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ICP Localization and Walking Experiments on a TALOS Humanoid Robot

T. Lasguignes1, I. Maroger1, M. Fallon 2, M. Ramezani 2, L. Marchionni3, O. Stasse14, N. Mansard14,
B. Watier5

Abstract— This system paper describes the integration and
the evaluation of an ICP-based localization system on the
TALOS humanoid robot. The new generation of flash LiDAR
systems, here an Ouster OS1-64, have made it possible to obtain
3D clouds at 10 Hz. Coupled with an Intel RealSense T265
providing visual-inertial odometry it is possible to localize the
robot and use this information to generate foot steps in real
time to reach specific points. The approach is validated with
a Qualisys motion capture system. It is also used to generate
real-time walking motion on the TALOS humanoid robot. This
paper is an integration paper showing that it is now feasible to
accurately guide a humanoid robot in an environment in real
time using a LiDAR system.

Index Terms— LiDAR-based localization, TALOS humanoid
robot, walking

I. INTRODUCTION

In order to enable humanoid robots to autonomously
perform useful behaviors in a semi structured environment,
it is necessary to provide them with a way to autonomously
localize themselves in a 3D environment. This is necessary
to inspect specific important points in a factory, or to execute
some manipulation tasks such as those performed during
the DARPA Robotics Challenge (DRC). The difficulty is to
maintain a sufficient precision for the targeted tasks while
being in an environment whose parts are changing due to
human activities. A similar problem occurs for autonomous
cars navigating in a city. Indeed even if the architectural
elements are consistent, the traffic is constantly perturbing
the laser measurements. It is therefore important to have a
robust and yet efficient way to localize the robot in a large
3D environment and to update the current status of the map.

In this paper, the problem we are interested in is to assess
the localization of the humanoid robot TALOS [1] such that
it is able to perform a behavior such as manipulating an
object or walking over debris. The behaviors can be adaptive
through perception, control and planning, and they may have
various requirements in terms of localization precision.

Finally, the capability to embed the localization software
in the robot to make it autonomous is an important aspect
to consider.
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Fig. 1. TALOS equipped with an Ouster OS1-64 LiDAR, an Intel
RealSense T265 tracking camera and an Intel RealSense D435i RGB-D
camera

A. State of the art

The research community working on the Simultaneous
Localization And Mapping (SLAM) problem is very active
and consider many instances of the problem. Historically,
for humanoid robots, it is based on computer vision and is
targeting affordable perception systems and therefore uses
monocular camera [2]. Since then, the DRC has popularized
multiple sensors systems including stereo camera and LiDAR
[3] such as the MultiSense SLB product from Carnegie
Robotics, that was recently incorporated in the Walkman
humanoid robot from IIT [4].
In [5], a laser-based localization was proposed for a NAO
robot in a small multi-level indoor environment, later com-
bined with a monocular camera in [6]. This localization was
based on the Monte Carlo Localization technique presented
in [7]. Nowadays the general framework of factor graph [8]
allows to represent coherently the relationships between the
robot state, its control vector and measurements of various
sensors. Using this representation, it is possible to utilize a
general non-linear solver to solve localization, calibration,
state estimation or map building problems. However, sen-
sors have different measurement frequencies and different
memory complexities. For instance, in this setting the IMU



Fig. 2. Block diagram of the localization system, dash-arrows show the
flow of point clouds.

provides 6 real accelerations and gyrometer measurements at
1kHz, while the LiDAR provides 65536 range measurements
at only 10Hz. They need to be preprocessed in different ways
before being incorporated in such representations.
For LiDAR-based measurements, Iterative Closest Point
(ICP) and 3D points accumulation maps are efficient methods
to propose such pre-processing [9]. Such methods have been
recently refined and deployed in the field of legged robots
and more precisely for quadruped robots [10]. Indeed, it
is now possible to find reliable industrial robots such as
ANYmal from ANYbotics or Spot from Boston Dynamics.
This paper focuses on the practical implementation of such
subsystem and its implementation on a research humanoid
robot platform, here the TALOS robot from the company
PAL-Robotics. Similar work has been realized using a Dense
SLAM system [11], with a HRP-4 humanoid robot and
an off-board computer equipped with a GPU. In this work
we focus on the localization performance using an onboard
computation.

In this work, we want to localize the TALOS humanoid
robot in an indoor industrial-like environment. We use a
modification of the initial TALOS humanoid robot head
design including a flash LiDAR system.

B. Problem

For a given map m, the k-th LiDAR measurement
ok ∈ R64×1024, and the Visual Inertial Odometry (VIO) pose
estimation pOk in the fixed odometry frame O, the goal of the
localization system is to find the pose pMk ∈ SE(3) of the
head in the map frameM such that pMk = ICP (m, ok, p

O
k ).

