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Motor-level N-MPC for Cooperative Active
Perception with Multiple Heterogeneous UAVs

Martin Jacquet1, Max Kivits2, Hemjyoti Das2, Antonio Franchi2,1

Abstract—This paper introduces a cooperative control frame-
work based on Nonlinear Model Predictive Control (NMPC) for
solving an Active Information Acquisition problem (AIA) using
a system of multiple multirotor UAVs equipped with onboard
sensors. The observation task of the NMPC is a minimum-
uncertainty pose estimation of a moving feature which is ob-
served by the multi-UAV system, using a cooperative Kalman
filter. The controller considers a full nonlinear model of the
multirotors – including the motor-level actuation units and their
real constraints in terms of maximum torque – and embeds
the Kalman filter estimation uncertainty in its prediction. The
framework allows and exploits heterogeneity in the actuation
and sensing systems by considering a generic model of UAV –
including both quadrotors and tilted-propeller multirotors – and
a generic model of range-and-bearing sensor with arbitrary rate
and field of view. The capability of the proposed framework
to reduce the cooperative estimation uncertainty of a static or
a moving feature, thus leading the system to optimal sensing
configurations, is demonstrated through Gazebo simulations and
real experiments. The software is provided open-source.

Index Terms—Aerial Systems: Perception and Autonomy;
Aerial Systems: Mechanics and Control; Aerial Systems: Ap-
plications

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs) are increasingly
used in a large range of applications, from aerial mon-

itoring or exploration to work in high-risk places or human-
denied areas. The monitoring tasks in particular are rapidly
being deployed since they do not imply physical interactions,
nor the practical issues related to safety in cluttered or human-
populated environments. Such tasks include, for instance,
search-and-rescue [1], autonomous cinematography [2], or
indoor building inspection [3]. Furthermore, the increasing
efficiency and decreasing weight of the available sensors and
computation units allowed the deployment of recent efficient
computer vision algorithms on UAVs [4], [5].
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However, achieving such tasks in autonomy necessarily
requires perception-awareness of the environment and of the
object or phenomenon to be monitored. This requirement can
often collide with the motion task handled by the UAV. In
particular, since the sensing domain of the UAV is limited and
the underactuation of most UAVs requires them to tilt in order
to achieve lateral motions, the observation can be disturbed.
This led the research community to study the generation of
motion according to these limitations, in order to maximize the
gathered information (e.g., maximizing the time coverage of
a dynamic phenomenon), while increasing the accuracy of the
measurements (i.e., minimizing the acquisition uncertainty).
Such problem is called an Active Information Acquisition
(AIA) problem [6] and is an active field of research.

To solve this problem, the monitoring is often handled by a
team of several UAVs, where the various agents can share the
observation burden [7]–[10]. This approach, when designed
to be scalable [11], allows in particular to cover a larger set
of moving features or a large area. Furthermore, in [9], the
authors introduced a solution to an AIA problem relying on
the Probability Hypothesis Density (PHD) filter, designed to
scale with respect to (w.r.t.) the number of measurements and
tracked features. This approach is extended in [10], which
proposes a framework that includes collision avoidance and
exploits the heterogeneity of the sensing team. The sensing
area is divided into cells (Voronoi cells), according to the mo-
tion of the features, to which the agents are assigned. Another
approach is to exploit the properties of the linear Gaussian
model often used to represent moving features. Indeed, it has
been shown in [8] that under these assumptions, a (stochastic)
AIA problem can be formulated as a deterministic Optimal
Control Problem (OCP). Also, under these assumptions, the
feature can be optimally estimated using a Kalman filter. In
later works, Model Predictive Control (MPC) – a control
method that uses the dynamic model of the system to predict
its behavior over a finite receding horizon – has been used to
solve such AIA problems [12], [13]. In [12], an MPC approach
is used on a ground robot to track a single moving feature.
Therein, an MPC is used in conjunction with a Kalman filter in
order to reduce the observation uncertainty over the receding
horizon and thus achieve optimal sensing. Similarly, in [13],
an MPC controls three UAVs in an outdoor tracking scenario.
The optimal sensing configuration for the system is determined
analytically, and the system is driven to this configuration by
constraining the MPC. However, in the real world the robot
dynamics is nonlinear and as such it cannot be handled by an
MPC, which is a control method for linear systems. Because of
this limitation, in the aforementioned works the MPC is used
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‘de facto’ as a local planner that provides a position reference
to the UAV, rather than generating the UAV inputs and taking
into account the real input constraints of the UAV.

