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Abstract

In this paper, we advocate the use of robust decision trees for the prob-
lem of assembly line scheduling problem, which is modeled as a multi-mode
resource constrained project scheduling Problem, with uncertainty about
activity duration and a resource investment objective. The idea of a ro-
bust decision tree is that at each node, the decision maker has access to
some information about the ongoing scenario. Depending on the different
information they could obtain, a partial solution is proposed. Consider-
ing that the level of uncertainty is lowered, the new partial solution is
less conservative and improve the robustness guarantee. However, since
all accessible information may not be relevant, we turned the information
selection part into an optimization problem. We first introduce the indus-
trial context and the problem at stake. Then we propose algorithms to
solve the information selection problem, using constraint programming,
and then to build such robust decision trees. Finally we provide experi-
mental results for benchmarks instances and industrial instances.

1 Introduction

In real-world scheduling problems, such as in aeronautical assembly line schedul-
ing problems, several parameters are subject to uncertainty. Moreover, the
knowledge the decision maker has about these parameters takes place in a dy-
namic context, i.e. actual parameter values are revealed progressively over time.
Taking into account of both uncertain and dynamic aspects in scheduling prob-
lems solution approaches is necessary to control the risk and the flexibility of
the schedule. Historically, two general approaches emerged to deal with uncer-
tainty in scheduling problems [27]. On the first hand there are the proactive
methods. The goal is to compute a robust baseline schedule, that ensures the
feasibility and a worst-case objective value. However, it is known that such
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approaches tend to produce overly conservative solutions [21]. On the second
hand, reactive methods aim at compute quickly new solutions to deal with the
unexpected and adapt the schedule to the scenario that emerges. Neverthe-
less these approaches do not have in general worst-case guarantees, which does
not necessarily fit in practice industrial cases where a bad management of the
worst case is not conceivable. In order to make a compromise between conser-
vatism and too much optimism, hybrid methods were developed, and the term
proactive-reactive scheduling emerged [27]. For instance, in [10, 9] the authors
propose an integrated proactive-reactive approach, where the goal is to find the
best policy, which in their case corresponds to a couple (initial solution, set of
reactions), given a transition cost between solutions. With a different perspec-
tive the authors of [11] proposed what they call the Just In Case approach, in
which they compute a multiple contingent schedule with the application of ac-
tion planning for an autonomous telescope scheduling problem, where the worst
cases are critical in the sense that the telescope does not carry out any of the
observations that had been planned. Inspired by this method, and borrowing
ideas from multi-stage robust approaches [3], we propose here an approach based
on the computation of a decision tree. The idea behind decision trees is that
they are easily usable for a decision-maker, and make it possible to deal with
small but identified uncertainties by dynamically proposing solutions according
to the arrival of new information, while guaranteeing the quality of solutions in
the worst case. We use this model on an aeronautical assembly line scheduling
problem which will be modelled as a multi-mode resource-constrained project
scheduling problem (MMRCPSP) problem with a resource investment objective.
Then, we compare our model to a proactive-reactive algorithm with computa-
tional experiments carried out on MMRCPSP benchmark instances from the
PSPLIB [16] and real industrial instances from an aeronautical assembly line
scheduling problem [6].

The outline of the paper is the following. Section 2 introduces the indus-
trial context of our approach. In section 3 we go deeper into the literature
review concerning multi-stage scheduling techniques from which our approach
is inspired. Section 4 formally introduces the MMRCPSP, uncertainty and in-
formation modelling. In section 5, we present an information-based model of the
MMRCPSP and formulate the robust partition problem, which is the core prob-
lem of our approach. Section 6 introduces the robust decision tree. In Section
7 we assess the practical appeal our approach comparing it to an information-
based proactive-reactive scheduling algorithm.

2 Industrial Context

In this paper we are interested on aeronautical assembly line scheduling problem.
The optimisation of assembly lines forms a family of problems that have been
extensively studied for decades. Two distinct types of problems have emerged,
assembly line balancing problems and assembly line scheduling problems. Line
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balancing problems are more of a general assembly-line design nature, and can
have two objectives: at a fixed number of workstations, to maximise the pro-
duction rate, or conversely at a fixed production rate, to minimise the number
of workstations. We will not focus on these problems in this paper, but an ex-
tensive literature review can be found in [26]. Before presenting the scheduling
problems, it should be noted that an attempt has been made to integrate the
two problems into a single one. For instance, in [1] and [25] the authors con-
sider problems where the duration of activitiess depends on the way they are
scheduled, with respectively sequence-dependant setup-time for the former, and
taking into account the deterioration effect for the latter. A more concrete ap-
proach, rather engineering oriented, has been proposed in [6] where the authors
develop a methodology for Airbus assembly lines so that their tools integrate
the aspects of the two previous problems. Regarding the scheduling aspect on
assembly lines, a wide range of techniques have been developed. In [24], the au-
thors propose to improve the ”beam search” method, a heuristic based on the
Branch and Bound algorithm, and then applied it to an assembly line scheduling
problem. In [29] the authors present an industrial problem from the assembly
lines of the car manufacturer Toshiba, and propose to solve it by Lagrangian
relaxation taking advantage of the geometrical characteristics of their problem.

Now let us introduce more specifically the problem at stake. This problem
consist in building a schedule that satisfies a fixed makespan while minimising
the peak resource usage, which may correspond to the number of operators to
be employed during the scheduling period, also called the resource investment
problem [12]. In this paper, inline with our target application on aeronautical
assembly lines, we consider moderate hazards, which only impact the duration
of the activities. Given an initial schedule, any activity duration increase may
degrade the quality of this schedule. If we know the maximal duration of each
activity, a robust initial schedule can be built as in the standard robust opti-
mization scheme, i.e. by seeking a good performance on the worst case scenario,
in this case obtained by setting each activity to its maximal duration.

On an assembly line, the same scheduling problem with small variations re-
peats itself time after time (as similar aircraft are assembled) whereas the risks
are constantly changing, which can cause the quality of the initial robust sched-
ule to fluctuate greatly over these assembly cycles. Moreover, over-estimating
the needs of certain resources, as it is necessary in traditional robust optimiza-
tion, can be very costly. This is the well-known conservatism issue of standard
robust optimization.

