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Error Bounds for Locally Optimal Distributed Filters
with Random Communication Graphs

Aneel Tanwani

Abstract— We consider the problem of analyzing the per-
formance of distributed filters for continuous-time linear
stochastic systems under certain information constraints. We
associate an undirected and connected graph with the meas-
urements of the system, where the nodes have access to
partial measurements in continuous time. Each node executes
a locally optimally filter based on the available measurements.
In addition, a node communicates its estimate to a neighbor
at some randomly drawn discrete time instants, and these
activation times of the graph edges are governed by independent
Poisson counters. When a node gets some information from its
neighbor, it resets its state using a convex combination of the
available information. Consequently, each node implements a
filtering algorithm in the form of a stochastic hybrid system.
We derive bounds on expected value of error covariance for
each node, and show that they converge to a common value
for each node if the mean sampling rates for communication
between nodes are large enough.

Index Terms— Stochastic hybrid system; distributed filtering;
graph theory; random communication.

I. INTRODUCTION

When dealing with systems over networks, the inform-
ation available for decision making is constrained by the
communication channels and the underlying interconnec-
tions. Recent advancements in networked systems have led
to the motivation for distributed estimation and filtering
problems. In this paper, we consider the analysis and design
of filters under certain information constraints induced by
(a) distributed measurements described by a graph; and (b)
frequency of communication between the graph nodes. In the
literature on stochastic systems, the filter design, or analysis,
has received continued attention. An important question
addressed in these works is to quantify the performance of
the filters by analyzing the bounds on the evolution of error
covariance matrix [1]. Several design techniques have now
emerged in the literature with varying degree of analysis. For
discrete-time deterministic systems, the estimation problem
in distributed setting is studied in [2], [3]. For continuous-
time deterministic systems, one may refer to [4], [5]. The
focus in these works is on proposing estimation algorithms
and provide design criteria for each unit which uses min-
imal information about the centralized system dynamics. In
certain papers, distributed state estimation is studied as an ap-
plication of synchronization of multi-agent systems [6], [7],
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[8]. Distributed state estimation for deterministic continuous-
time systems with communication at discrete times has been
studied in [9], [10]. For stochastic systems, we see consensus
based approaches for scalar systems in [11]. Distributed
filtering with more general probability distributions and
application to Gaussian distributions with linear discrete-time
systems is studied in [12]. Prior to that, several algorithms
for distributed filtering have been proposed in discrete-setting
[13], [14]. On the other hand, some recent dissertations have
addressed the problem of distributed optimization and control
over random graphs in discrete-time setting [15], [16].

An important issue from the point of implementation of
filters over networks is to make the algorithms compatible
with the underlying communication protocol. In commu-
nicating messages over the networks, the transmission may
break down at some time instants, or the messages may not
be transferred at exact scheduled times. An abstract way
to model such scenarios is to assume that the underlying
protocols transmit messages only at randomly drawn dis-
crete time instants. With this motivation, certain works in
the literature have studied the problem of stabilization and
control with randomly sampled measurements: The reader
may refer to [17] for optimal control and the papers [18], [19]
for stability analysis of such systems. A recently published
book chapter [20] provides an overview of such results and
some recent developments. There have been relatively fewer
works which have addressed filtering problem in the presence
of measurement errors or communication uncertainties. The
papers [21], [22], [23] consider a discrete-time linear dynam-
ical system and associate randomness with the transmission
times of the output measurements. A different toolset, based
on relative entropy, is adopted in [24] to study the stability
and convergence of filters under relaxed assumptions on
observation channels. For continuous-time dynamical sys-
tem driven by white noise, centralized continuous-discrete
observer is proposed in [25]. Some analytical results on the
performance of centralized continuous-time systems under
random sampling appear in [26].