Another usage of optimal receding horizon control methods
which has gained popularity in recent years is to embed
the visibility constraints directly inside the control of the
UAV [14]–[17]. Indeed, optimization-based controllers are typ-
ically well suited to include constraints from various semantics
in a single control scheme. In these works, the task of main-
taining visibility over a feature or a set of features is expressed
in the cost function and/or as active constraints. Therein, in
contrast to what is typically done in multi-agent AIA, the
full nonlinear dynamic model of the UAVs is used. This
approach makes use of Nonlinear MPC (NMPC), and allows
a more realistic prediction over the receding horizon, under
some highly nonlinear perception objectives and constraints.
This made possible also to control the UAVs via motor-torque
inputs of the platform [16], [18], ensuring the feasibility of the
generated motion and allowing the controller to consider the
realistic actuation limitations. However, no NMPC approach
has been proposed to solve an AIA problem yet.

In this work, we propose a decentralized NMPC approach to
reduce the uncertainty of the observation of a mobile feature,
with an arbitrary number of Generically Tilted MultiRotor
(GTMR) UAVs. The UAV team can be heterogeneous, each
agent having its own dynamic model, motion task and actua-
tion limitations. We introduce a time-continuous formulation
of the Intermittent Kalman filter, as well as a novel way
of including a Kalman filter inside the NMPC equations,
hence exploiting its predictive capabilities over the receding
horizon at a reduced computational cost. The capability of the
proposed framework to yield an efficient sensing configuration
that reduces the overall estimation uncertainty is validated
in simulations, while its capability to control a system of
UAVs is demonstrated in a real experiments. Finally, the whole
framework is made open-source along with the explanations
and the materials required to run the simulations.

The paper is organized as follows: Sec. II presents the
dynamic model of the GTMR and the feature motion and sens-
ing models. Next, Sec. III details the uncertainty estimation
process and the inclusion of the Kalman filter in the NMPC.
Then, Sec. IV presents the full OCP, while Sec. V contains the
simulation and experimental results. We discuss these results
in contrast with the literature in Sec. VI, before concluding in
Sec. VII.

II. MODELING

A. Generically Tilted Multirotor Dynamics

In the vein of previous works [16], [18], for the sake
of genericity, we model the UAVs as GTMR. We refer the
reader to these works for the complete modeling, as only the
essentials will be reported here.

In particular, this model includes standard collinear quadro-
tors, and goes beyond by including tilted-propeller platforms
with 4 or more propellers. What changes according to the ge-
ometry of the platform is the number of inputs, and allocation
matrices. We refer to, e.g., [19] for concrete examples.

We define the world inertial frame F
W

, with its origin O
W

and its axes x
W
,y

W
, z

W
. The other frames are denoted using

the same convention, e.g., F
B

is the body frame of a robot.
A GTMR is defined as a rigid body of mass m, actuated by

n ≥ 4 propellers arbitrarily placed and oriented around O
B

.
The position of O

B
w.r.t. the F

W
is denoted by Wp

B
and the

unit quaternion representing the rotation from F
B

to F
W

is
denoted by W q

B
; and similarly for all the other frame pairs.

The robot state x is expressed as the concatenation of the
body state xb and actuator state xa, which are defined as

xb = [p>q>v>ω>]> ∈ R13, (1a)
xa = γ ∈ Rn, (1b)

where p = Wp
B

, q = W q
B

, v is the velocity of O
B

expressed
in F

W
, ω is the angular velocity of F

B
w.r.t. F

W
, expressed

in F
B

, and γ ∈ Rn are propeller thrusts.
Accordingly, we define the actuation dynamics:

γ̇ = u, (2)

where u ∈ Rn are the system control inputs, directly related
to the torques applied to the brushless motors, see [18].

The dynamic equations of a multirotor are given by (2) plus

ṗ = v, (3a)

q̇ =
1

2
q⊗

[
0
ω

]
, (3b)[

mp̈
Jω̇

]
=

[
−mgz

W

−ω × Jω

]
+

[
q⊗Gfγ ⊗ q∗

Gτγ

]
, (3c)

where ⊗ denotes the Hamilton product of two quaternions,
q∗ is the conjugate quaternion of q, J ∈ R3×3 is the positive
definite inertia matrix, g is the intensity of the gravity force,
and Gf and Gτ ∈ R3×n are respectively the force and moment
allocation matrices [19], mapping the forces produced by each
propeller to the total force and moment acting on the body.

