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Dynamic Estimation of the Yield
in Precision Viticulture from

Mobile Millimeter-Wave Radar Systems
Dominique Henry, Hervé Aubert, Patrice Galaup and Thierry Véronèse

Abstract—This paper reports the yield estimation of vineyards
from using a mobile millimeter-wave radar system. The proximal
radar sensor is a 122GHz FM-CW radar mounted on a rover
that moves along the furrows between vine plants. The proposed
yield estimation is based on the classification of radar echoes
measured for various grape varieties, for different meteorological
conditions, and at different stages of grape development. As yield
estimation errors are found to be lower than 10%, the proposed
radar technique is suitable for precision viticulture applications.

Index Terms—classification, passive microwave remote sensing,
precision agriculture, precision viticulture, radar imaging, remote
sensing, radar polarimetry.

I. INTRODUCTION

PRECISION agriculture (PA) is a well-known concept
originally based on the observations of spatial variabilities

within agricultural plots [1]. PA was developed with the help of
localization techniques, such as precision Global Positioning
System (GPS) [2], remote sensing technologies and variable-
rate technologies [3]. Precision viticulture (sometimes referred
as PV) is part of PA, but specifically dedicated to viticulture
and vineyard issues. It was applied for the first time by
Bramley et al. [4] to map variabilities of the yield collected
and measured by a grape yield monitor. Many data of interest
in vineyards can be remotely measured with ground-based
systems, such as vine vigor [5], water stress [6], apparent soil
electrical conductivity [7] or anthocyanin concentration [8].

A fundamental feature of vineyard is its yield. The term
yield in viticulture usually refers to the mass or volume of
harvested grapes per cultivated area. Throughout this paper,
it is the mass (in kilograms) of harvested grapes. Yield
is monitored to predict the annual profitability, to estimate
losses during severe meteorological conditions, to anticipate
the logistic for the harvest, and in some circumstances (e.g.
for obtaining the appellation of origin label) to regulate the
yield per vine plant. Before the harvesting, the yield is usually
estimated from the detection of grapes using optical systems.
One of such optical detection system was originally proposed
in 2006 [9], and nowadays smartphone applications are devel-
oped for counting 3D reconstructed grape berries [10]. Optical
sensors offer actually many advantages: they are cheap, easy
to use, and the physical interpretations of measurement can
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be easily performed. However, it may have some drawbacks
for the yield estimation. First, images of grapes are generally
two-dimensional and do not render a volume. Nevertheless,
it can be replaced by stereovision cameras [11]. Moreover,
grapes hidden by leaves or woods are hardly detectable and
tying might be necessary to remove leaves before the optical
measurement. Because of the variable luminosity in the vine-
yard, camera calibrations may also be required for properly
detecting grapes. Last but not least, grape detection may also
be difficult for white and green varieties since they share the
same colors with the surrounding vegetation.

To estimate the yield, another solution investigated by
the Authors of the present study was to use various prox-
imal ground-based radar sensors [12] operating at sub-
millimeter-waves (24GHz) and millimeter-waves (77GHz and
122GHz). At these frequencies, these sensors are able to detect
centimeter-size electromagnetically reflective objects, such as
vine grapes. Other approaches to measure the yield with radar
are also investigated at lower frequencies [13]. Moreover,
a volume information can be derived from radar data from
the beamscanning of the scene. At millimeter-wave frequency
ranges, grapes hidden by leaves can be detected. Finally, unlike
optical sensors, radars are not sensitive to ambient luminosity
or color, and no calibration is needed.

Our previous works [12] show that 122GHz proxi-
mal frequency-modulated continuous-wave (FM-CW) ground-
based radar sensors with large modulation bandwidth may
lead to the accurate estimation of the yield with a precision
lower than 10%. However, on the one hand, the sensors
were stationary and on the other hand, the beamscanning
was performed vine plant per vine plant. Consequently, the
required measurement time was not suitable in practice for
estimating the yield of large vineyards. Moreover, yield statis-
tical estimators were built with few radar data obtained from
a very limited number of vine plants (25 or less) and have not
been validated for larger data set and various meteorological
conditions. For these reasons, we investigate in this paper the
estimation of the yield in viticulture by using a millimeter-
wave (122GHz) radar sensor mounted on a remotely controlled
rover that moves along the furrows between vine rows. With
such system, patented by Véronèse et al. [14], large amount
of data can be collected and new yield statistical estimators
can be both defined and validated. With the proposed dynamic
estimation, several novelties are pointed out regarding to [12].
First new specific issues need to be solved to accurately derive
the yield from radar measurement, such as the compensation of
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eventual variation of the rover’s speed during the displacement
along the furrows, or the investigation of the validity domain
of new yield statistical estimators. The beamscanning is also
modeled in order to take into account many key parameters in
the estimation of the yield. It also implies the development
of new signal processing techniques to estimate the yield.
In particular, the proposed classification of segmented radar
echoes is novel and might be applied to various applications.
Finally, the present study is based on significantly larger
number of measurement data obtained during a two-year
period. Indeed, a large amount of radar data was collected
in 2019 and 2020 from various grapes varieties of the same
vineyard and at different stages of grape development. This
allowed us to define, test and validate a more accurate yield
estimator. The radar measurements, which were carried out
from July to September for various stages of grape growth,
have been used to investigate the limitations of the proposed
yield estimator.