The overall scheme is presented in Fig. 2.

C. Contributions

The contributions of this paper are the following:
• Successfully implement a LiDAR-based localization

combined with a Visual-Inertial Odometry on a TALOS
humanoid robot in order to accurately guide it. All
computations are performed in real time on the robot’s
computer.

• Benchmark the localization system against a Motion
Capture system.

II. LOCALIZING IN THE MAP

Fig.2 shows the localization pipeline implemented on the
robot that will be presented in the following section.

A. Iterative Closest Point

The ICP algorithm [12] is used to register two point clouds
with overlapping parts. It has 4 main steps: pre-filtering,
correspondence estimation, outlier filtering and lastly error-
minimization. The main issue of this algorithm is the high
influence of outliers that can result in convergence to a local
minimum.

B. ICP-based localization

We use the localization system from [13] and [10] over a
known map.

The Autotuned-ICP (AICP) is an ICP registration method
that adjusts the outlier filter of the ICP basis by computing
an overlap parameter between the reading cloud and the
reference cloud. It allows the registration of consecutive point
cloud reads to a reference cloud, which in our case will be
a pre-built map.

This system uses the ICP implementation proposed by [9]
and publicly available under the name libpointmatcher1.

The system needs to be initialized. For this paper, this
pose is given by an approximation of the motion capture
estimation. Further researches will be conducted on the
estimation of this initial pose based on the map and LiDAR
data.

At each subsequent steps the ICP refine the transformation
between the measure ok and the map m. As an estimation
of the robot’s pose pOk is given by the VIO, the measure ok
can be expressed in the O frame. The robot’s pose in the
map frame M is then obtained as pMk = ckp

O
k , with ck the

alignment transformation between oOk and m computed by
the ICP.

C. Visual-Inertial Odometry initialization

Kinematic-Inertial Odometry is effective for high-
frequency estimation over a short time interval, whereas
Visual-Inertial Odometry, through the use of lower frequen-
cies exteroceptive sensors, remains reliable over a longer
period. As both odometries are available on the robot and the
experiments do not require a high-frequency state estimation,
it was decided to use the Visual-Inertial Odometry instead of
the Kinematic-Inertial Odometry, used in the initial system
[10], [13].

The Visual-Inertial Odometry is given by an Intel Re-
alSense T265 tracking camera with a frequency of 200 Hz.
Fig.3 shows the comparison of the VIO to the Motion
Capture estimation over 70 seconds, starting from the same
initial point.

D. Building the map

In this paper, the indoor environment is known through
a given map. In the following sections, different maps are
discussed. Some of these maps were tested and compared
in the experiment described in Sec.IV.

1https://github.com/ethz-asl/libpointmatcher

https://github.com/ethz-asl/libpointmatcher


Fig. 3. Downsampled visualization of the Visual-Inertial Odometry (red)
and the Motion Capture estimation (green) over the two first targets. Top:
view on the (x, y) plane, x upward. Bottom: view on the (z, y) plane, z
upward.

Fig. 4. Comparison between a 3D model (gray scale) and an accumulation
of LiDAR scans (color scale). Examples of occluded walls and errors are
highlighted.

1) Architectural 3D model: Starting directly from an
architectural 3D model can be a source of errors. Indeed,
as shown in Fig.4, an architectural 3D model can contain
occluded walls, e.g. on the left of the figure, or small errors,
e.g. the pillars in the middle. When comparing with the
points accumulated using the ICP algorithm, mismatches
appear with these features and may disrupt the convergence.
As the walls in this kind of models are usually parallel in
pairs, they create local minima.
A solution to that problem is to use a prior map that has
been extracted from the 3D model, in order to remove
the occlusions. It can be done manually or by mean of a
simulation, provided that the sensor model is known. In this
work, it was decided to remove the occluded parts manually
to compare with the other proposed map introduced in the
following section.

2) Using a scanning device: The map can be built prior
to the robot localization using a scanning device. As no such
specific device was available, it was decided to use the data

Fig. 5. Map obtained by accumulating multiple LiDAR scans from multiple
positions and orientations.

returned by the LiDAR on the new head of TALOS. Fig.5
displays the map.
This kind of model can present some missing parts, e.g. in
this experiment some parts of the floor and the ceiling are
missing from the map, but it is easier to produce than an
architectural map if an appropriate device is available.