An other important characteristic of the considered industrial context, is
that decision makers have often access to information about the course of the
planning only at specific times, for instance every evening before a team change
when the leaving team reports its actions during the day. At this specific time,
the decision makers can use their know-how to adapt quickly the schedule on
the fly. However, having access to these information can be costly, and all
information may not be particularly relevant.In addition, the decision maker
may not want to change the schedule too often to ensure a certain stability in the
operators planning. For these reasons, one wishes to look for the most relevant
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information, i.e. the information that, if taken into account for rescheduling,
would best improve the worst case performance.

activities i 1 2 3 4
maximal duration pmax

i 6 10 2 4
Operators 1 bi,1 1 1 3 0
Operators 2 bi,2 1 2 0 4

Table 1: A small RCPSP example

Example 2.1. To exemplify this, let us consider a toy instance of a (single-
mode) resource-constrained project scheduling problem (RCPSP): we are given
a set of activities J , a makespan Cmax and two decision time points t0 = 0
and t1. There is a set of renewable resources R of limited capacities and each
activity i ∈ J requires during its processing a given non-negative amount bi,k of
each resource k ∈ R (see the instance data in Table 2). In this example, we have
four activities and two resources, each corresponding to an operator type (e.g.
electrician and mechanic). Activity 1 requires one operator of each type during
its processing, i.e. during at most 6 hours. Our goal is to find a schedule that
ends before Cmax while minimising the sum of the maximum resource usages
from t0 to t1 and from t1 to the end of the schedule. The rationale behind this
objective is that we assume that operators are hired depending on the maximum
resource use of the computed schedule during the interval defined by two con-
secutive decision time points. Let us now consider a fixed makespan Cmax = 12
and, additionally, the precedence constraints 1→ 3 and 1→ 4. A schedule s is
the assignment of integer start times Si in [0, Cmax − 1] to each activity i ∈ J .
A duration scenario is a vector p = (pi)i∈J with pi ∈ [pmin

i , pmax
i ] ∩ N where

pmin
i = 1 and pmax

i are known parameters. A schedule is feasible for a scenario
p if it satisfies the precedence constraints S3 ≥ S1 + p1 and S4 ≥ S1 + p1. For
a scenario p, the use of resource k ∈ R at time t ∈ [0, Cmax − 1] by schedule S
is given by

Rk,t =
∑

i∈J ,t∈[Si;Si+pi−1]

bi,k

An optimal schedule for scenario p is the one that minimises the objective
function

z = max
t∈[0,t1−1]

[R1,t +R2,t] + max
t∈[t1,Cmax−1]

[R1,t +R2,t]

The optimal schedule S0 for scenario p = (pmax
i )i∈J , with an objective value of

13, is given by the Gantt diagrams displayed in Figures 1 and 2:
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Solution s0

1 2 3 4 5 6 7 8 9 10 11 12

1 4 3

2

Figure 1: Gantt Diagramm of s0

t1 = 5

0

Oper. 1

3
2

0 time

Oper. 2
6

2

Figure 2: Resource profile of s0

We assume that schedule s0 has been computed before time t0 = 0 where
no information on the planning state was available since the schedule was not
started. The schedule is followed as is from t0 to t1 − 1 and the 2 operators of
each type are hired in this interval. Now suppose that at time t1 = 5 the deci-
sion maker has the opportunity to ask two questions to increase the knowledge
of parameters pmin and pmax, but wonders which one is more pertinent: A)”Is
activity 1 already completed ? (i.e. pmax

1 ≤ 5)” or B)”Will activity 2 last more
or less than 8 units of time ? (i.e. pmin

2 ≥ 8 or pmax
2 ≤ 8)”. Let us review both

cases:

• The decision maker chooses to ask A). Then, no matter what is the answer
to this question, we can not compute a better solution, because even if the
answer is yes, this new information only allows the decision maker to shift
activities 3 and 4 to the right, which does not improve the objective.

• The decision maker chooses to ask B). If the answer to this question is
yes, the decision maker can switch at t1 to solution s1 (see Fig. 3 and 4),
which has an objective value of 12 which makes it a strictly better solution
than S0. Remark that to implement such a solution, the schedule (and
operator use) must of course be kept unchanged (frozen), i.e. in [t0, t1−1]
independently of the information obtained at t1 on what happened in this
interval. This is why the schedule before time t1 = 5 is displayed in gray.

It can be clearly seen from that example that the answer to question A)
is of no use, unlike the answer to question B). From the point of view of the
decision-maker this kind of information is interesting, since it suggests that if
it is possible to monitor activity 2 in particular so that it runs smoothly, then
it is possible to improve the schedule. Note that we are only interested here in
the selection of questions from a fixed set.

In this case by selecting in advance the question B) to be asked at t1, a
decision tree can be defined. At the root node corresponding to time t0, activities
1 and 2 are started. This node has a unique child node corresponding to time
t1. From this node, a branch corresponding to the no answer to question B)
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Solution s1

1 2 3 4 5 6 7 8 9 10 11 12

1 3

2 4

Figure 3: Gantt Diagram of s1
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Figure 4: Resource use of s1

will keep on following schedule s0 while another branch corresponding to the
yes answer to question B) will switch to schedule s1.

Given the hypothesis that at some point during the schedule some informa-
tion about the progress of the planning is available and that the schedule can
be changed, such a decision tree computed in advance allows decision makers
to promptly retrieve high quality solutions while using as little information as
possible.

In the rest of this paper, we will consider that the question asked by the
decision maker about the duration of a activity is: ”Will this activity last less
than 80% of its estimated duration ?”. The 80% is arbitrary and has no major
impact on our experimental results. After a literature review, we will more
formally describe the robust decision tree generation process.

3 Litterature Review/Robust Optimization and
Scheduling under Uncertainty

Another way to see the Just In Case approach presented in section 1 is to see it
as a very specific case of multi-stage robust adaptable optimization [3]. In those
approaches a part of the uncertain data is revealed sequentially -at each stage-,
and some recourses, or alternative solutions, are pre-computed to adapt to the
known realization of the ongoing scenario. The ideal goal of robust adaptable
optimization is to compute a fully adaptable solution, that is to say that an
optimal schedule is known for every possible scenario realization. However this
is untractable in practice. In [2], the authors show that even an uncertain two-
stage problem is NP-Hard to solve in the general case. Several methods to
approximate the fully adaptable solution have been explored yet. A first family
of methods aims at limiting the possible recourses. In [13] the authors introduce
K-adaptability where only a finite number K of policies are available at each
stage. Another way of restricting the possible recourses is to consider only affine
-or linear- decision rules [20, 19]. The second family of methods approximate

6



the fully adaptable solution by clustering the scenarios into a finite partition.
Unfortunately, it was shown in [4] that even computing a partition of size 2
is NP-Hard in the general case. Several ways of calculating the partition have
been studied. In [5] a small number of reference scenario is computed, and each
scenario is placed in the same subset as its closest reference scenario. In [28],
the authors consider the specific case where the subsets of the partition are all
hyper-rectangles in the set of scenarios.

The method we present in this paper is close to the methods of the second
family, in the sense that we seek to sequentially calculate efficient partitions
using information as the scenario is revealed. However, there are some key
differences with the methods mentioned above. Firstly, in these methods, the
authors consider a robust objective (such as minmax) on the subsets of the
partition they calculate. However, this type of objective does not apply to
problems where the objective is monotonous with respect to uncertain variables
(for example, the makespan for a scheduling problem) and where the set of
scenarios is not discrete. Indeed, in this case one can easily find a worst-case
scenario, which will ”absorb” the scenarios present in the same subset of the
partition as it. Moreover, since it is the worst-case scenario, the minmax value
remains the same.

Let us illustrate the first difference again Example 2.1. At decision time
point t1 = 5, a multi-stage adjustable robust optimization approach would ask
itself how to partition the set of scenarios so as to propose reactions that lower
the worst-case makespan. Suppose that the choice is between partitions A) and
B) as already described. None of these partitions would results in a decrease
in the global worst case. In case A), which partitions the scenario set in the
two subsets defined by p1 ∈ [1, 5] on one hand and p1 = 6 on the other hand,
we have seen that the worst-case Cmax will inevitably remain equal to 13 for
both subsets. Case B) partitions the scenario set in the two subsets defined by
p2 ∈ [1, 8] on one hand and p2 ∈ [8, 10] on the other hand. Even if the first
subset decreases the worst case makespan to 12, the second subset still includes
the worst case scenario with all durations equal to their maximum value, so the
global worst-case schedule remains equal to 13.