In this article, we consider filtering problem in distributed
setting for continuous-time linear stochastic systems. Our
objective is to propose filtering algorithms, and analyze their
performance, when the centralized measurements are not
available, and the agents can only communicate their own
state estimates to their neighbors at time instants determ-
ined by a Poisson counter. Compared to above mentioned
references, the derivation and analysis of the expectation of
error covariance bounds with respect to random (Poisson)



sampling in distributed setup is a unique feature of our
work. The results presented in this article build on our recent
work in [27]. For each edge describing the communication
link between two sensor nodes, we model communication
times by an independent Poisson counter, and derive the
error covariance bounds quantifying the performance of these
individual filters. In comparison to [27], instead of using the
constant linear injection gains in the filters, we use time-
varying gains that depend on error covariance bounds which
makes the filters nonlinear. This motivates the use of term
“locally optimal” in the title since we choose injection gains
to minimize error covariance between two communication
times. Due to this change in filter dynamics, even though
the results remain qualitatively similar, the proofs of the main
results in this paper require some additional technicalities.

II. LOCALLY OPTIMAL DISTRIBUTED FILTERING

Let us begin with the description of the system class and
the formulation of the distributed filtering problem studied
in this paper. In the process, we describe the graph structure
representing the interconnection between sensor nodes, and
the sampling process at which the connected nodes (or the
neighbors) exchange information.

A. System Class

We consider dynamical systems modeled by linear
stochastic differential equations of the form

dx = Ax dt+B dω (1)

where (x(t))t≥0 is an Rn-valued diffusion process describing
the state. Let (Ω,F ,P) denote the underlying probability
space. It is assumed that, for each t ≥ 0, (ω(t))t≥0 is a zero
mean Rm-valued standard Wiener process adapted to the
filtration Ft ⊂ F , with the property that E[dω(t) dω(t)>] =
Imdt, for each t ≥ 0. The matrices A ∈ Rn×n and
B ∈ Rn×m are taken as constant with (A,B) controllable,
and the process (ω(t))t≥0 does not depend on the state.
The solutions of the stochastic differential equation (1) are
interpreted in the sense of Itô stochastic integral.

The centralized output measurement associated to the
process (1) is of the form

dy = Hx dt+ dv (2)

where H ∈ Rp×n is a constant matrix, with (A,H) be-
ing observable, and (v(t))t≥0 is a zero mean Rp-valued
standard Wiener process. The conventional filtering prob-
lem, with initial state having Gaussian distribution, deals
with constructing a mean-square estimate of the state xt,
denoted by x̂t so that E[|xt−x̂t|2 | (dy(s))s≤t] is minimized.
The optimal estimate which achieves this minimum value
is E[xt | (dy(s))s≤t] and is computed recursively using a
Kalman-Bucy filter. For the problem studied in this paper,
it is assumed that the centralized measurements are not
available and we address the filtering problem with similar

assumptions on system data, but under different information
constraints which are described next.

B. Information Structure

The measurements associated with system (1) are obtained
from a set of N sensors which are distributed in their localiz-
ation. Each of these sensors provides a partial measurement
about the state described as,

dyi = Hix dt+ dvi, i = 1, . . . , N, (3)

where Hi ∈ Rpi×n, and
∑N

i=1 pi = p. That is, for each
node, (yi(t))t≥0 describes an Rpi -valued continuous-time
observation process. In the observation equation (3), vi(t) is
a zero mean Ft-adapted standard Wiener process, taking val-
ues in Rpi , and E[dvi(t) dvi(t)

>] = Vidt, with Vi ∈ Rpi×pi

assumed to be positive definite. The optimal filter which
minimizes the mean square estimation error conditioned
upon the information available through the measurements
{dyi(s)|s ≤ t} is,

dx̂i(t) = Ax̂i(t)dt+ Pi(t)H
>
i V
−1
i (dyi(t)−Hix̂i(t)dt)

(4a)

Ṗi = APi + PiA
> − PiH

>
i V
−1
i HiPi +BB>, (4b)

with x̂i(0) = E[x(0)], and Pi(t) is exactly the error cov-
ariance E[(xi(t) − x̂i(t))(xi(t) − x̂i(t))> |dyi(s), s ≤ t] if
Pi(0) = E[(xi(0)− x̂i(0))(xi(0)− x̂i(0))>].