III. WALKING

In order to assess the efficiency of the ICP-based
localization system, experiments where the robot has to
walk towards multiple given positions were performed.
For these experiments, the walking algorithm used to
generate the motion is the one provided by PAL-Robotics.
It was used to send a velocity command to the robot on
the topic /walking controller/cmd vel at a 2Hz
frequency. The velocity command was merely computed as
the distances along the x and y axis in the coordinate frame
linked to the robot and angle between the robot and its goal
orientation around the z axis. Thresholds of 0.1m/s for
the linear velocities and 0.12 rad/s for the angular velocity
were applied on the command in order to not reach the
robot limits. Moreover, the command was designed so that
the robot stops walking when it is at small enough distances
and angle from its target, respectively 0.08m and 0.07 rad.
This stopping distance was implemented to prevent the
robot to trample on its target instead of stopping on it, this
allows swift stop once on spot. Once the robot stops on
a target, the robot is programmed to stay still during 8 s
before moving on to its next target.

IV. EXPERIMENTS ON THE ROBOT

A. Experimental setup

The experimental room is equipped with a Motion Capture
system (MoCap) including 20 infrared Qualisys Miqus M3
cameras sampling at up to 650Hz with a 3 × 10−4 m
accuracy on the viewed area. This motion capture system
was used to record the positions and orientations of the
robot’s head. We placed 5 passive markers on its torso
and 1 on the top of its head. In this study, the MoCap
measurements are hypothesized to be the ground truth data.
Those measurements were compared to the ones made with



Fig. 6. Goal positions in the experimental room

the ICP-based localization system in order to assess its
accuracy and its performances.

A new head was designed for the TALOS robot and is
shown on Fig.1. From top to bottom, it is equipped with
an Ouster OS1-64 LiDAR, an Intel RealSense T265 and
an Intel RealSense D435i. The latter is not used in the
experiment.
The LiDAR has a range between 0.8m to 120m, an
horizontal field-of-view of 360° and a vertical field-of-view
of 33.2° using its 64 laser beams. For the experiment, the
LiDAR was set to take 1024 horizontal samples per scan
and to return point clouds at 10Hz.
The Intel RealSense T265 is a tracking camera embedding
two Fish-Eye cameras, an IMU and a Vision Processing
Unit (VPU). This camera runs a V-SLAM algorithm on the
VPU with an output frequency of 200Hz.

B. Experimental protocol

The performed experiment consists of a series of targets
the robot has to successively reach. Thus, six goal positions
were defined in the experimental room. Those positions are
represented on Fig.6. They have been chosen in such a way
that the robot ranges the whole MoCap viewed area and
faces diverse orientation changes. The position of the robot
at the beginning of the experiment is not defined in advance,
it could be anywhere in the viewed area. Note that, if the
robot starts from the origin of the MoCap reference frame,
it will have to travel around 10.6m to perform the whole
experiment.

During the experiments, a dataset was recorded on a
rosbag including the measurements made by the MoCap,
the velocity orders sent to the robot, the LiDAR data, the
tracking camera images and estimations and the ICP-based
localization results.

This experiment was successfully performed 3 times with
a TALOS robot. Due to technical problems and hardware

Fig. 7. Frame extracted from the video of the first experiment. The video
shows the ICP data (gray: prior map, pink: read point cloud aligned, axis:
estimated pose) and the targeted poses (arrows) in the middle, the image
from a sensor of the Intel RealSense T265 on the left and the video of the
experimental room and the robot on the right.

issues on the robot legs and ankles, further experiments
resulted in failures and the fall of the robot, preventing
the authors to gather more data. Among those successfully
performed experiments, the first one was performed with
the map built from the architectural 3D model (Sec.II-D.1)
whereas the second and the third ones were performed using
the map built by using a scanning device (Sec.II-D.2).

A screenshot from the video of the first experiment is
shown in Fig.7. A video explaining the experimental protocol
and showing the second experiment is available at https:
//youtu.be/0t1bBjDTqMA.

V. DISCUSSION

A. Comparison between the motion capture system and the
ICP-based localization system

During the experiments on the robot, two data sets
were collected simultaneously: one with the positions and
orientations of the robot head recorded by the MoCap
and another recorded by the ICP localization system. As
both localization systems do not have the same sampling
frequencies, the raw datasets cannot be compared directly.
Indeed, the MoCap dataset includes around 40 times the
amount of data of the ICP one as Fig.8 shows. This is why
both data sets were interpolated in order to have the same
length.

First of all, for the three datasets, a delay between the
ICP system and the MoCap can be measured shifting
the two datasets to minimize the difference between the
(x, y, z) positions and the θ orientation measured by the
two localization systems. This delay scores between 0.51 s
and 0.62 s depending on the experiment and is mainly due
to the computation time of the ICP. In the following, this
delay has been removed from the ICP set.