However partition B) is clearly a better one from a practical point of view as
switching to S1 as soon as the duration realization is revealed at t1 to belong to
the second subset will allow resource savings. For this reason, we will introduce
a new criterion to compare scenario partitions with each other. It is not focused
on exploiting the obtained information to lower the global worst case but rather
in identifying the information that will allow to opportunistically switch to a
better solution when possible and so reduce the price of robustness in practice.

Secondly, the notion of ”cost of knowledge” is sometimes considered in the
literature, but when this is the case, it is introduced in the objective function
of the partitioning problem as a penalty. We preferred to add it as a second
objective, from a lexicographical point of view. Indeed, we are more interested
in avoiding to react to useless information than to consider actual information
costs.

Lastly, in the majority of works the multistage uncertain problems are stud-
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ied from the angle of mathematical programming. In this paper, motivated by a
specific industrial context -aeronautical assembly lines-, we propose an approach
based on constraint programming which we can extend naturally to integrate
the information selection problem.

As stated in the introduction, our work is partly inspired by the proactive
and reactive resource-constrained project scheduling problem considered in [10,
9] in the context of uncertain durations. They propose to define a baseline sched-
ule and a set of reactions in front of a realization of the durations. A reaction
is a transition from one schedule to an other one. The activity durations follow
discrete distribution and the transitions take place inside a pre-computed set of
schedules The goal is to minimise an expected cost of the reactions given the
distributions. The cost measures fixed reaction costs and also the distance from
the baseline to the realized schedule. In this paper, we assume that probabil-
ity distributions on the activity durations are not available in accordance with
the target aeronautical applications but we are aware of the worst-céase sce-
nario. Hence we can follow a baseline worst case schedule and react to improve
it for some realizations using as less information as possible, thus minimising
indirectly the schedule stability.

The general model we propose was already introduced, formally, in [22] and
applied to a simple one-machine scheduling problem. However in that work we
dealt only with the case where the problem at stake can be solved in polynomial
time, even in its uncertain version. As the MMRCPSP is a NP-hard problem
even in its deterministic form, the core algorithm of the approach is different
than the one presented in our previous work. If the main idea behind the robust
decision tree remains the same, the goal of the present paper is to show how it
can be applied to an industrial problem.

4 Uncertainty, information and scheduling mod-
els

4.1 Uncertainty, robustness and information

In this paper and for the considered problem we suppose that the activities
duration are uncertain. As mentioned previously, the goal of our model is to
take into account small and frequent uncertainties, which occur with each repe-
tition of the problem. Moreover, since building an accurate probabilistic model
requires a large amount of data, it is easier and more convenient to ask the de-
cision maker for bounds over activity duration. For these reasons, we consider
interval uncertainty. More formally, it means that for any activity i ∈ J of
the problem, its duration pi ∈ [pmini , pmaxi ]. We call any realization of all the
uncertainties a scenario. We denote by Ω the set of all possible scenarios and ω
any of its elements. We can then write the robustness criterion we consider in
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this paper, introduced as the absolute robustness criterion in [18] :

s∗ = argmin
s∈X

max
ω∈Ω

f(ω, s) (1)

where X is the set of solutions, and f(ω, s) the objective value of the solution
s under scenario ω. We refer to s∗ (resp. to the maximum value of f(ω, s∗)) as
the minmax or robust solution (resp. the minmax or robustness value) over the
set of scenarios Ω.
We can notice that in our case, the objective function that we consider is in-
creasing with the duration of the activities. Thus, to find a robust solution for
the MMRCPSP problem with uncertainties, it is sufficient to solve it in its worst
case scenario, where all durations are at their maximum value.

Now that uncertainties are clearly set out, we can rigorously define what
we call information. There is a set T of predefined time points (e.g. ends of
shifts), at which the decision maker can ask several questions, the answer to
one question bringing an information about a activity. Let Jq denote the set
of activities that are in process during interval [tq, tq + ∆] ⊂ T in the baseline
schedule, i.e.

Jq = {i ∈ J |Si −∆ ≤ tq < Si + pi}

In the considered information model, we assume that only questions on the
activities in Jq are allowed. The rationale behind this is that if a activity is
completed at time tq in the baseline schedule is is necessary completed in the
realized scenario, as the worst case has been considered to build the schedule. If
an activity is not scheduled to start in interval [tq, tq + ∆], we assume that the
decision maker does not have enough feedback from the assembly line to obtain
reliable information on this activity.

In our model, having access to an information about an activity i means
that the decision maker is able to know the answer to the question ”Does the
activity i last more or less than Xi unit of time ?”, with Xi ∈ [pmini , pmaxi ].
Consequently, one information allows us to split in two the set of scenarios : the
scenarios such that pi ∈ [pmini , Xi] and the scenarios such that pi ∈ [Xi, p

max
i ].

Let K ⊆ Jq a set of activities on which questions can be asked at time point
tq. Having the answers to |K| questions, i.e. having access to |K| information,
allows the decision maker to distinguish between 2|K| subsets of scenarios cor-
responding to the 2|K| possible subsets of activities getting a “yes” answer. Let
K+ ⊆ K denote one of the possible yes-answer subsets. We denote by ΩK+ the
subset of scenarios issued from the usage of the information obtained from K+

to reduce uncertainty. More formally,

ΩK+
=
∏
i∈K+

[pmini , Xi]×
∏

i∈J\K+

[pmini , pmaxi ]

In our case as the worst-case objective value can always be obtained when each
activity has its maximum duration, having for an activity i the information that
pi ∈ [Xi, p

max
i ] or having no information on i is the same as this does not change
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the worst case. One could note that using these notations we have that if K+

and K ′+ denote two sets of information about uncertainties over a set of scenarios
Ω then K+ ⊂ K ′+ ⇔ ΩK′+ ⊂ ΩK+

and, more generally, ΩK+∪K′+ = ΩK+
∩ΩK′+ .

In the examples and experiments, we will take ∆ = 0 and Xi = d0.8pmaxi e.

Let us illustrate these notions on example 2.1 at time t1 = 5 and the baseline
schedule S0. The decision maker is allowed to ask questions on J1 = {1, 2} as
these two activities are in process in t1 according to S0. Taking as mentioned
Xi = d0.8pmax

i e, we obtain X1 = 5 and X2 = 8. Let us take K = {1, 2}.
Considering the possible yes-answer subsets K+ = {1}, K ′+ = {2}, K ′′+ = {1, 2},
we can distinguish between the 4 scenarios Ω{1} = [1, 5]× [1, 10], Ω{2} = [1, 8]×
[1, 8], Ω{1,2} = [1, 5]× [1, 8] and Ω∅ = Ω = [1, 8]× [1, 10].

We can check that Ω{1,2} ⊂ Ω{1}, Ω{1,2} ⊂ Ω{2} and that Ω{1,2} = Ω{1} ∩
Ω{2}.