In this work, we consider a team of Na ≥ 1 UAVs
that all comply to this general GTMR model but may be
heterogeneous, i.e., having different shapes, number of rotors
or sensing parameters. In the following, when relevant, the
quantities referring to the i-th agent are subscripted ·i.

B. Feature Motion

The observed feature M , whose state is denoted x
M

, is
modeled as a linear Gaussian system:

ẋ
M

= Ax
M

+ η
Q
, η

Q
∼ N (0,Q), (4)

where A is the transition matrix and η
Q

is the 0-mean
Gaussian noise of covariance matrix Q.

C. Sensor Measurement Model

The sensor installed on each UAV is modeled as a punctual
device Si rigidly attached to the body, such that the pose
transformation between F

Si
and F

B
is constant and known.

Each sensor has a specific field of view (FoV), and provides
an uncertain 3D measurement of an object of interest as long
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as it falls into its FoV. The observation model for the i-th
sensing agent is defined as

zi = HixM
+ η

Ri
, η

Ri
∼ N (0,Ri), (5)

where Hi is the observation matrix, and η
Ri

is the 0-mean
Gaussian measurement noise of covariance matrix Ri.

The fact that the i-th sensor provides a measurement of M
is described using a FoV function [20], [21], defined as

λi =

{
1, zi is inside the FoV
0, zi is outside the FoV

. (6)

This FoV function depends of the relative pose between
the agent and the feature, hence can discriminate whether a
predicted configuration would yield a measurement [12].

We note that the feature motion is expressed in F
W

, and
so are the measurements. We assume known the localization
of F

Si
in F

W
, hence leave the impact of the transformation

between the two frames on the measurement uncertainty Ri

out of the scope of this work.
This type of sensor is called range-and-bearing sensor,

since it provides both a 2D angular information and a 1D
depth information. Such sensors are typically lidars or depth
cameras (stereo or infrared), and are in particular opposed to
bearing only sensors, such as monocular cameras. However,
the latter type of device is the most easy to embark on a UAV
because of its lightweight, and thus the most widely used.
An extra software processing layer, using either some prior
geometric information of the object [22] or a deep learning
based algorithm [4], can be added, since the bearing sensors
+ software block can be considered as a range-and-bearing
sensor.

D. Measurement Uncertainty

Following the linear Gaussian sensing model (5), for a
range-and-bearing sensor, the measurement covariance matrix
R can be pictured as a 3D ellipsoid, centered on the mea-
surement mean, and whose eigenvalue σz along the bearing
vector (i.e., associated with the range) is different from the
eigenvalues σxy along the two orthogonal directions (associ-
ated with the bearing) [6], [7], [23]. For cameras (RGBD,
stereo or monocular), σz is typically larger that σxy , since the
depth information either comes from image processing that
adds up the noise from several pixel measurements (typically
stereo alignment or PnP), or from an imprecise infrared
measurement. Hence, the measurement uncertainty matrices
Ri can be written using a SVD, whose transformation matrix
Tθi is the 3D rotation matrix about the angle θi between z

W

and the bearing vector (see Fig. 1).
Additionally, the distance toward the feature influences

the uncertainty. It is commonly assumed [7], [23] that the
observation is optimal at a given distance dref from the
feature. Hence, we propose to scale the eigenvalues σxy and σz
according to this distance, which might be arbitrarily defined.

Finally, the measurement covariance matrix is written

Ri = µ · (di − dref )
2 ·Tθi

σxy 0 0
0 σxy 0
0 0 σz

T>θi , (7)

M

z
W θi

θj

O
W

di

dj

Fig. 1: Two heterogeneous UAVs, numbered i and j, equipped with sensors,
observing a feature M . The measurement uncertainties are represented by
the two colored ellipsoids, centered on there respective measurement mean.
The dashed lines correspond to the two bearing vectors. di and dj are the
respective distances toward the feature.

where di is the distance from sensor to feature, µ is a
scalar scaling factor. The relation between the measurement
covariance and the agents/feature mutual poses plays a crucial
role because it is what the NMPC will be able to exploit to
reduce the estimation uncertainty.

III. ESTIMATION UNCERTAINTY MINIMIZATION

In this section, we introduce the estimation process and how
the estimator is included inside the NMPC predictive scheme
to minimize the uncertainty along the receding horizon.