The paper is organized in three Sections. Section II de-
scribes the material and methods. It includes the description of
the vineyard and the dozen of black and white grape varieties
that have been selected for various meteorological conditions.
The beamscanning of the radar is then described and simulated
in order to design the system and determine its key parameters,
such as, the speed of the rover and the measurement repetition
time of the radar. Section III focuses on signal processing
steps leading to the yield statistical estimation. It includes the
segmentation of radar echoes with isolines (as defined in [15])
and the classification of radar echoes into two classes referred
as clutter and grapes and clutter. Finally, following the
methodology proposed by the Authors in [16], the precision
of the yield estimation is analyzed from various configurations
of transmitted and received electric fields. In Section IV, the
precision of yield estimation is discussed.

II. MATERIAL AND METHODS

A. Vineyard Description

Measurements are performed in a plot of the IFV (Vine and
Wine French Institute, France) near the city of Gaillac (South-
West of France) during 2019 and 2020 summers. This plot is
a collection of multiple varieties of black and white grapes
sorted by vine row. Each vine row is composed of 48 to 54
vine plants separated by a distance of 1 meter. The furrows
(that is, gaps between rows) are 2 meters large. Moreover,
the soil between rows is alternatively ploughed and grassy.
The ground-truth value of the yield is manually determined
during the harvest (in 2019 and 2020) and for six consecutive
vine plants. Throughout the paper, these six consecutive vine
plants are referred as a group of vine plants. The tying (known
as double cordon de Royat) is the same for all vine plants:
vertical metallic stakes are located between each group and
three horizontal metallic wires support the vine plants. A
photograph of a vine row is given in Fig 1. As observed on
this picture, leaves are numerous and hide the grapes. The total
yield of each vine row is reported in Table I. Each vine row
is composed of 8 to 9 groups of 6 vineplants, and the mean
and standard deviation per group are also reported. Large yield

differences are observed, depending on the grape variety and
year. As an example, vine row R12 (Tempranillo variety) has
yields of 81.9kg in 2019 and 193.5kg in 2020.

irrigation hose
wood stake

iron stake

group of 6 vine plants

Fig. 1. Typical vine row (Négrette variety, 08-31-2020) at the IFV (Vine and
Wine French Institute, France) vineyard where dynamic radar measurements
have to be performed for estimating the yield before the harvest.

(a) (b) (c) (d)

Fig. 2. Photographs of the same vine grape at four different periods of the
year: (a) 07-01-2020, (b) 07-22-2020 , (c) 08-17-2020 and (d) 09-07-2020

Moreover, the yield is estimated at different periods of the
year, and sometimes for different measurement configurations,
as indicated in Table II. During the radar measurement,
relevant meteorological conditions (such as wet weather or
high humidity) as well as the polarization configurations (V V
and HH) and minimal (θmin) and maximal (θmax) elevation
angles are stored (see Section II-B for the definition of the
polarization configurations, and Section II-D for the definition
of elevation angles). In 2019, the radar measurements were
performed at the end of the summer and consequently, the
grapes have reached their final volume. In 2020, they started
earlier (early July) and therefore, the yield estimation is
expected to be less accurate than one derived from the radar
data obtained in 2019. This can be illustrated in Fig 2 which
shows photographs of the same grape taken from early July
to late August. Note that the grapes reach their final volume
around mid-August.

