(|x|A) + cxσe

cxεox −
czσ

ε
e−czb|z|2

+
czσ

2ε
e−czb|z|2 +

ε(ecxεMVNx +Mzly)2

2czσe−czb
+Mxlx|z|2

+ ecxεMVNεε

≤ −(1− cxσecxεvx)α(|x|A)−
(κ1

ε
− κ0

)
|z|2

+ εκc + cxσeox

where κ0 := Mxlx, κ1 := czσe
−czbz/2, and

κc := (eMVNx + Mzly)2/(4κ1) + eMVNε. With
m := max

{
1
2α
(
α−1

(
η
2e

))
, η

4b

}
, the choice of ε∗

and cx such that ε∗ ≤ min
{

1, κ1

κ0+1/2 ,
m

2κc

}
, cx ≤

min
{

1, 1
2σevx

, m
2σeox

}
makes

V̇ ≤ −(1/2)α(|x|A)− (1/2)|z|2 +m < 0

if |x|A > α−1(η/(2e)) or |z| >
√
η/(2b). This proves that

V̇ < 0, ∀(τ, x, z) ∈ [0, 1]× Ωκ\Ωη.

ACKNOWLEDGEMENT

The second author is grateful to Dr. Jin Gyu Lee at Uni-
versity of Cambridge for helpful discussions about Lemma 1.

APPENDIX

Lemma 2: Consider a continuously differentiable func-
tion f : Rn×Rm → Rl such that f(x, 0) = 0 for all x ∈ Rn.
For any compact set K ⊂ Rn × Rm, there are nonnegative
constants Ni such that

|f(x, y)| ≤ N1|y1|+ · · ·+Nm|ym|, ∀(x, y) ∈ K.
Proof: The result follows by applying the mean-value

theorem and taking the maximum of the continuous function
(∂f/∂y)(x, y) over the compact set K.

Lemma 3: Consider two class K functions α1 and α2.
Fix s > 0. For every δ > 0, there exists v12 > 0 such that

α1(s) ≤ v12α2(s) + δ, ∀s ∈ [0, s].

Proof: For a given δ > 0, pick a positive s∗ ≤ s such
that α1(s∗) ≤ δ, and take

v12 = max
s∈[s∗,s̄]

α1(s)

α2(s)

which is well-defined. We immediately get

α1(s) ≤

{
δ, 0 ≤ s < s∗,

v12α2(s), s∗ ≤ s ≤ s

which is the desired inequality.
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