A. Feature Estimation and Prediction

The feature state estimation is done by using an intermittent-
measurement time-continuous Kalman-Bucy filter. For the
sake of readability, the equations of this Kalman filter use
the matrices notations introduced in Sec. II-B and II-C.

In [20], the authors presented an intermittent Kalman fil-
ter which takes into consideration the observation weighting
function λ. This filter has been extended to the multi-agent
case in [21].

We propose a time-continuous extension of these filters,
which differential equations are, after (4) and (5),

˙̂x
M

= Ax̂
M

+ λK(z−Hx̂
M
), (8)

Ṗ = AP+PA> +Q− λKRK>, (9)

where x̂
M

is the estimate of x
M

, P is the estimate covariance
matrix, and z, λ, R are the concatenated measurement vectors,
FoV functions and covariance matrices. The Kalman gain is
given by K = PH>R−1.

We note that this formulation considers the limit case
introduced in [20] where the measurement covariance tends
toward infinity when λ = 0, implying that the measurement
has no effect on the filter update.
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B. NMPC with the Kalman Filter state

For each agent, we extend the state vector of the NMPC, x,
with the internal Kalman filter state x̂

M
. In order to propagate

the covariance through the receding horizon, we also include
in x a minimal representation of the (symmetric) estimation
covariance matrix P. We denote n

M
the dimension of x̂

M
,

and the minimal vector representation P4 , composed of the
lower triangular part of P, is defined as the vector

P4 =
[
pij
]
, 1 ≤ i ≤ j ≤ n

M
. (10)

The NMPC state vector of each sensing agent is written as

x = [x>b x>a x̂>
M

P>
4
]>, (11)

and its time derivative ẋ is obtained from (2), (3), (8) and (9).
In order to reduce the amount of extra state variables in

the NMPC, we use the motion model of a constant position,
which yields a minimal Kalman filter state size of n

M
= 3.

This also implies that A = 03 and H = I3, respectively
the zero and identity matrices in R3×3, which simplifies the
Riccati equation (9). We note that to further reduce the state,
improving the performances at the cost of precision, the cross-
variance terms pxy , pxz and pyz could be also neglected.

However, to overcome the imprecision induced by this
simple motion model, the predicted state of the feature over
the receding horizon is computed using an external estima-
tion/predictor (e.g., a Kalman-Bucy filter as in Sec. III-A, with
a more complete motion model, such as a constant acceleration
model). These predictions are used in the NMPC to compute
the associated Ri and λi over the horizon, predicting how
would evolve the observation uncertainty P.

C. Uncertainty Minimization

In order to effectively reduce the feature estimation uncer-
tainty, we need to consider a mathematical tool that represents
the ‘magnitude’ of the covariance matrix P. In information
theory, minimizing the Shannon differential entropy of a
continuous Gaussian variable is equivalent to minimizing the
determinant of its covariance matrix. In the case of symmetric
definite-positive matrix, the determinant is upper-bounded by
the trace, which can be used as alternative metric to optimize.
These two approaches are respectively called D-optimal and
A-optimal [6], [7]. The first approach aims at reducing the
generalized covariance, while the second reduces average
covariance. In order to reduce the computation load, we chose
to use the latter approach. i.e., to minimize tr(P).

D. Continuous Field of View Function

In order to avoid the discontinuity in tr(P), induced by
the λi FoV functions, we replace (6) with a continuous
approximation [12], which is a function of the FoV angles
of each sensing agent:

λi =
1

1 + exp
(
−β
(

Cp
M

‖Cp
M
‖ − cosα

)) , (12)

where α is the angular FoV, and β > 0 defines the curvature
of the sigmoid. The FoV is assumed to be conic in order to

simplify (12). Alternatively, a pyramidal FoV could be used
by defining α as a function of Cp

M
, see [16].

This formulation only considers an angular limitation for the
FoV. A depth limit can be introduced by adding a second term
in (12), as proposed in [12]. This second term can however be
omitted since the influence of depth on the uncertainty close
is already modeled in (7), driving the UAV to stay inside the
FoV range limits.

We note that if the feature is not observed by an agent,
the NMPC relies on the predictions from the external Kalman
filter (and, in a multi-agent scenario, from the measurements
from other agents). However these predictions would have no
effect on the update of the internal covariance of the NMPC,
since λi = 0. Hence, the agent will tend to recover visibility
to effectively reduce tr(P).