B. Reader Description

The reader used for the yield estimation is the 122GHz
FM-CW radar (EasyRadar) manufactured by Silicon Radar
GmbH [17]. It transmits a chirp at the base frequency fb
of 119.3GHz and the modulation bandwidth B of 6.5GHz.
The theoretical depth resolution is d=2.3cm. The frequency
modulation is a saw-tooth signal with the up-ramp duration
Tup=50µs. The received signal is averaged from a group of
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TABLE I
YIELDS (IN KILOGRAMS) OF VINE ROWS MANUALLY MEASURED IN 2019 AND 2020 AFTER THE HARVEST

total (kg)∗ mean (kg)† std (kg)†
row number variety 2019 2020 2019 2020 2019 2020

R3 Alicante-Bouschet (N) 139,0 188,3 17,4 23,5 9,6 6,7
R4 Négrette (N) 61,8 83,3 7,7 10,4 2,8 2,4
R5 Grenache (N) 78,8 87,7 9,9 11,0 4,4 5,6
R6 Cabernet Sauvignon (N) 93,2 80,7 11,6 10,1 4,6 3,2
R7 Cabernet Franc (N) 101,7 90,2 12,7 11,3 2,9 4,3
R8 Merlot (N) 115,7 141,0 14,5 17,6 3,3 5,4
R9 Gamay (N) 151,2 122,1 18,9 15,3 3,5 4,6
R10 Mourvèdre (N) 156,6 152,7 19,6 19,1 4,8 9,1
R11 Pinot Noir (N) 131,5 92,7 16,4 11,6 3,5 3,0
R12 Tempranillo (N) 81,9 193,5 10,2 24,2 7,7 6,7
R17 Sauvignon Blanc (B) 106,3 NH 11,8 NH 2,8 NH
R18 Semillon (B) 156,3 NH 17,4 NH 3,1 NH
R19 Chardonnay (B) 95,6 NH 10,6 NH 3,3 NH

NH : not harvested; (N) : black variety; (B) : white variety;
std : standard deviation
∗ : represents the mass of grapes of the entire vine row (8 or 9 groups of 6 vineplants)
† : mean and std are computed per group of 6 vineplants

TABLE II
RADAR MEASUREMENTS CONFIGURATIONS USED IN 2019 AND 2020

datea θmin - θmax polarization
configura-
tion

vine rows notes

07-30-2019 0◦ - 30◦ HH 3-8 rain
08-08-2019 0◦ - 30◦ HH 3-8 humidity
08-22-2019 10◦ - 40◦ HH 3-4
08-27-2019 10◦ - 40◦ HH 3-12 17-19 rain
09-03-2019 10◦ - 40◦ HH 3-12 17-19
09-12-2019 10◦ - 40◦ HH 3-12 17-19 humidity
09-23-2019 10◦ - 40◦ HH 3-12 17-19 harvest∗
07-01-2020 10◦ - 40◦ VV and HH 3-12
07-08-2020 10◦ - 40◦ VV and HH 3-12
07-13-2020 10◦ - 40◦ VV and HH 3-12
07-22-2020 10◦ - 40◦ VV and HH 3-12 rain
08-17-2020 10◦ - 40◦ VV and HH 3-12
08-31-2020 10◦ - 40◦ VV and HH 3-12
09-07-2020 10◦ - 40◦ VV and HH 3-12 losses
09-30-2020 10◦ - 40◦ VV and HH 3-12 harvest
a : mm-dd-yyyy format
∗ : ’harvest’ means that grapes are harvested, thus they are not present
in the beamscanned scene

Nramp=4 successive ramps transmitted with the repetition
time Trep varying from 25ms to 30ms. The number of signal
samples is NS=256 and the sampling of the beat frequency
spectrum is NS

2 =128. The front-end of the radar is composed
of 1 Tx and 1 Rx linearly-polarized and identical patch anten-
nas combined with a dielectric lens of half-power beamwidth
±θA=4◦. The transmitted power is Pout=5dBm and the gain
of the receiver amplifier is set to GRx=56dB. During the mea-
surements performed in 2019, a single radar with horizontally
polarized (transmitting and receiving) antennas was used. The
corresponding polarization configuration is denoted here by
HH. For the measurements performed in 2020, two 122GHz
FM-CW radars are used, one includes horizontally-polarized
(Tx and Rx) antennas while the other uses vertically-polarized
(Tx and Rx) antennas. Main parameters of the radar are
reported in Table III. The polarization configuration available
from the radar using V-polarized antennas is denoted by VV.
As illustrated in Fig 3, the two radars (HH 122GHz FM-CW
radar and VV 122GHz FM-CW radar) are mounted on a tilt

mechanical platform and embedded to a rover which moves
along the furrows of the plot.

tilt mechanical

platform

VV 122GHz

FM-CW radar

HH 122GHz

FM-CW radar

moving

vector

Fig. 3. Photograph of the mobile remote sensing system. In 2019, only the
HH FM-CW radar was used. In 2020, both HH and VV FM-CW radar were
used during the experiment for the estimation of the yield.