a) Communication Graph: The sensor nodes are con-
nected via a graph G = (V ,E ), where V = {1, . . . , N} is
the set of graph nodes, and E contains all the edges defined
by a subset of the pairs (i, j), i 6= j, i, j ∈ V . We assume
that the graph is undirected and connected. The neighbors of
a node i ∈ V are denoted by Ni and we adopt the convention
that i 6∈ Ni. The adjacency matrix A := [αij ] ∈ {0, 1}N×N
of the graph, which is symmetric, provides the information
about which sensor nodes can communicate with each other,
that is, if αij = 1 then sensor i and j can communicate,
whereas αij = 0 means there is no communication possible
between those sensors. The degree of a node i ∈ V is defined
as |Ni|, that is, the cardinality of the set Ni. The diagonal
matrix D = [dii], with dii = |Ni| is therefore the degree
matrix. We associate a Laplacian L with this graph, defined
as, L = D − A. For our purposes, the nonnegative matrix
Π = [πij ] ∈ RN×N , defined as

Π := IN − εL (5)

where 0 < ε ≤ mini∈V
1
|Ni| plays an important role. Note

that, by construction, Π is a doubly stochastic matrix, that
is, for each row and each column, the sum of their entries
equals one.

b) Random Sampling: The next main ingredient of our
problem formulation is the description of the time instants
at which the communication takes place between two sensor
nodes connected by an edge. Corresponding to each edge
(i, j) ∈ E , it is stipulated that there is an increasing and
divergent sequence (τ ijk )k∈N ⊂ [0,+∞[ with τ ij0 := 0, and



• for each (i, j) ∈ E , the sensor nodes i, j ∈ V transmit the
value of their state estimate to each other at τ ijk , k ∈ N.

In this article, we are interested in the case where the
sampling times (τ ijk )k∈N are generated randomly. Formally,
we define

N ij
t := sup

{
k ∈ N

∣∣ τ ijk ≤ t} for t ≥ 0 (6)

and assume in addition that, tor each (i, j) ∈ E , (N ij
t )t≥0 is

a continuous-time stochastic process such that τ ij
Nij

t

−→ +∞
almost surely as t → +∞. The map t 7→ N ij

t increments
by 1 at random times, and it provides a description of the
number of times the nodes i, j communicate with each other
up to and including time t. For the sake of computational
tractability, it is stipulated that

• For each (i, j) ∈ E , (N ij
t )t≥0 is an independent Poisson

process of intensity λij > 0. That is, (N ij
t )t≥0 is a Markov

process taking values in N, has independent increments,
and satisfies N ij

0 = 0, and for h↘ 0 and t ≥ 0,

P
(
N ij

t+h−N
ij
t = k

∣∣N ij
t

)
=


1− λijh+ o(h) if k = 0,

λijh+ o(h) if k = 1,

o(h) if k ≥ 2,

where the terms o(h) do not depend on t.

Because of the arrival of new information at random times,
the estimate x̂i, i ∈ V , gets updated. To describe this update
rule, we associate with each node i ∈ V , the process N i

t ,

N i
t :=

∑
j∈Ni

N ij
t

so that N i
t increments by one whenever node i ∈ V ex-

changes information with any of its neighbor. We recall that
N i

t is also a Poisson process of intensity λi :=
∑

j∈Ni
λij .

The times at which N i
t gets incremented are denoted by τNi

t
.