IV. OPTIMAL CONTROL PROBLEM FORMULATION

A. Decentralized Control Policy

The proposed control policy can be formulated either as
centralized or decentralized. In the first case, the states of each
agent

[
x>b,i x

>
a,i

]>
are concatenated into the full system state.

The controller has full knowledge of the system and computes
the control inputs of each agent accordingly.

However, in order to compute the estimation uncertainty, the
agents only needs to know the full measurement vector z, and
the uncertainty matrix R. Hence, in a decentralized formu-
lation, each agent is controlled by its own NMPC, estimates
the feature position using a Kalman filter, and communicates
its predicted measurements to the rest of the team. Then,
each NMPC uses the concatenated measurements as external
parameters to update their internal Kalman filter, using (8)
and (9). We note that this assumes a perfect instantaneous
communication.

The decentralized formulation is more generic and scalable
w.r.t. the number of agents, hence the OCP presented hereafter
corresponds to this formulation. The block diagram in Fig. 2
presents the corresponding controller.

B. Optimal Control Problem

As per [16], we consider realistic physical limitations of the
motors in the NMPC. Such limitations are equivalently recast
as constraints on γ and γ̇, which lower and upper bounds
can be obtained through an identification campaign, as shown
in [18].

In order to ensure the stability of the system, a motion task
is defined for each agent by an output y and its reference yr,
which is provided, over the receding horizon, as a trajectory in
position, attitude, and their first and second order derivatives.

The motion task cost is defined as the weighted square
Euclidean norm of the difference between y and its reference,
denoted ‖·‖2W, W being a diagonal weight matrix.

In addition to this motion task, the NMPC cost function
contains the observation task, which consists in minimizing the
cumulative sum of estimation uncertainties over the receding
horizon. This task is weighted by a scalar, denoted wP.
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Agent 1

Agent Na

Agent i

Detector
Predictor

State
estimator

System
N
M
P
C

Wp
M

[
xb, xa

]
image

navigation
sensors

γ̇

[
zi
Ri

]

[
z, R

]

...

...

Fig. 2: Block diagram of the decentralized framework. The controller of the
i-th agent is detailed. All the measurements and covariances, predicted over
the receding horizon are communicated to every agent.

The discrete-time OCP for each sensing agent, over the
receding horizon T , sampled in N shooting points, at a given
instant t, is expressed as

min
x0...xN

u0...uN−1

N∑
k=0

‖yk − yr,k‖2W +

N∑
k=0

wPtr(Pk) (13a)

s.t. x0 = x(t) (13b)
xk+1 = f(xk,uk,pk), k∈{0,N−1} (13c)
yk = h(xk), k∈{0,N} (13d)
Pk = s(xk), k∈{0,N−1} (13e)
xb ≤m(xb,k,pk) ≤ xb, k∈{0,N} (13f)
γ ≤ γk ≤ γ, k∈{0,N} (13g)

γ̇k ≤ uk ≤ γ̇k, k∈{0,N−1} (13h)

where x(t) is the measurement of the current state and f
synthetically denotes the dynamics of the agent, expressed
in (2), (3), (8) and (9). The function h is the system output
map, and s denotes the function that reconstructs the P
matrix from of P4 in x. Potential motion constraints on
the body state xb are expressed using a selection function
m. The lower and upper bounds of the inequality constraints
are denoted using respectively · and · . Finally, pk are the
external parameters passed to the NMPC, namely the predicted
measurements and covariances.

For safety reasons, we added collision avoidance between
the agents. This is done by imposing linear constraints on the
distance between each agent, along the 3 position coordinates,
expressed in (13f). Thus, each UAV forbids the others to enter
a region of the workspace, assimilating agents as boxes.

Fig. 3: One of the quadrotors used in the presented experiment.

V. VALIDATION

A. Experimental and Simulation Setup

The framework is implemented in C++, using GenoM [24]
which is a middleware-independent component generator, that
can be compiled for a given middleware, e.g., ROS. The
NMPC implementation is the one introduced in [16], based
on [25]. It uses a 4th order explicit Runge-Kutta integrator.
The hardware interface as well as the state estimation and path
planning are done using the TeleKyb3 software, available on
the OpenRobots platform1.

The software framework can later be connected to the actual
platform, or to a Gazebo simulated system that emulates the
platform interface. Details on how to use this software can be
found in the provided git repository2.