Then, the differences between the two datasets on the
position and on the orientation can be computed. These
differences will now be referred as offsets. The evolution of

https://youtu.be/0t1bBjDTqMA
https://youtu.be/0t1bBjDTqMA


Fig. 8. Visualization of the recorded data on Rviz (in red the MoCap set
and in green the ICP set)

On x (mm) On y (mm) On z (mm) Around z (rad)
Exp. 1 18.7± 17.2 24.9± 19.3 9.2± 7.2 0.025± 0.019
Exp. 2 14.8± 17.3 19.9± 17.8 5.4± 4.4 0.023± 0.027
Exp. 3 13.8± 15.9 18.9± 15.7 5.6± 4.8 0.024± 0.027

TABLE I
COMPUTED ERRORS BETWEEN THE MOCAP AND THE ICP DATA SETS

FOR ALL THE EXPERIMENTS

these offsets over the whole experiments is shown in Fig.9.
These offsets are of two kinds :

• Structural offsets due to a difference between the coordi-
nate frames of both localization systems. We make the
assumption that these offsets are constant as it seems
to be the case in Fig.9 and can easily be computed
as the mean of the differences between the datasets
over the experiment duration. Thus, these offsets score
0.19m, 0.058m, 0.097m respectively along the x, y
and z axis and 1.12 × 10−4 rad around the z axis for
the first experiment. These offsets are lower for the
second and the third experiment (respectively 0.045m,
0.021m, 0.058m and 0.048 rad) because the coordinate
systems were reset after the first experiment. In the
following, these structural offsets are considered equal
to zero as they have been removed to the ICP dataset as
the MoCap was taken as the ground truth. The results
after removing these offsets are represented in Fig.10.

• Errors due to real differences of results between the
two localization systems. They can be computed as
the mean of the differences between the two datasets
after removing the structural offset. These errors are
presented in Tab.I.

During the 3 experiments, the robot started from 3 differ-
ent positions with diverse orientations. As the results shown
in Tab.I are similar regardless of the experiment, we can
conclude that the ICP-based localization system does not
depend on the starting pose. Moreover, the robot traveled
different distances according to the experiments, respectively
8.93m, 11.05m and 10.69m. As Fig.10 shows, the error
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Fig. 9. Errors between the 2 datasets during the 3 experiments (x in blue,
y in orange, z in green and θ in red)

does not seem to increase with the traveled distance, at least
for distances around 10m .

B. Accuracy on the goal positions

The goal positions can easily be identified on the datasets
as they match with the points with zero velocity. To assess the
accuracy of the ICP-based localization system on achieving
the goal positions, the difference between the measured
position and the desired goal position can be computed. The
absolute average error on the goal positions (± standard
deviation) is 0.025±0.016m on the x axis, 0.039±0.042m
on the y axis and 0.028 ± 0.012 rad around the z axis.
All these errors are lower than the tolerance admitted on
stops stated in Sec.III which means that the accuracy of
the ICP localization system is satisfactory for the targeted
application. Moreover, with such accuracy, more complex
localization tasks could be considered. In future work, the
ICP-based localization system will be used to place the robot
in front of an object to perform a task requiring accuracy
such as drilling or crossing debris.

C. Effect of the map on the ICP-based localization system

As Tab.I shows, there is no significant difference (less
than the standard deviations) in the errors between the
first experiment and the second and the third experiments
whereas the ICP-based localization system was performed
with different maps. This means that, even if the map built
from the architectural 3D model is a priori less accurate than
the map built using a scanning device, the ICP localization
system has an accurate behavior in both cases.

VI. CONCLUSION

We presented a pipeline to localize the TALOS robot
in an indoor environment based on LiDAR and Visual-
Inertial Odometry. The VIO is used to initialize the ICP
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Fig. 10. Position (x on the first row, y on the second row, z on the third row) and orientation (θ on the last row) of the robot measured by the MoCap
(in blue) and by the ICP localization system with the removed delays and structural offsets (in orange) during the 3 experiments

steps registering read point clouds to a map point cloud. The
system was successfully deployed on the robot and tested in
a walking situation. The results were compared to a MoCap
system considered here as the ground truth.
The ICP-based localization system shows an average error
of 0.016m, 0.021m and 0.0067m along the x, y and z axis
and of 0.024 rad around the z axis with respect to the motion
capture system taken as the ground truth. Those results show
that the ICP is accurate enough to target, in future work, more
challenging localization tasks such as precisely placing the
robot in front of an object to interact with it.
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