4.2 Scheduling model: the robust MMRCPSP

The problem we address in this paper deals with the optimisation of resource
utilisation for activity scheduling on an aeronautical assembly line [7, 8]. In
this problem each activity is subject to precedence constraints, time-lag con-
straints and has several possible modes, which can make its use of the different
resources vary. Several resources are at stake: the resources of areas that will
be represented by limited cumulative constraints, and human resources, which
correspond to operators with different skills. As already explained, the ob-
jective is to minimise the sum of the maximum use of each type of operators
inside each interval defined by two consecutive decision time points. As stated
in [8], the industrial problem under study can be modeled as a multi-mode
resource-constrained project scheduling problem (MMRCPSP) with a resource
investment objective, such as in [12]. This problem is known to be NP-Hard
[15].

There is a set of activities J and a set of resources R. Each activity i ∈ J
is associated with a set Mi of modes such that a mode m ∈Mi for an activity
i ∈ J defines the activity duration pi,m and the amount bi,k,m that the activity
requires on resource k ∈ R. We have a discrete time horizon H with special
so-called decision time points T ⊂ H with H = {0, . . . , |H|} and T = {t0 =
1, . . . , t1, t|T | = |H|}. The set of resources R comprise two distinct subsets: the
subset of investment resources RI , for which the peak usage must be minimised
inside each decision interval and the subset of standard renewable resources Rρ,
each being associated with a capacity Bk that cannot be exceeded. There is a
set of precedence constraints E.

By defining decision variable Si, ∀i ∈ J , which gives the start time of each
activity i ∈ J and mi ∈ Mi, which gives the mode selected for activity i ∈ J ,
the MMRCPSP with resource investment objective can be formally stated as
follows.
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min z =
∑
k∈RI

|T |∑
q=1

tq−1
max
τ∈tq−1

Rk,τ (2)

s. t. Sj − Si ≥ pi,mi ∀(i, j) ∈ E (3)

Rk,τ =
∑

i∈J ,τ∈[Si;Si+pi,mi−1]

bi,k,mi ∀k ∈ R,∀τ ∈ H (4)

Rk,τ ≤ Bk ∀k ∈ Rρ,∀τ ∈ H (5)

Si ∈ H ∀i ∈ J (6)

mi ∈Mi ∀i ∈ J (7)

The objective (2), to be minimised is equal to the sum on each resource of the
maximal peaks inside each interval. Constraints (3) are standard precedence
constraints. Constraints (4) computes, for each resource k ∈ RI the total usage
Rk,τ at each time τ ∈ H. For standard renewable resources, constraints (5)
prevent the resource usage to exceed the resource capacity. Constraints (6,7)
give the variable domains.

About uncertainty modeling and given the fact that activities have multiple
modes, we now consider that pmini,m is the minimum activity duration in mode
m while pmaxi,m is its maximum duration in mode m. Consequently, the set of

scenarios Ω is the set of matrices (pi,m)j∈J ,m∈Mi
where pi,m ∈ [pmini,m , pmaxi,m ].

Consider now an MMRCPSP instance IΩ obtained by fixing pi,m = pmaxi,m ,
for each activity i ∈ J and each mode m ∈ Mi. As stated in Section 4.1,
the optimal solution to the deterministic MMRCPSP with IΩ as input is the
same as for the absolute robust problem (1) with X = (3 − 7) on instance I
subject to uncertainties Ω. Let RobustMMRCPSP denotes a procedures that
solves the problem taking as input the instance IΩ and outputs the solution
s = ((Si)j∈J , (mi)j∈J , z).

5 Robust scenario partition based on informa-
tion selection

5.1 Robust scheduling with limited information selection

As explained in Section 2, the industrial context assumes that the decision maker
has access to information -which may come with a cost- during the schedule, but
the problem of information selection might not be trivial. We propose a way of
formalising the information selection problem as an extension of the MMRCPSP
model introduced in the previous section. We suppose that we are given an
instance of the MMRCPSP, a decision time tq, and some characteristics s̄ of the
solution computed at the previous decision time point, the set of activities K
from which we can get information at time tq, and an integer Q. The objective
is to compute a robust solution with a better worst-case guarantee value than s̄

11



using at most Q information from K, i.e. building a yes-answer subset K+ ⊆ K
with |K+|≤ Q. To achieve that we introduce a new scheduling problem. The
model extends the MMRCPSP as follows.

For each activity i in K we define a set of duplicate modes M′i such that
m′ ∈ M′i has the same resource requirement as is duplicate m ∈ Mi but a
duration equal to pi,m′ = Xi, which is the reduced worst case duration in case
of the yes-answer to the question asked for i. Hence selecting mode m′ for
activity i ∈ K means that i ∈ K+.

As the previous solution must be fixed before tq, we need to that purpose
the start times and the resource investment cost before tq, given by s̄, where

s̄ =
(
(S̄i)i∈J , R̄, z̄

)
where S̄i denote the previous start time of activity i, R̄ denotes the contribution
to the objective function of all intervals in [t0, tq − 1], and z̄ denote the total
objective function value of the previous solution. The problem can now be
modeled as the following MMRCPSP:

min leximin (z, |K+|) (8)

s. t. (3− 6)

z ≥ R̄+
∑
k∈RI

|T |∑
ρ=q

tρ−1
max
τ∈tρ−1

Rk,τ (9)

z ≤ z̄ − 1 (10)

K+ = {i ∈ K|mi ∈M′i} (11)

|K+|≤ Q (12)

Si = S̄i ∀i ∈ J , S̄i ≤ tq − 1 (13)

Si ≥ tq ∀i ∈ J , S̄i ≥ tq (14)

mi ∈Mi ∪M′i ∀i ∈ K (15)

mi ∈Mi ∀i ∈ J \K (16)

The goal of objective (8) is to choose the smallest subset of information |K+|
(i.e. the smallest number of selected duplicate modes) that produces the solution
with the best objective value z. Constraints (9) defines the main objective z with
a constant part equal to R̄ and a variable part equal to the resource investment
for all intervals in [tq, H]. Constraint (10) state that the worst-case objective
must be improved by getting information from K. Constraint (11) defines the
set K+ as the set of selected duplicate modes. Constraint (12) limits the selected
number of duplicate modes, i.e. the information K+ used from K under limit
Q. Constraints (13) prevent the start times of activities that start before the
decision point tq to be changed. Constraints (14) prevent an activity that was
not planned before tq in s̄ to be shifted before decision time tq. Constraints (7)
in the MMRCPSP are replaced by constraints (15) that state that activities in
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K have duplicate modes, and constraints (16) that keep the original mode set
of the other activities.

Another way to model constraint (10) is to add a nonrenewable resource
that is used exclusively by modes in M′i, i ∈ K. Each mode m requires one
unit of this resource, and only Q of it is available. In both way we can note
that the problem is not fundamentally different from the original MMRSPCP
and extends it naturally.

We suppose that we have an algorithm, called 1SubsetSolution, to solve
this problem, taking as input an MMRCPSP instances IΩ associated with a
scenario set Ω, the set of activities K available for questions, the maximal
number of questions Q, the previous solution s̄ and the time point q. The
algorithm outputs the new solution s and the used information K+.

An example of how to apply mode duplication to an instance is given in
Example 5.1.