TABLE III
RADAR MAIN PARAMETERS

base frequency fb 119.3GHz
modulation bandwidth B 6.5GHz
depth resolution d 2.3cm
up-ramp duration Tup 50µs
successive averaged ramps Nramp 4
repetition time Trep 25-30ms
number of signal samples NS 256
maximal range Rmax 2.9m
transmitter power Pout 5dBm
receiver gain GRx 56dB
echo level range lmin - lmax -140dB to +80dB
echo level resolution δl 1dB
ADC frequency fADC 5.143 MSamples.s−1

half-power beamwidth (lens) θA φA ±4◦

C. Beamscanning Description

To illustrate the beamscanning method, the geometrical
approach illustrated in Fig 4 is proposed. One radar is located
at the point Pk and at height h0 from the ground. We consider
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the point M illuminated by the kth chirp transmitted by the
radar. The Cartesian coordinates of the point M are then given
by:

xk = v × k × Trep

yk = z0 × tan(θk) + h0

zk = z0

(1)

where z0 denotes the normal separation distance between
the radar and the vine row, v is the time-dependent speed of
the rover during its displacement along the X-axis, and θk
designates the elevation angle of the radar Tx-antenna main
lobe for the kth chirp. This angle depends on the angular speed
of the mechanical scanning, denoted by ω, as follows:

θk =

{
θmin + ω × k × Trep, if ∆θ ≤ ω × k × Trep

θmax − ω × k × Trep, if ∆θ > ω × k × Trep

(2)

where θmin and θmax are respectively the minimal and max-
imal elevation angles (the angle θk is a periodic function
of period ∆θ

ω and magnitude ∆θ=θmax-θmin). Moreover, the
surface centered at the point M is considered in the XY-plane
which is illuminated by the main lobe of the radar Tx-antenna.
The contour of this surface is approximately the ellipse of
semi-axes ak and bk given by:

ak = 1
2 (tan(θk + θA)− tan(θk − θA))

bk = zk × tan(φA)
(3)

where θA and φA are the half-power beamwidths of the
transmitting antenna in the vertical and horizontal planes,
respectively.

Z

Y

O

X

Fig. 4. Geometrical illustration of the beamscanning performed by the radar
placed on the rover during its displacement along the furrows of the plot
(v denotes the uniform speed of the rover along the X-axis and the angular
frequency of the Tx antenna rotation).

The ellipse is computed from the following parameters:
θA=4◦, φA=4◦, Trep=30ms, z0=1.2m, h0=30cm, ω=60◦.s−1,
θmin=10◦ and θmax=40◦. It is displayed in Fig 5 when the
rover moves from X=0m to X=2m at the constant speed v of
0.2m.s−1 (Fig 5a) and 0.4m.s−1 (Fig 5b). These patterns are
very similar to those obtained from the so-called SAR-mode
scan imagery [18]. When the speed v of the rover increases,
a smaller surface of the scene at z=z0 is illuminated. To
estimate the grapes that are scanned by the radar during its
displacement, we suppose that position (x, y, z) of a grape is

given by the multivariate probability density function (PDF)
defined as follows:

P(x, y, z) = U(x)× Φµy,σy (y)× Φµz,σz (z) (4)

where U is the uniform probability density function and Φµ,σ

the normal probability density function of mean µ and standard
deviation σ. We assume here that the positions x, y and z
are uncorrelated variables with parameters µy=0.8m, σy=0.1m,
µz=1.3m and σz=0.1m. According to equation (4), the average
rate of scanned grapes is then given by:

Γscan =

Nscan∑
n=1

P(nx, ny, nz) (5)

where Nscan denotes the number of voxels in the scanned
volume, and (nx, ny, nz) are the coordinates of the nth voxel.
Γscan is displayed in Fig 6a as a function of the speed
v of the rover and repetition time Trep. The rover moves
along the X-axis from X=0m to X=6m with a depth from
Z=1.0m to Z=1.6m. As expected, the average rate of scanned
grapes increases when the rover decelerates, and the repetition
time decreases. Markers in red and blue indicate mean value
(crosses) and standard deviation (triangles) of v and Trep for
measurements obtained respectively in 2019 and 2020. For
the measurements performed in 2019, the average number
of scanned grapes is estimated to 80% for the mean speed
of 0.34m.s−1 and the mean repetition time of 26ms±0.9ms.
In 2020, the average number of scanned grapes is estimated
to 95% for the mean speed of 0.19m.s−1 and the mean
repetition time of 32ms±0.9ms. These estimations remain
valid as long as the probability density function P(x, y, z) is
correctly modeled. If the proposed 3D PDF model is off-center
with respect to the beam-scanned volume, the factor Γscan

decreases and the amount of unscanned grapes increases. As
a result, estimation error increases. Moreover, our geometrical
model used for designing the system and determining its key
parameters (such as the repetition time of the radar) does not
take into account the contributions of the electromagnetic clut-
ter (wood, leaves, metallic wires, etc), the multiple reflections
generated in the scene, the sidelobes of radar antennas, and
the grapes that are hidden when the vine plant is scanned by
the radar main lobe.

D. Beamscanning Implementation

The radar beamscanning of the vine rows described in
Section II-C is performed mechanically, as illustrated in Fig
7a. The rover is remotely controlled and drives along the
furrows at the distance R from vine plants and at the speed
v. The CPU of the rover is a Raspberry Pi 3 Model B and
the beamscanning routine runs with a Python3 environment.
One or two 122GHz FM-CW radars are mounted on the tilt
mechanical platform installed on the rover. The beamscanning
in elevation is performed at the angular speed of ω=60◦.s−1

and at height h0=30cm. The elevation angle goes alternatively
up and down from the minimal elevation angle θmin=10◦ to
the maximal angle θmax=40◦. Because tour rover was not able
to drive on a ploughed soil, the beamscanning was performed
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(a)

(b)

Fig. 5. Geometrical illustration of the illuminated surface in the (XY ) plane
at z0=1.2m for (a) v=0.2m.s−1 and (b) v=0.4m.s−1. Regions in blue estimate
the elliptical surfaces illuminated by the main lobe of the radar transmitting
antenna, while blue circles indicate the point M . In black are displayed lines
that are tangential to the semi-axes of the ellipses.
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Fig. 6. (a) Average rate of scanned grapes Γscan as a function of the rover
speed v and repetition time Trep for X=[0m-6m] and Z=[1m-1.6m]. (θA=4◦;
φA=4◦; h0=30cm; ω=60◦.s−1; θmin=10◦; θmax=40◦; µy=0.8m; σy=0.1m;
µz=1.3m; σz=0.1m); (b) Zoom of the left figure. Mean value (crosses) and
standard deviation (triangles) for radar measurements performed in 2019 (in
red) and 2020 (in blue) as a function of the rover speed and repetition time.

alternatively on the left or right sides of the vine row in order
to drive the rover on grassy soil exclusively, as illustrated in
Fig 7b. The distances travelled by the rover dback and dfront
are estimated by two wheel encoders integrated respectively
on the left front and right back wheels. The speed of the rover
is derived from the following equation:

v =
1

2

dback + dfront
Nchirps × Trep

(6)

where Nchirps is the total number of chirps transmitted by the
radar during the measurement. In Fig 6a, the mean speed of
the rover was found to be of 0.34±0.05m.s−1 in 2019 and
0.19±0.02m.s−1 in 2020. Due to ground irregularities of the
grassy soil traveled by the rover, the speed v and height h0

may vary during the measurement time. Note that dback and
dfront, and therefore v, are estimated with a time resolution
representing an elevation cycle (0.5 second), as described in
steps (iii)-(iv) of the flowchart in Fig 8.

(a)

(b)

Fig. 7. (a) Illustration of the beamscanning of a vine row performed by the
mobile remote sensing device (rover) at the speed v and angular speed ω.
(b) Illustration of the beamscanning (top view). The beamscanning cannot be
performed on a ploughed soil by the rover. Consequently, the beamscanning
is performed alternatively on the left or right side of the vine row in order to
drive the rover exclusively on grassy soil.