We can now introduce the activation set Ai
t,

Ai
t :=

{
j ∈ Ni

∣∣∣N ij
t −N

ij
t 6= 0, t = τNi

t−1

}
,

so that, at communication times tc = τNi
t
, the set Ai

tc
describes the neighbors of node i ∈ V that communicate
their estimate to node i ∈ V . Consequently, at tc = τNi

t
, we

update the state estimate as follows:

x̂i(t
+
c ) =

∑
j∈Ai

tc

πij x̂j(t
−
c ) +

(
1−

∑
j∈Ai

tc

πij

)
x̂i(t

−
c ), (7)

where πij are the elements of the matrix Π introduced in (5).
If ei := x− x̂i denotes the estimation error, then because of
this update rule, it is observed that,

ei(t
+
c )e>i (t+c ) ≤

(
1−

∑
j∈Ai

tc

πij

)
ei(t
−
c )e>i (t−c )

+
∑

j∈Ai
tc

πijei(t
−
c )e>i (t−c )

which is a direct consequence of the following lemma, whose
proof appears in [27, Lemma III.3]:

Lemma 1. Let m be a positive integer, and let x1, . . . , xm ∈
Rn. If z :=

∑m
j=1 γjxj for some γj ∈ [0, 1], then

zz> ≤
m∑
j=1

γjxjx
>
j . (8)

C. Summary of Filtering Algorithm

So far, we have specified the information available to each
sensor node and a filtering algorithm, (4), (7), which uses this
available information. If Yi

t denotes the information available
to sensor node i ∈ V up till time t ∈ [0,+∞[, then we can
write Yi

t = {(dyi(s), x̂j(τNi
s
)) | s ≤ t, j ∈ Ni}. Our goal

is to quantify the performance of these distributed filters by
computing a bound on expected value of the error covariance
matrices, that is, E[E[(x(t) − x̂i(t))(x(t) − x̂i(t))

> | Yi
t ]],

for t ≥ 0. Here, the outer expectation is with respect to
the random update times, and the inner expectation is with
respect to the noise process in the state and output equation.
The estimate computed by each node i ∈ V is obtained by
executing the following steps:

• Integrate (4a) and (4b) over the interval [τNi
t
, τNi

t+1[,
• At tc = τNi

t
, reset the state x̂i via (7), and set

Pi(t
+
c ) =

(
1−

∑
j∈Ai

tc

πij
)
Pi(t

−
c ) +

∑
j∈Ai

tc

πijPj(t
−
c ) (9)

with Pi(0) ≥ E[(x(0)− x̂i(0))(x(0)− x̂i(0))].

As a first step in obtaining the desired bounds, one imme-
diately observes that, for each i ∈ V , if we fix the times at
which node i ∈ V communicates with its neighbors, then

E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yi
t ] ≤ Pi(t), t ≥ 0 (10)

where Pi is described by (4b), (9). The remaining task
therefore is to compute expectation with respect to the
distributions assigned to the times at which information
between sensor nodes takes place.

III. MAIN RESULTS

The basic problem studied in this paper is the performance
of the distributed filters proposed in the previous section. In
particular, we want to relate the mean sampling rates λij ,
corresponding to the edges (i, j) ∈ E , with the bounds on
the error covariance. As our first main result, we compute
an upper bound on the expectation (with respect to sampling
process N i

t ) of the error covariance matrices E[E[(x(t) −
x̂i(t))(x(t)− x̂i(t))> | Yi

t ]], for t ≥ 0.

Theorem 2. Consider system (1) with distributed meas-
urements (3) and the corresponding hybrid filters (4), (7),
(9) linked together by an undirected and connected graph
G = (V ,E ). For an edge (i, j) ∈ E , if the communication
between nodes i, j ∈ V takes place at random times
generated by a Poisson process of intensity λij > 0, then
for each i = 1, · · · , N , it holds that

E[E[(x(t)− x̂i(t))(x(t)− x̂i(t))> | Yi
t ]] ≤ Pi(t), (11)



where the matrix-valued function Pi : [0,∞[→ Rn×n

satisfies the differential equation

Ṗi = APi + PiA
> − PiH

>
i V
−1
i HiPi +BB>

+
∑
j∈Ni

λijπij(Pj − Pi). (12)