The experiments presented in this section are performed
using two standard quadrotors, each equipped with an onboard
Intel NUC (Intel Core i7-8565U and 8GB of DDR3 RAM).
One of these quadrotors is shown in Fig.3.

The UAVs are equipped with a downfacing monocular
camera, an Intel RealSense T265 (or is simulated through
Gazebo). This camera is chosen for its lightweight, wide FoV
and practicality, though none of the odometry functionalities
are used. The camera frequency is set to 30Hz. The observed
feature is an AruCo fiducial marker [22], both in simulations
and experiments. The tag is either static or moving on the
ground, and is tracked with a Kalman filter using a damped
acceleration model, and running at 1kHz in order to provide
the measurements zi to the NMPCs.

The UAV state [xb] is estimated using a combination of
internal IMU and external motion capture, however the motion
capture could be replaced by any visual-inertial odometry
method, such as the ones presented in [26].

In the experiments and simulations presented in this section,
the UAVs are controlled using the proposed NMPC. Once
the UAVs are in position, the observation task is enable (by
changing the weights in (13a)) for each agent simultaneously.
At the same time, the weights on the position task are set
to zero, and small weights are applied to maintain constant
roll/pitch and small velocities, in order to penalize large
motions and ensure the stability of the system. Therefore, the
motions observed are driven only by the observation task in
the cost function.
1git.openrobots.org/projects/telekyb3
2redmine.laas.fr/projects/active-perception-nmpc

https://git.openrobots.org/projects/telekyb3
https://redmine.laas.fr/projects/active-perception-nmpc
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Fig. 4: The (x, y) position over time (top) and the evolution of tr(P) over
time (bottom) for the 1 UAV (left), 2 UAVs (middle) and 3 UAVs (right) cases.
The initial positions of the UAVs (when the observation task is enabled) and
the final positions are respectively denoted by the circles and stars. The feature
position in (0, 0) is denoted by the black square.

In the multi-agent case, the UAVs exchange data directly
through wifi. The communication frequency is 10Hz.

Videos of all the reported experiments and simulations can
be found in the attached multimedia file. Additional videos of
experiments and simulations achieved using a moving feature
can also be found therein.

The computational time of the NMPCs on the onboard
computers have been recorded during the various experiments,
both with 1 and 2 robots, for a total flight duration of about
10 minutes. The corresponding boxplot is reported in Fig. 5.

B. Static Feature Sensing

This section presents the behavior of a system of Na = 1, 2
or 3 quadrotor(s), assigned to reduce the estimation uncertainty
of a static feature. Various behaviors emerge when more
sensing capabilities are added to the system and are reported
hereafter. The cases Na = 1 and 2 are performed on real
quadrotors, while the case Na = 3 is performed in simulation.

The (x, y) positions of the agents as well as the value of
the estimation uncertainty tr(P) over time are reported in
order to illustrate how the system configuration is affected
by the observation task to yield a lower overall observation
uncertainty. We note that tr(P) is computed using an external
Kalman filter, which aggregates the measurements from all the
agents, and is thus agnostic to the internal NMPC processes.

1) Case Na = 1: In this scenario, minimizing tr(P) is
equivalent to minimizing tr(R). Given the model presented
in II-D, tr(R) is minimal when the feature is aligned with
the principal axis of the sensor, at a distance dref . Indeed,
the UAV driven by the NMPC, whose motion is reported in
Fig. 4 (left column), converges to the (x, y) position of the
feature. The UAV motion is faster at the beginning because
the cost gradient is steeper, as it can bee seen in the multimedia

MPC driven config. naive config.
1 UAV 2 UAVs 3 UAVs 2 UAVs 3 UAVs

mean(tr(P)) 5.04e-3 8.55e-4 3.91e-4 3.9e-3 7.2e-4
std(tr(P)) 1.54e-3 1.64e-4 5.21e-5 8.13e-4 7.25e-4

mean(tr(R)) 4.4e-3 6.8e-3 6.6e-3 4.0e-3 1.08e-3
std(tr(R)) 6.7e-3 9.8e-3 9.79e-5 5.2e-3 7.2e-4

TABLE I: Position covariances (measurement and estimation) Mean and
Standard Deviation (std) using 1, 2 or 3 UAV(s).

Fig. 5: Boxplot of the computation time (in milliseconds) of the onboard
NMPC, recorded using an horizon of T = 0.75 s, sampled in N = 20 points.
The mean (0.87 ms) is depicted in red, and the black dots are the slowest 1%
control cycles recorded, ranging from 1.74 to 8.6 ms.

file. The NMPC also makes the quadrotor move upward, since
tilting at the initial height would induce a loss of visibility.