Example 5.1. We consider once again the instance from Example 2.1. We
recall that at time t1 = 5 the decision maker has the possibility to ask two
questions, about the duration of activities 1 and 2 (K = {1, 2}). It follows that
activities 1 and 2 have duplicate modes:

M1 = {1},M′1 = {2},M2 = {1},M′2 = {2}

The problem of information selection can be solved by solving, using the described
previously, the following instance:

activities 1 2 3 4
modes 1 2 1 2 1 1
maximal duration 6 5 10 8 2 4
Operators 1 1 1 1 1 3 0
Operators 2 1 1 2 2 0 4

If we run our model with this instance, the solver will return the solution
S1, with a total of 1 information used (K+ = {2})

In the solution of this problem, there are two things of interest: the subset of
information that induces a subset of scenarios, and the solution which is robust
for this subset of scenarios.

5.2 Robust Partition

The algorithm just presented makes it possible to answer the problem of infor-
mation selection at a given decision time.

Actually, solving this problem at time point tq, we obtain a partition of
the set of scenarios Ω in two subsets ΩK+, on which the obtained solution s
minimises the worst-case objective given that at most Q information are uses
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and Ω\ΩK+ that still contains the global worst case scenario on which previous
solution s̄ still minimises the worst-case objective.

However, it could be objected that one answer of this algorithm is far too
optimistic, in the sense that the proposed solution is only feasible if the answer
to all the selected questions is yes. To overcome this, we propose to use this
algorithm several times to enlarge the partition size, adding each time new
constraints preventing the use of a subset of questions already selected. Each
successive call to this algorithm makes it possible to calculate a different subset
of questions and solutions. Now let us suppose that the precedent algorithm is
called L− 1 times, with L an integer greater than 1. We denote by (Kl

+, s
l)L−1
i=1

the set of information and the robust solution returned by the l-th call of the
precedent algorithm. Let s0 denote the initial robust solution for Ω. Then each
scenario in

⋃L−1
l=1 ΩKl

+
is covered by at least one solution from {sl|l = 1, . . . , L−

1}. Moreover, in order to make sure that the same subset of information (or
any set it is included in) is not selected at each iteration, the already used sets
of information Kl

+ are stored in a list K+.
The constraint ∨

κ+∈K+

|{i ∈ κ+|mi ∈M′i}|≤ |κ+| (17)

is added to the model (8–16) to guarantee that property, which means that
the solution procedure 1SubsetSolution takes also as input set K+.

To build a partition of Ω, we have to adjust the (ΩKl
+

)l family to satisfy

these conditions. By construction, if l′ < l then the solution sl′ has a better
worst-case objective value than sl. Then the ordered family of subset (Ωl)

L−1
l=1

defined by

Ωl = ΩKl
+
\

l⋃
l′=1

ΩKl′
+
∀l = 1, . . . , L− 1

ensures that for any l ≤ L − 1, every scenario in Ωl is covered by exactly
one solution –namely sl–, and that no other solution sl

′
has a proven better

worst-case guarantee than sl. Finally, we can extend the (Ωl)l family with

ΩL = Ω \
⋃L−1
i=1 Ωl, and covers its scenarios by the solution s0, which is the

solution that was implemented until the moment decision tq. Now, the family
(Ωm)i=1,...,L is clearly a partition of Ω, and each scenario is covered by one
and only one solution from (sl)l=0,...,L−1. One could note that the parameter
L bounds the size of the partition. The pseudo code of this algorithm, return-
ing partition P and the associated set of robust solutions S computed for each
subset of scenarios in the partition, is shown in Algorithm 1.

Example 5.2. Let us consider the instance from the running example once
again, in the same context as in Example 2.1 and 5.1, but this time, we want
to compute a robust partition. For the sake of the example, we set L = 2
and Q = 1. First we solve 1SubsetSolution. The solver finds a solution, and
returns (K1

+ = {2}, s1). Consequently, the first subset of the partition P is
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ΩK1
+

= [1, 6] × [1, 8] × [1, 2] × [1, 4] and the solution that covers it is s1. Since

L = 2, we have to complete the partition with the subset of scenarios Ω\ΩK1
, and

cover it with the solution s0 (the initial robust solution). Finally the algorithm
returns P = (ΩK1 ,Ω \ ΩK1), which is clearly a partition of Ω, and S = (s1, s0)
which were proven to have the best worst case guarantee over the subsets of P
in the same order.

Algorithm 1 Robust Partition

Require: an instance I, Ω a set of scenarios, s0 a robust solution on Ω, K a
set of activities, a time tq, R̄ the resource investment cost before tq and two
integers L and Q.
P ← {}, S ← {}, K+ ← {}, s̄←

(
(S0
i )i∈J , R̄, z

0
)

for 1 ≤ l < L− 1 do
sl,Kl

+ ← 1SubsetSolution(IΩ,K,Q,K+, s̄, tq)
if No solution found then
break

end if
S ← S ∪ {sl}, K+ ← K+ ∪ {Kl

+}, P ← P ∪ {ΩKl
+
\
⋃

ΩK+
∈P ΩK+

}
end for
P ← P ∪ {Ω \

⋃
ΩK+

∈P ΩK+
}

S ← S ∪ {s0}
return P,S

6 Robust Decision Tree

In this section we present the Robust Decision Tree. The idea of such a tree is
that at each node, corresponding to a decision point tq, we suppose that some
information are accessible. With those information we are able to split the set
of scenarios and compute a new robust solution for every subset of the partition.
The way we compute a ”good” partition is introduced in Section 5.2. Figure
5 shows an example of a Robust Decision Tree for the example from Section
2. We assume that the moments of decision, that is to say, the moments when
information are available are given. The tree is to be read from top to bottom,
and each moment corresponds to a level in the tree, so that going down the tree
means going forward in time. This makes it very easy to use for a decision-maker.

The planning starts with the solution from the root. At each decision mo-
ment, the decision maker asks the operators the questions (selected in the tree)
about the state of the planning. Then they are able to choose the branch corre-
sponding to the answers to the questions, offering a robust continuation to the
planning and leading to another node, and so on.
As one can imagine, since building such a tree require to solve multiple times a
NP-Hard problem, it takes a very long time. But as the scenarios encapsulate
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Ω

{Ω{2},Ω \ Ω{2}}

Ω \ Ω{2}

s0

Ω{2}

s1

s0

t0 = 0

t1 = 5

t =∞

Figure 5: Robust Decision Tree for the example from Section 2.

all the uncertainties, the tree has to be computed only once, in a offline phase.
Once it is done, the tree is reusable as long as the uncertainties, and the data
of the scheduling problem at stake are unchanged.
It can be noted that the initial robust solution is always in the tree, because
the worst case scenario is always ”contained” in one of the branches of the tree,
and is always feasible, regardless of the current scenario. In the same way, the
solution proposed after choosing a branch becomes a new reference solution,
which remains equally feasible in the corresponding sub-tree. Thus, if several
branches are available after a decision moment, the local robust solution com-
puted at the previous decision node will be the ”default” solution. Therefore,
whatever the level in the tree, it is necessary that the solutions proposed in the
different branches are strictly more interesting than the local robust solution.
In our case, ”more interesting” means with a better robustness value (i.e. a
better minmax value) as explained in section 4.2. By doing this, it follows that
by construction, the worst case value can only improve as we go down the tree.
In sum, robust decision trees break the conservatism inherent to classical robust
approaches while keeping bounds over worst case scenarios.