The proof of Theorem 2 is very similar to the proof of
[27, Theorem III.1, item 1)] and is omitted due to space
constraints. The result of Theorem 2 provides a bound on
the evolution of error covariance for each node in terms of
a differential equation. These equations are quadratic (and
hence nonlinear), driven by a constant term which corres-
ponds to the noise level in the system, and are interconnected
by some coupling term. Such systems in the literature are
studied under the framework of heterogenous multi-agent
systems since the dynamics of Pi are different for each
i ∈ V . In contrast to homogenous agents, consensus in
heterogenous agents is not possible in general. However, one
can get the states of all the agents close to desired accuracy
by increasing the coupling strength. The next result relates to
the asymptotic behavior of the coupled differential equations
(12).

Theorem 3. For i = 1, . . . , N , consider the matrix-valued
equations (12) and assume that λij = λ is the same for each
(i, j) ∈ E . Let S ∈ Rn×n be symmetric positive semidefinite
matrix satisfying

0 = AS+SA>− 1

N
S

(
N∑
i=1

H>i V
−1
i Hi

)
S+BB>. (13)

Then for every δ > 0, there exists λ > 0 sufficiently large,
such that the corresponding solution of (12) satisfies1

lim sup
t→∞

‖Pi(t)− S‖ ≤ δ. (14)

The proof of Theorem 3 is carried out in Section IV. To
conclude this section, we provide some remarks about our
main results.
Remark 1. The injection gains used in (4) over an interval
[τNi

t
, τNi

t+1[ do not need any information about how the
other filters in the network choose their gains. Moreover,
they minimize the value of Pi in (4b) over the class of linear
time-varying gains. The latter statement follows from the fact
that

(A−LiHi)Pi+Pi(Ai−LiHi)
>+LiViL

>
i = (A−LiHi)Pi

+ Pi(Ai − LiHi)
> + LiViL

>
i − (Li − Li)Vi(Li − Li)

>

(15)

for any constant matrix Li ∈ Rn×pi , and Li = PiH
>
i V
−1
i .

This shows that the filters (4) perform better than the constant
linear gains proposed by the author in [27].
Remark 2. In Theorem 3, we basically study convergence
of the differential equations (12) which contain quadratic

1When taking the norm of a matrix, we refer to Frobenius norm.

nonlinearities. In general, such nonlinearities result in semi-
global convergence, that is, the solutions converge starting
from initial conditions in a compact set. However, because of
the minimum property described in Remark 1, we get global
convergence with no restrictions on the initial condition.
However, the convergence is not necessarily asymptotic,
but only up to a neighborhood of a fixed point, which we
often call practical convergence. The practical aspect of the
convergence is unavoidable since we allow different noise
covariance levels for each filter.
Remark 3. In the formulation of Theorem 2, since we
associate a different Poisson process to each link, the nodes
communicate with each other at different times. However, we
associate the same sampling rate λ with each edge (i, j). The
motivation for doing so is that, when we write the collective
dynamics for each node, the last term in (12) is written as
a scalar multiple of the Laplacian. If we assume that the
process N ij

t associated with edge (i, j) has intensity λij , then
the arguments required for establishing practical convergence
are more involved and are not carried out in this paper. One
would expect that if each λij > 0 is large enough, then we
do get practical convergence.

IV. PROOF OF THEOREM 3

For the proof of Theorem 3, we introduce the following
notation:

Li(t) := Pi(t)H
>
i V
−1
i , Ai(t) := A− Li(t)Hi

where we will drop the time argument in the sequel. Fur-
thermore, let

Fi(Pi) := AiPi+PiA
>
i , and Gi(Pi) := BB>+LiViL

>
i

so that, Ṗi = Fi(Pi) +Gi. Also, we let

P :=

P1

...
PN

 , F (P) :=

 F1(P1)
...

FN (PN )

 , G(P) :=

 G1(P1)
...

GN (PN )

 .
Then, we can write

Ṗ = F (P) +G(P) + λ(Π⊗ In)P − λ(IN ⊗ In)P
= F (P) +G(P)− λε(L ⊗ In)P, (16)

where ⊗ denotes the Kronecker product, and we recalled the
definition of Π to write Π− IN = −εL.