The bottom graph shows the evolution of tr(P) over time.
The system is reducing this uncertainty w.r.t. its value at the
initial position. We note that the estimation first increases
(since the UAV tilts and goes up) before converging to a
smaller value, showing that the proposed algorithm is non
greedy and is able to overcome the initial local minimum.

2) Case Na ≥ 2: With more UAVs, the sensing configu-
ration that is optimal for one robot is no longer optimal. The
system exploits the extra sensing capabilities to observe the
feature more efficiently, by placing each agents on opposite
sides w.r.t. the feature, hence improving the overall sensing, as
shown in the second and third columns of Fig.4. In particular,
in the 3 UAVs case, the achieved configuration is similar to
the one reported in [13], [23], where the agents are positioned
around the feature, spaced by 120◦. However, we remark that
the convergence in the 3 UAVs case is slower since the initial
estimation is already good, and the benefit of moving to a
different position is smaller.

3) Estimation improvement: We validate the pertinence of
the proposed framework by effectively measuring the estima-
tion improvement yielded by the sensing configuration. We
report in Tab. I some quantitative statistics on the estimation
(trace of P) and measurement (trace of R) uncertainties for
the position of the feature, using 1, 2 and 3 UAVs.

The last two columns report the statistics gathered with
respectively 2 and 3 UAVs, manually driven right above the
feature (referred hereafter as ‘naive configuration, since it is
the one observed with 1 UAV and naively extrapolated). As
expected, adding additional measurements improves the esti-
mation uncertainty (of about an order of magnitude), compared
to the 1 UAV case (first column). However, both with 2 and
3 UAVs, the NMPC driven configurations yield much smaller
uncertainties than the respective naive configuration,.

Indeed, in this naive configuration, the agents observe the
feature from about the same angle. Instead, because of the
shape of the uncertainty ellipsoids (see Fig. 1), observing
from different angles allows to compensate the poor range
estimation of both sensors by exploiting the better bearing
estimations (or vice-versa if σxy > σz).
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Fig. 6: The (x, y) position of both UAVs (blue for hexarotor, green for
quadrotor). The colored dots represent their respective position each second,
while the color gradient indicates the time at which the positions were
recorded. The circles and stars are respectively the initial and final positions
of the UAVs, while the black square is the feature position.

We note that this estimation improvement is achieved by
degrading the individual measurement, demonstrating a emer-
gent collaborative behavior, despite the decentralization.

C. Asymmetric Sensing Team

This section presents a simulation using an asymmetric
heterogeneous sensing team. The two agents are one quadrotor
and one tilted-propeller hexarotor, showing the capability of
the framework to handle various types of UAV using different
dynamics. In addition, the tasks assigned to the agents are
asymmetrical: the hexarotor is tasked as in Sec.V-B (minimal
motion task and observation task), while the quadrotor has
a given motion task to achieve (reach a set of successive
waypoints) but no observation task (wP = 0). The quadrotor
however participates to the observation.

The (x, y) configuration of the system over time is reported
in Fig. 6. When the quadrotor moves to reach a waypoint, the
hexarotor positions itself on the opposite side, improving the
overall estimation, achieving a configuration similar to the 2
UAVs case presented in V-B2.

The roll and pitch of the hexarotor are reported in Fig. 7
(top). The hexarotor stays stable in a tilted configuration, hence
reducing its measurement uncertainty, while maintaining a
configuration that minimizes the overall estimation. Figure 7
(bottom) also shows that the propeller thrusts γ actually reach
their bounds during this motion, demonstrating that the NMPC
exploits the full actuation span of the platform.

When the quadrotor reaches its final waypoint (after 15 s),
it looses sight on the feature. The hexarotor then handles the
observation burden alone and moves as in the 1 UAV case, i.e.
goes on top of the feature, since this configuration minimizes
both the measurement uncertainty and the attitude error. This
is caused by the FoV function λ, which, when becoming
0, indicates that the agent has no influence on the overall
estimation, allowing the system to reconfigure accordingly.

VI. DISCUSSION

In this section we propose a qualitative comparison with
similar approaches in the literature.

Fig. 7: Above, the roll and pitch of the tilted-propeller hexarotor over time,
with their reference value (0 rad). Below, the thrusts exerted by the n = 6
propellers, with the lower and upper bounds marked by the black dashed lines.