III. YIELD ESTIMATION

A. Pre-processing of the Radar Image to Focus on the Range
of Interest

The radar image is derived from the so-called time-distance
matrix MTD (dimensions Nchirps×NFFT ) resulting from the
measurement of Nchirps beat frequency spectra (steps (i)-(ii)
in Fig 8). An example of radar image is displayed on Fig
9a from the measurement campaign performed in 09-07-2020
(R10 - Mourvèdre variety - group 5). To obtain this image,
vine plants were beamscanned during 5.9s. The maximal range
of interrogation is Rmax=d.NS

2 =2.95m. Echo levels of the
vine plants are located at ranges between 1.2m and 2.1m.
We observe a range oscillation of the radar echoes due to
the movement of the tilt mechanical platform, which modifies
periodically the elevation angle from θmin=10◦ to θmax=40◦,
as discussed in Section II-D. High signal levels measured at
very close interrogation distances (< 50cm) are due to the
electromagnetic coupling between Tx and Rx antennas of the
radar. A range focusing algorithm is now proposed in order
to select only the region of the image which may contain the
radar echoes of the vine plants (step (v) in Fig 8):

• We remove the 30 first range bins of the image and the
last 5 range bins. Therefore, the coupling between the Tx
and Rx antennas as well as eventual radar echoes from
other vine rows are not suppressed from the radar image;

• Radar echo levels lower than the pre-defined threshold
Thr are replaced by the value MTD+δthr, where MTD

is the mean value of echo level in the radar image MTD

and δthr=5dB;
• Next, a Canny edge filter [19] is applied with a Gaussian

filter of standard deviation σCanny=10. The resulting
filtered matrix is a binary image illustrated in Fig 9b;
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Fig. 8. Flowchart of the dynamic beamscanning and signal processing steps leading to the yield estimation.

• For each range bin, the number of white pixels are
computed within a sliding window of 5 range bins. The
mean front range of the vine row, denoted by Rfront, is
the lowest range which includes the highest number of
white pixels. The mean back range Rback of the vine row
is the largest range which includes the highest number
of white pixels. The mean range of the vine row is
Rmiddle=Rfront+Rback

2 . Rfront, Rmiddle and Rback are
indicated by dashed lines respectively in magenta, cyan
and yellow colors in Fig 9b.

From the described steps, radar image is obtained for radar-
to-vine plants distances ranging from Rfront to Rback and
from which the yield will be estimated. Moreover, for all
radar measurements made in 2019 and 2020, the estimated
average distance Rmiddle is of 1.5m±10cm. Values of δthr and
σCanny may be chosen by performing a parametric analysis.

Lets define σRfront
and σRback

the standard deviations of
respectively Rfront and Rback estimated along a given vine
row. σRfront

and σRback
are plotted in Fig 10a and 10b as a

function of δthr and σCanny along all furrows at date 09-07-
2020. Large variations of σRfront

and σRback
are observed

for σCanny < 5. By choosing δthr=5dB and σCanny=10,
Rfront and Rback are estimated with variations lower than
10cm between groups of vineplants.

B. Time-Distance to Distance-Distance Conversion

As mentioned in Section II-D, the speed v of the rover is
not constant during the radar measurement. It is illustrated in
Fig 11a where v is plotted as a function of the measurement
duration T=Trep×Nchirps obtained in 2019 (red crosses) and
2020 (blue crosses). It can be observed that the speed estimated
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(a)

(b)

Fig. 9. (a) Time-distance radar image obtained from measuring a group of
vine plants during 5.9s (R10 - Mourvèdre variety - part of group 5 - 09-07-
2020) (b) Filtered radar image after applying a Canny edge filter. Magenta,
yellow and cyan dashed lines represent respectively the estimated front range
Rfront, back range Rback and mean range Rmiddle of the vine row.

(a) (b)

Fig. 10. Standard deviations of (a) Rfront and (b) Rback estimated along
all furrows at date 09-07-2020 as a function of δthr and σCanny .

in 2019 and 2020 varies differently. The v
T slope is higher

in 2019, and radar data obtained in 2019 and 2020 present
different time-speed characteristics. Consequently, either the
speed of the rover or the repetition time is poorly estimated.
Since the repetition time is controlled electronically with the
same standard deviation of ±0.9ms in 2019 and 2020, the
most likely reason is that wheel encoders estimate the real
covered distance with poor accuracy. For example, wheels
adhesion may depend on the speed of the rover and it might
be overestimated in 2019. Moreover v and T are strongly
correlated (the Pearson correlation coefficient is actually of
-0.92). Consequently, it may impact the yield estimation if
this estimation is performed on the time-distance radar image
MTD described in Section III-A. Indeed, the yield estimation
reported in Section III.E is based on the number of pixels.
The estimation error increases when pixels do not represent
the same surface. For low rover speeds, the yield may be over-

estimated and inversely, for high rover speeds, the yield may
be underestimated. To overcome this issue, the time-distance
radar image MTD is converted into a distance-distance radar
image MDD composed of pixels of size d × dx where dx is
the cross-range resolution (step (vi) in Fig 8). The conversion
is made using a spline interpolation function [20] with a
zoom footprint of size (fx,fR). The cross-range zoom factor
is fx=v.Trep

dx
with a chosen cross-range resolution dx=1cm.