Proposition 4. The solutions of (16) stay bounded over the
interval [0,+∞[.

The proof of Proposition 4 is based on the observation
made in Remark 1 combined with the fact that the con-
vergence of solutions of (16), with time-invariant Li, has
been established in author’s work [27, Theorem III.1]. In
the sequel, we establish the practical convergence of the
solutions of (16). The analysis is based on rewriting the
dynamics in new coordinates and providing a Lyapunov
function in those coordinates.



To describe the coordinate transformation, we recall that,
for an undirected connected graph with Laplacian L, we
can find a matrix U such that ULU> = diag (0,Λ). Let
v`1 denote the normalized eigenvector corresponding to the
eigenvalue σ1(L) = 0, so that

v>`1 =
1√
N

[
1 1 · · · 1

]
∈ R1×N , and v>`1L = 0.

There exists a matrix Ũ ∈ RN×(N−1), with Ũ>Ũ = IN−1,
Ũ> · 1N = 0, such that

U =

[
v>`1
Ũ>

]
, U−1 = U> = [v`1 , Ũ

†]

where Ũ† ∈ RN×(N−1) is the matrix satisfying

Ũ>Ũ† = IN−1, and 1>N Ũ† = 0.

Introduce the coordinate transformation

Q =
1√
N

(U ⊗ In)P =

[
1
N (1>N ⊗ In)
1√
N

(Ũ> ⊗ In)

]
P =:

[
Q1

Q̃

]
and the inverse of this transformation gives,

P =
√
N(U ⊗ In)−1Q =

√
N(U−1 ⊗ In)Q

=
√
N
[
(v`1 ⊗ In) (Ũ† ⊗ In)

]
Q

= (1N ⊗ In)Q1 +
√
N(Ũ† ⊗ In)Q̃.

Let S denote the solution of the differential equation

Ṡ = AS + SA> − 1

N
S

(
N∑
i=1

H>i V
−1
i Hi

)
S +BB>

= AS + SA> − SH>Ṽ −1HS +BB>

where we observe that 1
N

(∑N
i=1H

>
i V
−1
i Hi

)
=

H>Ṽ −1H . Under the assumption that (A,H) is
observable and (A,B) is controllable, it holds that
lim supt→∞ S(t) = S, where S is positive semidefinite
matrix satisfying (13). In particular, S(t) is uniformly
bounded for t ≥ 0. We introduce the variable E to denote
the difference between the mean value of Pi, i = 1, . . . , N ,
and S, that is,

E := Q1 − S =
1

N

N∑
i=1

Pi − S,

and it is observed that

Ė = Q̇1 − Ṡ =
1

N

N∑
i=1

Ṗi − Ṡ

= AE + EA> − EH>Ṽ −1HE + g1(E ,S, Q̃) (17)

for some matrix-valued function g1(·). Due to the bounded-
ness of Pi and S, it can be shown that ‖g1(E ,S, Q̃)‖ ≤

M1‖Q̃‖ for some M1 ≥ 0. Also, we can write

˙̃Q = −λε(Λ⊗ In)Q̃+
1√
N

(Ũ> ⊗ In) (F (P) +G(P))

= −λε(Λ⊗ In)Q̃+
1√
N

(Ũ> ⊗ In)
[
(F +G)·

((1N ⊗ In)Q1 +
√
N(Ũ† ⊗ In)Q̃)

]
= −λε(Λ⊗ In)Q̃+ g2(E ,S, Q̃), (18)

for some matrix-valued function g2(·). Once again, due to
the boundedness of the solutions, we can find a constant
M2 ≥ 0 such that ‖g2(E ,S, Q̃)‖ ≤M2‖E‖+M3.