Compared to other non-MPC approaches to AIA [7]–[9],
our approach couples the UAV low-level control with the
observation task. Considering perception-aware controllers has
been an active field of study over the recent years, in particular
using NMPC [14], [15], [17]. Therein, the perception can be
expressed alongside objectives and constraints from different
semantics in a single OCP. In particular, this control/perception
coupling allows the controller to exploit the platform actuation
span at its best to, e.g., simultaneously achieve a given
motion while maintaining perception [16], or to maximize the
perception accuracy, as depicted in Sec. (V-C).

However, considering the active observation as an AIA
problem allows more versatility than the perception-aware
NMPC previously introduced, since the uncertainty minimiza-
tion can account for external measurements of the feature.
In particular, it allows the decentralization of the observation
as a shared objective rather than constraining each individual
agent. More generally, any additional measurement source
can be considered, such as static cameras that would provide
additional measurements to the NMPC.

There exists, however, a corpus of works tackling such prob-
lems with linear MPC [8], [12], [13]. But considering linear
models does not come without drawbacks. In particular, for
underactuated UAVs (e.g., collinear quadrotors), there is a non-
linear coupling between the translational and rotational states,
which implies that the orientation of the camera is dependent
on the UAV motion in a nonlinear way. Disregarding such
nonlinearity could lead to a loss of visibility over a feature
while performing a motion (in particular agile maneuvers).
The fact that, using NMPC, a quadrotor is commanded to
move upward to maintain visibility while moving toward a
feature, as in the attached multimedia file, is a consequence
of considering its complete nonlinear dynamics.

Additionally, there is a nonlinear coupling between the agent
and feature states in both the measurement uncertainty matrix
R and the FoV function λ. The propagation of these quan-
tities over the horizon is not possible without simplifications.
In [12], this problem is solved by considering an arbitrary
constant value for R; and relaxing (12) by precomputing
the nonlinear orientation terms in a first step. These two
simplifications have some impact on the accuracy of the
propagation. Yet the main improvement of our approach is that
considering the nonlinear coupling in R makes the NMPC able
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to not only maintain the visibility, but also effectively reduce
the observation uncertainty. In particular, the collaborative
emerging behaviors observed in V-B are a consequence of
considering the full stochastic observation model.

Finally, other works [13], [23] have an ‘offline’ approach of
the AIA problem. Therein, the controller is tasked to maintain
a predetermined formation that is proven to yield optimal
measurements. Such approach is more rigid, considers a fixed
number of agents and does not allow the system to reconfigure
according to additional tasks given to the various agents. We
rather propose an approach where finding the compromise
between minimizing the uncertainty and accounting for a
separate motion task is devoted the NMPC, according to a
set of weights and parameters (which can be changed online
by a supervisor to prioritize one or the other).

VII. CONCLUSION

In this work we have introduced a NMPC-based cooperative
control framework to solve AIA for a system with multiple
multirotor UAVs equipped with onboard sensors. We proposed
a time-continuous formulation of the intermittent measurement
Kalman filter and a strategy to exploit the predictive aspect of
this filter in the receding horizon. This allows to propagate
the estimation uncertainty. The controller considers a full
nonlinear constrained model of the multirotors at the motor-
level rather than a simplified approximation of it. Thus, it
allows a direct application without an intermediate low level
controller and full exploitation of the UAV capability without
unnecessary abstraction layers. The framework allows and
exploits heterogeneity in the actuation of the sensing agents.
Simulations and experiments have shown how the proposed
implementation is able to effectively yield to emergent optimal
sensing configuration, adapted to the number of agents.

Possible extensions of this work include, for instance, an
improvement of the scalability of the framework to handle
multiple features without enlarging even more the NMPC state
vector. This objective could be perhaps achieved by adopting
a PHD filter in place of the Kalman filter. Additionally, the
framework could be extended to make it fully robust to severe
communication issues that may appear in some cases, such
as packet drops. This extension could be achieved, e.g., by
exploiting the intermittent aspect of the proposed Kalman
filter. Finally, the collision between agents should also be
considered using a suitable modification of the cost function.

REFERENCES

[1] J. P. Queralta, J. Taipalmaa, B. Can Pullinen, V. K. Sarker,
T. Nguyen Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. West-
erlund, “Collaborative multi-robot search and rescue: Planning, coordi-
nation, perception, and active vision,” vol. 8, 2020.
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