Moreover, we can derive from these trees a new way to define how critical
an activity is. In the classical definition in project scheduling an activity is
critical if an increase of its duration necessarily increases the total duration of
the project [14]. Here we can adapt this definition to our context: an activity is
critical if a decrease of its duration allows the calculation of a better planning.
Since it is possible to visualise in advance the questions to be asked at the next
decision moment, it is interesting for the decision maker to monitor - if possi-
ble - precisely the activities concerned. If these activities are completed faster
than the initial estimate, this increases the chances of being in a subset of the
scenarios covered by a branch of the tree that significantly improves the worst
case of the objective function.
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· · ·
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Solution s2

More Question(s)

· · ·

Solution s0

Initial Robust Solution s0

t = 0

t = t1

t = t2

t = ti

Figure 6: General Idea of a Robust Decision Tree

As explained in Algorithm 2, the construction of the tree is done level by
level, each level corresponding to a decision time point tq. The robust decision
tree algorithm takes as parameters the list (tq) ∈ T of the decision moments, Q
the maximum number of information that can be used at each node and L the
maximum size of the partition calculated at each node by solving the Robust
Partition Problem. These parameters limit the size of the tree. The depth
of the tree is |T |, and L is the maximum branching factor of the tree which

makes the total number of nodes in the tree is bounded by L|T |+1−1
L−1 , and the

total number of leaves is bounded by L|T |. Moreover, one could note that since
asking a question splits in two the set of scenarios (and more generally if m
questions are asked, the set of scenarios is split in 2m subsets), the maximum
size of the partition L cannot be greater than 2Q.

Example 6.1. We illustrate the robust decision tree generation process on a
larger example with |J |= 10 activities, 2 investment resources RI = {1, 2} and
2 renewable resources Rρ = {3, 4} with capacities B = (20, 19). Finally we have
the precedence constraints:

E = {(1, 7), (1, 10), (2, 4), (2, 5), (2, 7), (3, 5), (4, 6), (4, 9), (5, 6), (6, 8), (7, 8, (7, 9)}.

The other instance characteristics are displayed in Table 2.
At the root node, a robust schedule s0 is computed by taking the maxi-

mal duration of each mode as the worst case scenario. A schedule of cost
74 is obtained with activity start times (2, 1, 0, 3, 5, 9, 8, 16, 12, 9) and modes
(1, 1, 1, 1, 1, 1, 1, 2, 2, 1). The Gantt diagram and the corresponding peaks on the
two investment resources are displayed in Figure 7. For sake of conciseness the
renewable resource usage is not displayed.
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Activity mode pmin
i,m pmax

i,m bi,1,m bi,2,m bi,3,m bi,4,m
1 1 1 6 6 6 0

1 2 2 4 4 3 5 0
3 4 9 4 1 1 0

1 1 1 6 6 0 9
2 2 3 6 5 6 0 7

3 4 9 4 5 0 2

1 1 1 8 5 7 0
3 2 3 6 5 4 5 0

3 4 9 4 3 0 6

1 2 5 5 5 8 0
4 2 4 8 5 4 0 3

3 4 8 3 4 0 6

1 2 4 6 7 0 7
5 2 2 5 6 5 7 0

3 4 9 5 4 0 5

1 3 7 3 4 7 0
6 2 4 9 3 3 5 0

3 5 10 2 1 0 6

1 2 4 5 4 7 0
7 2 3 6 5 4 0 7

3 3 7 4 3 6 0

1 3 7 2 7 0 1
8 2 3 7 3 6 4 0

3 4 9 2 5 3 0

1 2 5 10 7 2 0
9 2 2 5 10 7 0 6

3 5 10 10 6 2 0

1 1 2 2 6 0 7
10 2 4 8 2 5 0 4

3 5 10 1 5 6 0

Table 2: A 10-activity MMRCPSP instance
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Algorithm 2 Robust Decision Tree

Require: an instance I, Ω a set of scenarios, and two integers L and Q.
s← RobustRCPSP(IΩ)
create robust decision tree T with root node (Ω, s, 0)
initialize node queue Q ← (Ω, s, 0)
for 1 ≤ q < |T | do
Q′ ← {}
while Q is not empty do

dequeue node (Ω, s, R̄) from Q
K ← {j ∈ J |Si < tq < Si + pi,mi}
R̄′ ← R̄+

∑
j∈RI max

tq−1
τ=tq−1

Rk,τ
P,S ← RobustPartition(I,Ω, s,K, tq, R̄

′, L,Q)
while P is not empty do

pop scenario set Ω′ from P and solution s′ from S
add node (Ω′, s′, R̄′) to the children of (Ω, s, R̄) in T
enqueue (Ω′, s′, R̄′) in Q′

end while
end while
Q ← Q′

end for
return T
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Figure 7: Robust solution s0 of value 74 at root node Ω (t0 = 0)

Jumping to the first decision point t1 = 5, the set of activities on which
information can be obtained is K = 4, 5. Taking again Q = 1 and L = 2, all
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the modes of these activities are duplicated and the robust partition problem is
solved. The best way found of improving the solution is to obtain information
from activity set K1

+ = {5} with a reduced maximal solution pmax5,2 = 2 in mode
2 (scenario set Ω5), which allows to switch to the solution s1 of value 70 rep-
resented in Figure 8. The updated mode assignment is (1, 1, 1, 1, 2, 1, 1, 1, 1, 1).
Note that the initial mode of activity 5 can be still changed (from mode 1 to
mode 2) as the activity is not already started. This gives the left child node
identified by Ω5, t1 = 5 and s1. As L = 2, the right child considers all scenarios
for which pmin5,1 = 3, pmin5,2 = 3 and pmin5,3 = 6, i.e. activity 5 will not be finished
at 80% of its initial planned duration in any of its modes (Ω \ Ω{5}), which is
covered by solution s0.

3 2 1 4 6 8
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5 7 9

t1 = 5 t2 = 11 t3 = 17

0
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8

10

11
13

13

7

2

Figure 8: Robust solution s1 of value 70 at node Ω5 (t1 = 5)

The left and right nodes are pushed in Q and node (Ω{5}, t1, s1) is popped
for decision point t2 = 11. The set of activities on which information can be
obtained is K = {6, 9} and the robust partition problem selects K1

+ = {9} with
a reduced duration of pmax9,2 in mode 2 (scenario set Ω{5,9}). As previously,
we had S9 = t2 so mode of 9 can be changed. The obtained solution s2 is
displayed in Figure 9. The new assigned modes are (1, 1, 1, 1, 2, 1, 1, 2, 2, 1). This
gives left child (Ω{5,9}, t2, s

2). The right child considers the remaining scenarios
for which the duration of activity 9 is larger than 80% of its initial duration
(Ω{5} \ Ω{9}, t2, s

1). Both nodes are pushed into Q
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Figure 9: Robust solution s2 of value 68 at node Ω5,9 (t2 = 11)

The process is iterated, generating the robust decision tree displayed in Fig-
ure 10. When node (Ω{5,9}, t2, s

2) is popped at t3 = 17, no scenario partition
can improve the current solution as only activity 8 starts its processing at t3.
So only one child is generated. Similarly for all popped right nodes, no other
solution improvement can be reached. Finally the robust decision tree has 9
nodes, allowing to switch to better solutions at t1 and t2 according to scenario
partition Ω{5,9},Ω{5} \Ω{9},Ω \Ω{5}. Using only information from 2 activities,
the robust decision tree reaches, for the considered scenario partitions, a gain of
up to 8.10% on the objective function value.