For stability analysis of the process P , we equivalently
analyze the stability of (17) and (18). Towards this end,
we recall that, if the matrix S that satisfies (13) then
(A − SH>Ṽ −1H) is a Hurwitz matrix, and there exists a
positive definite matrix R such that

(A − SH>Ṽ −1H)R + R(A − SH>Ṽ −1H)> ≤ −I.
(19)

Let us introduce the functions

V1(E) :=
1

2
tr(R1/2ERER1/2),

V2(Q̃) :=
1

2
tr (Q̃Q̃>).

To analyze the evolution of V1 along the solutions of (17),
we compute the bound on the derivative of V1. Using the
cyclic property of the trace operator, we get

V̇1 =
1

2
tr
[
Sym((RA+A

>
R)ERE)

]
+ tr

[
Sym

(
RERg1(E ,S, Q̃)

)]
≤ − tr(ERE) + C0 ‖E‖ ‖g1(E ,S, Q̃)‖
≤ −σ1(R)‖E‖2 + C0M1 ‖E‖ ‖Q̃‖

where we used the bounds on the trace of products from [28],
tr(ERE) = tr(RE2) ≥ σ1(R) tr(E2), with σ1(R) being the
smallest eigenvalue of R and C0 ≥ 0 is some constant.

On the other hand, using similar techniques, we can bound
the derivative of V2 along the solutions of (18) as follows:

V̇2 ≤ −λε σ2(L) tr(Q̃Q̃>) + C1 tr(Q̃Q̃>)

+ C2M2 ‖E‖ ‖Q̃‖+ C3M3 ‖Q̃‖

for some appropriate positive scalars C1, C2, C3 ≥ 0. For
the combined dynamical system (17), (18), we now consider
the proper, positive definite Lyapunov function

V(E , Q̃) = V1(E) + V2(Q̃)

and observe that

V̇ ≤ −σn(R)‖E‖2 − (λεσ2(L)− C1)‖Q̃‖2

+ (C0M1 + C2M2)‖E‖ ‖Q̃‖+ C3M3 ‖Q̃‖.

To get a bound on V (E , Q̃), bet us recall the following
lemma:



Lemma 5 ([6]). Consider a function W : R≥0 × R≥0 ×
R≥0 → R, and a function g : R≥0 → R≥0, such that

W (t, r, s) ≤ −a1r2 + a2rs− a3s2 + g(t)s

for some positive scalars a1, a2, a3 > 0. Then, there exists
c > 0 such that

W (t, r, s) ≤ −c(r2 + s2), if r2 + s2 ≥ g2(t)χ

(
1

a3

)
where χ is a continuous nondecreasing function and χ(s) =
O(s) as s→ 0.

Applying Lemma 5, it follows that for every δ > 0, there
exists λ > 0 such that

lim sup
t→∞

‖E(t)‖2 + ‖Q̃(t)‖2 ≤ δ2√
N

For S satisfying (13), we have limt→∞ S(t) = S, which
leads to the following bound for each i ∈ V ,

lim sup
t→∞

‖Pi(t)− S‖ = lim sup
t→∞

‖Pi(t)− S(t)‖

≤ lim sup
t→∞

√
N

√
‖E(t)‖2 + ‖Q̃(t)‖2 ≤ δ.

Hence, we obtain (14) and this completes the proof of
Theorem 3.

V. CONCLUSIONS AND PERSPECTIVES

We considered the problem of distributed filtering over
undirected and connected graphs. The sensor nodes exchange
information about their estimate, and the the communication
between the sensor nodes, along each edge, is driven by an
independent Poisson process. The algorithm implemented by
each node is in the form of a stochastic hybrid system. We
obtain pointwise and asymptotic bounds on the covariance
of the estimation error for each sensor node, and show that
these covariances converge practically to a constant matrix
if the mean sampling rate is large enough.

A possible extension is to generalize the main results
for a broader class of random processes for the commu-
nication between nodes. While the memoryless Poisson
counter treated in this paper results in diffusive coupling
between the dynamics of error covariances, it remains to
be seen what kind of interconnection is obtained from other
communication processes.
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