The range zoom factor is fR=2 . The converted radar image
MDD is therefore a matrix of dimensions NX × NFFT .fR,
with NX=int(dback+dfront

2.dx
), where int is the entire function.

In Fig 11b the speed of the rover is plotted as a function
of the number of pixels NX for measurements obtained in
2019 (red crosses) and in 2020 (blue crosses). As desired,
NX and v are now uncorrelated parameters (the Pearson
correlation coefficient is of 0.18). We note that the time-speed
characteristics of 2019 and 2020 data offer slightly different
NX values: NX has a mean value of 578±27 in 2019 and
of 558±64 in 2020. We may expect an overestimation of the
yield in 2019 (compared with the estimation obtained in 2020).

2019

2020

(a)

2019

2020

(b)

Fig. 11. (a) Speed of the rover v as a function of the measurement time
T from the time-distance radar image MTD . (b) Speed of the rover v as a
function of the number of pixels NX from the distance-distance radar image
MDD derived from the time-to-distance conversion.

C. Radar Echoes Classification

To analyze each radar echo, an algorithm based on the
marching square algorithm is applied [21]. The segmentation
is described in details in [15] and represented by step (vii)
in Fig 8. It generates isolines with an adaptative threshold.
Here are the main parameters used for the segmentation: the
minimal threshold of echo level is -110dB; the minimal surface
enclosed by an isoline is 4px2; the maximal number of local
peaks of echo level enclosed by an isoline is 4. An example of
segmentation applied to the matrix MDD (see Section III-B)
is shown in Fig 12 (R10 - Mourvèdre variety - group 5 - 09-
07-2020). The four following features are extracted from the
segmented radar echoes :

• the maximum echo level emax of the radar echo. It is
indicated by blue to red colors in Fig 12;

• the mean echo level emean of the radar echo;
• the standard deviation echo level estd of the radar echo;
• the number N of pixels of the radar echo. The area of

one pixel is d
fR

× dx = 1.15cm2.
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Fig. 12. Radar image MDD (R10 - Mourvèdre variety - part of group 5 -
09-07-2020). Coloured lines represent isolines used for the segmentation of
radar echoes. Blue (-100dB) to red (-60dB) colors indicate the value of the
extracted feature emax.

Note that these four features were previously defined in [12]
to estimate the yield from using stationary radars. To mitigate
the clutter, the classification of radar echoes from the four
features emax, emean, estd and N is performed. To reduce
the number of features and decrease the computation time,
we apply the PCA (Principal Component Analysis), which
consists of computing four orthogonal components modeling
the set of data is applied. The obtained relative variances of
the four computed orthogonal components p1, p2, p3 and p4
are respectively 75.3%, 17,1%, 7.0% and 0.6%. Most of the
data (75.3%) is represented by the first component p1 of the
orthogonal basis. Only 0.6% of the data is represented by the
fourth component. Consequenlty we reduce here the dimen-
sions of the data to three principal orthogonal components p1,
p2 and p3.

We consider for the classification two classes (step (viii)
in Fig 8). Class 0 is called clutter and represents radar
echoes from unwanted electromagnetic scatterers (wood,
leaves, metallic wires...). Class 1 is called grapes and clutter
and represents radar echoes of grapes including the above-
mentioned clutter. The classification is built from the KNN
(K-nearest neighbors) method on the segmented radar echoes
with K=40. The value of K will be discussed later in this
Section. Note that scales, PCA and classifications described
here are performed using algorithms reported in [22] with the
following training data:

• For class 0 (clutter): all segmented radar echoes from the
date 09-30-2020 (after the harvest) of vine rows R3, R6,
R7, R9, R10 and R12. In this case, there is no grapes
in the vine plants;

• For class 1 (grapes and clutter): segmented radar echoes
from the dates 08-17-2020, 08-31-2020 and 07-09-2020
of vine rows R3, R6, R7, R9, R10 and R12. To mitigate
the clutter, radar echoes ranging from Rfront to Rmiddle

are chosen (that is, at distances for which grapes may
be present in the scanned vine plants). Moreover, only
groups of vine plants for which the yield is at least of
15kg are processed.