7 Experimentation

7.1 Instances

In order to test our decision trees, we built our own instances based on the
MMRCPSP instances from the PSPLIB [23]. In particular we were interested
in the J10 and J30 instances. These two sets differ from each other by two
parameters, shown in the following table:

Set J10 J30

Number of act. (N) 10 30
Network Compl. (C) 1,8 1,5

The number of activities is self explanatory, and the network complexity is
the average number of non-redundant arcs per node in the precedence graph.
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Figure 10: Robust Decision Tree for the 10-activities example

One could note that the overall problem complexity is not monotonous with
respect to this parameter: when this parameter is very high (very few feasi-
ble solutions) or very low (many feasible solutions) search trees based methods
tend to give good results, whereas an average value of this parameter tends to
create difficult instances. All the details concerning the parameters used to gen-
erate these instances can be found in [17] and in [23]. To build our instances,
we had to slightly modify those from the PSPLIB. These instances considered
two types of resources, renewable and non-renewable. We chose to consider
renewable resources as our Rρ resources, keeping the same capacities as in the
original instance. As for the non-renewable resources of the original instance,
we change their semantics and consider them them as the investment resources
RI for our problem. The idea behind the structure of the PSPLIB instances is
that activities have several modes, and the more a mode uses the non-renewable
resource, the shorter the duration of the activity. So to minimise the makespan
(makespan) of the project, one of the difficulties of the problem is to choose
which activities will be executed with a mode using a lot of non-renewable re-
sources. In our case, the makespan of the project is constrained. We therefore
use the best solutions uploaded to PSPLIB to fix our makespan. Finally, to
generate the uncertainty intervals we considered that if the duration of an ac-
tivity i was initially p̂i, the uncertainty interval for this duration is [0.6p̂i, p̂i].
Thus, even in the worst case scenario where all activities last their maximum
duration, we are certain that there exist a feasible solution.
For each instance, we generated 100 scenarios, under each of the following prob-
ability distributions:

• Uniform distribution (U): all scenarios are equally possible.
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• Neutral Normal distribution (NN): normal distribution with the parame-
ters µ = 0.8p̂i, σ

2 = 0.2p̂i
3 .

• Optimistic Normal distribution (ON): normal distribution with the pa-
rameters µ = 0.7p̂i, σ

2 = 0.1p̂i
3 .

• Pessimistic Normal distribution (PN): normal distribution with the pa-
rameters µ = 0.9p̂i, σ

2 = 0.1p̂i
3 .

The interest of these distributions is to observe the quality of the trees according
to the draws of the scenarios. Thus, if the maximum durations of the activities
of an instance are underestimated, the drawing of the scenarios in practice will
resemble our pessimistic normal distribution. Conversely, if the estimate of the
maximum duration of the activities is overestimated, the actual scenarios will
resemble those generated according to the optimistic normal distribution.

7.2 Reactive Algorithm

In order to evaluate the performance of the decision tree approach, it seemed
relevant to compare the various evaluation criteria with other methods. Unfor-
tunately, we are not aware of other approaches that use information in the same
way as we do. We therefore decided to implement a relatively simple reactive
algorithm, which would use information in the same way. Since we want to
evaluate the impact of information selection, this algorithm is parameterised by
rinfo ∈ {0, 1} which defines the proportion of information used at each decision
time. It can be seen that by choosing rinfo = 0, the reactive algorithm simply
follows the initial robust schedule. The pseudo code of the algorithm is shown
in Algorithm 3.

Basically given an instance and a scenario, the algorithm simulates the
scheduling process according to the scenario. At each decision time, rinfo∗100%
information are randomly, or blindly, selected from the information available
at that time. The scenario ”answers” the corresponding questions, and then
computes a new robust solution within a limited time, until the next decision
moment or the end of the schedule. In this section, the notation Rp denotes the
information-based reactive algorithm with the parameter rinfo = p.

7.3 Implementation details

In what precedes, we often refer to solutions procedure for the MMRCPSP with
the resource investment objective. This is the case for the RobustMMRCPSP
procedure that solves the MMRCPSP with each activity duration is set to its
maximal value and for the 1SubsetSolution that solves the MMRCPSP with
additional modes for activities that can be included in the information set K+.
For these two procedures, we use the C++ API of IBM ILOG CP Optimizer
v12.9, a constraint programming solver tailored for scheduling problem. We
use standard CP Optimizer global scheduling constraint. A description of CP
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Algorithm 3 Information-Based Reactive Algorithm

Require: an instance I, Ω a set of scenarios, ω a hidden scenario from Ω and
rinfo ∈ {0, 1} the proportion of information selected at each moment.
K ← {}
sinit ← RobustMMRCPSP(IΩ)
for 0 ≤ q < |T | do
K ← set of information available at time tq
K+ ← set of information where 100rinfo% of the information from K were
randomly selected
Ωq ← the largest subset of ΩK+ such that ω ∈ Ωq
solve : RobustMMRCPSP(IΩq )
if No solution then
sq ← sq−1 or sinit if q = 0

else
sq ← the solution found by the solver

end if
end for
return s|T |−1

Optimizer model for the MMRCPSP with the resource investment objective can
be found in [12, 8]. The remaining algorithms (RobustPartition, Robust-
DecisionTree and InformationBasedReactiveAlgorithm are coded in
C++.

All experiments were run on a Intel Xeon CPU E5-2695 v4 2.10GHz cores
running Linux Ubuntu 16.04.4.

7.4 Trees Computations Parameters Impact

As stated in section 6 the computation of the tree takes several parameters as
input, in addition to the MMRCPSP instance, and these parameters have a
great impact on the size of the tree . Given the number of instances tested, we
arbitrarily set L = 3 and |T |= 4 for the experimentation concerning the sets J10

and J30, so the trees can be computed within a reasonable amount of time. The
total maximum duration of the project Cmax is divided into 5 equal parts, which
makes the list of moment of decision T = [0.2Cmax, 0.4Cmax, 0.6Cmax, 0.8Cmax].
Concerning the parameter Q, the maximum number of questions asked at each
node of the tree, we noticed that with Q > 3 (resp. Q > 5) most of the
information were actually used for the instances and the solutions returned by
the trees no longer improve, for the set J10 (resp. J30). These results are
displayed in Figure 11. While this might be surprising, since the difference in
the parameter C in the generations of the sets induces that on average more
information should be available at a given time for the J10 instances, this amount
of information is counterbalanced by the difference in the number of activities
between the two sets. In order to make the information selection quality easier
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Figure 11: Normalized average objective value as a function of Q.

to observe, the parameter Q is set to 2 (resp. 4) for all the other experimentation
involving the set J10 (resp. J30).

As for the robust reactive algorithms, they were run with rinfo in {0, 0.5, 1},
on the same instances as the decision trees, with the same scenarios, the same
decision moments T, and with a computation time at each moment of one
minute, and with the current schedule as starting point for the solver. We will
denote by R0, R50, and R100 each of these algorithms. One could note that
since R0 do not use any information, the solution returned by this algorithm is
the initial robust solution.

7.5 Experimental Results

First we study the impact of the distributions followed by the scenarios on the
quality of the solutions proposed by the robust decision trees. Figure 12 shows
the relative gap of the average objective value (over all generated scenarios)
between the uniform distribution and all the normal distributions for both sets
J10 and J30. We can first note that in all cases the boxes are entirely below
0, which means that for both sets, the trees obtain better results on 75% of
the instances when the scenarios follow one of the normal laws than when they
follow the uniform law. We can also notice that for both sets, the average
relative gap respects the order ON < NN < PN , which is not surprising, since
our partitioning criterion favours optimism in the information selection.

Second we look at the amount of information used by each algorithm. The
results are shown in Figure 13. Firstly, it can be observed that the trees use
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Figure 12: Normalized relative gap of average objective value between the uni-
form distribution and all the others distributions.

much less information than R100 for both instances, and much more than R0

(which by definition uses none). We can also notice that globally the number of
used/available information is higher for the instances of the set J30 than for the
instances of the set J10. This confirms the intuition of the study of the impact
of the parameter Q in the previous section. Then, if we look at the difference
of the average of the total number of information used by the trees compared
to R50, we see that for the J10 instances, the trees use less information on more
than 75% of the instances. On the other hand, for the instances of the set J30,
this number is quite similar.
In view of the analysis of the quality of the solutions, we can conclude that
the trees use the information better than the reactive algorithms, manage to do
better (on average) even with less information.

Now that we know that the trees tend to use less information than the R50

algorithm, we can asses the quality of the solution offered by the robust decision
trees compared to the ones yielded by the reactive algorithms. Figure 14 shows
the relative gap of the average (over all the scenarios for a given instance) ob-
jective value of the solution returned by the trees and each reactive algorithm
between each instances for both sets. In this case, a positive value means that
the tree beats the corresponding reactive algorithm, while negative value means
the opposite. First of all, it can be noted that in all cases, the reactive algorithm
using 0 information never beats the robust decision tree on the same instance.
The opposite thing can be noticed concerning the reactive algorithms using all
available information: only in best cases the robust decision trees match with
the reactive algorithm. However one can observe that algorithm R100 only beats
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Figure 13: Average total number of information used by trees and reactive
algorithms.

the robust decision by only a few percents for more than 75% of the instances,
and that the trees beat R50 for more than 75% of the instance.

Finally, we study the number of solutions returned by the different algorithms.
From a practical point of view, it is important for the operators that the sched-
ules vary as little as possible between two repetitions of the problem. Two
solutions are considered to be different if the order induced by the start dates of
each activity in each solution is different. Figure 15 displays the average number
of different solution found by each algorithm for each instance over all scenarios.
Obviously, since algorithm R0 do not adapt to the scenario, it returns the initial
robust solution. However, for both sets the robust decision trees return around
10 different solution per instance, whereas R50 and R100 return around 30 dif-
ferent solutions for instances from J10, and around 60 solutions for instances
from J30. Thus, from the point of view of the number of solutions, trees are
preferable to reactive algorithms.

7.6 Results on Industrial Instances

In this section, we present experimental results on two industrial instances pro-
vided by Airbus [6]. These instances are denoted by instance A and instance B,
with respectively 721 and 486 activities. These instances were not given with
interval uncertainties or scenarios, so we generated them the same way as ex-
plained in section 7.1. For both of these instances, we generated robust decision
trees with the following parameters:

• Number of moment of decision T = 10.
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Figure 14: Relative gap (in percent) of average objective value between the
solutions returned by the trees, R50 R100 and the initial robust solution returned
by R0.

• Maximum number of information at each moment Q ∈ [1, .., 10].

• Maximum size of partitions at each moment L ∈ [2, .., 4].

Concerning the reactive algorithms, we made rinfo vary in [0, 0.1, ..., 1]. The
results are displayed in Figure 16 and 17. To be more precise, each point of
these figures is the value (average objective value, average number of information
per decision) for a given scenario distribution and a parameterisation for a
tree (with a pair Q,L) or a robust reactive algorithm (with rinfo). Among all
the points generated, we kept the one shaping the Pareto front. In this case,
since we want to minimise both the average objective value and the average
number of information, the ”best” points are the ones in the bottom left of each
figure. There are several things to note about these figures. First, the impact
of the scenario distributions seems to be the same as that noted in Section
7.5. Secondly, we can observe that there are few points forming Pareto fronts,
especially for instance A. A first reason is that there are many overlapping
points: as we saw in section 7.4, increasing the parameter Q does not improve
the quality of the solutions from a certain point. Moreover, given the size of
the instances and the fact that the algorithms were run in a limited time (60
sec per decision moment), it sometimes happens that no solution is computed
within the given time, leaving the node ”empty” in the sense that no question
is asked, and the previous robust solution is automatically selected for further
tree construction. Nevertheless, it can be seen from the figures that the points
of the decision trees are generally a little further to the left than those of the
reactive algorithms on the same distribution, with the exception of the instance
B, when the tree uses little information.
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Figure 15: Number of different solutions over 100 scenarios for each instance for
both sets.

8 Conclusion

In this work, we have presented a framework based on decision trees that in
practice breaks the conservatism inherent in the usual robust approaches.
We show how to compute such trees in the particular case of the scheduling
problem for aeronautical assembly lines, modelled as an MMRSPSP. We then
evaluated the robust decision trees first on benchmark instances, then on real
industrial instances provided by Airbus Madrid by varying the tree construction
parameters and the distributions according to which the scenarios were drawn.
The results of these experiments showed satisfactory results on the benchmark
instances, and promising results on the industrial instances.
One major flaw of our approach is that such trees take a very long time to com-
pute (even if it can be controlled by parameters). Nevertheless we believe that
the computation time can be significantly improved for instance, by merging
equivalent nodes of the tree as they are being computed. In addition, when the
tree is computed, one could imagine using Knowledge Compilation techniques
to reduce its size.
It can be noted that the framework proposed in this paper can be extended to
any problem as long as it includes a temporal component. However, not all ob-
jective functions may be suitable. Objectives whose value can be fixed ”early”
in the solution (for example an Lmax objective for scheduling problems) will
be more difficult to improve as time progresses. On the contrary, for objective
functions based on sums and whose value varies with time (most of the clas-
sical objective functions for lot-sizing problems for instance) the use of robust
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Figure 16: Experimental results on instance A

decision trees is quite appropriate. Moreover, one can imagine several ways of
adapting this framework to the problem one wants.
For instance, we have chosen to start with a very -and too much- conservative
solution and improve it as we go along. However, we can imagine building the
tree the other way round: starting with a super-optimistic solution, and trying
to degrade it as little as possible by choosing the best information as the sce-
nario unfolds. Intuitively, one might think that this approach would be more
appropriate in cases where optimistic scenarios are very likely.
In addition, the discussions with Airbus have constrained us with regard to
access to information. One could extend the approach by assuming that it is
possible to have information about the future, not just about the piece of the
scenario that has already happened. This would make sense for scheduling prob-
lems with uncertainty about the due date of activities for example.
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Figure 17: Experimental results on instance B
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