Testing data are identical to training data, but with different
vine rows (R4, R5, R8, and R11). Confusion matrices of
training and testing data are displayed in Table IV for HH
and V V polarization configurations. For HH polarization
configuration, the classification score is 76.7% for the training
data (17103 radar echoes), and 77.3% for the testing data

(8855 radar echoes). The most relevant result is that 62.7% of
the actual training data of class 1 (i.e. grapes and clutter) are
true positive (71.5% for the testing data). This means that more
that 60% of segmented radar echoes in presence of grapes
offer features different that from segmented radar echoes of
clutter only. In comparison, the percentage of true positive in
V V polarization configuration drops down to 29.0% for the
training data (27.4% for the test data). Our first hypothesis of
this effect is that the clutter may impact more significantly
the radar echoes in V V polarization configuration than in
HH polarization configuration. This result may be explained
by the strong contribution to the V-polarized backscattered
electromagnetic field of vertically oriented reflective objects in
the vineyard, such as, trunks of vine plants or metallic stakes.
These results should be confirmed in the future with more
measurement data obtained from various polarization config-
urations. Consequently, only radar data in HH polarization
configuration will be used for the yield estimation. It includes
measurements obtained in 2019 and 2020 (see Table II).

The KNN classifier is tested in HH polarization configu-
ration for various values of K. Training and testing data are
those used in the previous paragraph. The error rate of the
classification is displayed as a function of K in Fig 13. The
asymptotic behavior, reported in [23], provides the error rate
of 22%. By choosing K=40, the error rate is close to the
asymptotic value without excessive computation time.

TABLE IV
CONFUSION MATRICES IN HH AND VV POLARIZATION CONFIGURATIONS

HH
training

predicted
testing
predicted

0 1 0 1

actual
0 8454

(87.4%)
1208

(12.5%)
5113

(79.4%)
1320

(20.5%)

1 2775
(37.2%)

4666
(62.7%)

689
(28.4%)

1733
(71.5%)

score: 76,7% (training); 77,3% (testing)
number of data: 17103 (training); 8855 (testing)

VV
training

predicted
testing
predicted

0 1 0 1

actual
0 9299

(87.8%)
1287

(12.1%)
5801

(83.4%)
1152

(16.5%)

1 4875
(70.9%)

1999
(29.0%)

1705
(72.5%)

646
(27.4%)

score: 64,7% (training); 69,2% (testing)
number of data: 17460 (training); 9304 (testing)

D. Features Analysis

The values of the four features N , emax, emean and estd
are now compared for the Class 0 (clutter) and Class 1 (grapes
and clutter). In Fig 14 are displayed the distributions ϕ of these
features for true positives (blue triangles) and true negatives
(red triangles) of training and testing data. As observed, ϕN
has higher values for the Class 1 grapes and clutter and for
a number of pixels from 8 to 12 pixels (that is, from 9.2
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Fig. 13. Error rate of the KNN classifier as a function of K value for the
HH polarization configuration.

to 13.8cm2). The mean value difference of ϕN between true
positives and true negatives is 0.8 pixels (i.e. 1.0cm2). For this
class, the mean values of distributions ϕemax

, ϕemean
and ϕestd

are higher than those for the Class 0 grapes and clutter. The
mean value differences of ϕemax

, ϕemean
and ϕestd between

true positives and true negatives are respectively 13.0dB,
10.6dB and 1.0dB. This result was expected as grapes contain
water, they strongly backscatter the incident electromagnetic
field and consequently, the radar echo level is higher before
than after the harvest. As a result, the correlated measured
features N , emax, emean and estd increase.

true positives (grapes and clutter)

true negatives (clutter)

Fig. 14. Distributions ϕ of the four features N , emax, emean and estd for
true positives (grapes and clutter; blue triangles) and true negatives (clutter;
red triangles) radar echoes of training and testing dataset.

Another analysis consists of estimating the range R of each
radar echo level. Since it is composed of several pixels, the
location of the radar echo is defined as the barycenter range
coordinate of the isoline that segments the radar echo. The
distribution ϕR of the computed range is displayed in Fig
15a for true positives (blue triangles) and true negatives (red
triangles) of training and testing data. We observe a shift
between the two distributions: the mean range of radar echoes

is 1.52m for Class 1 and 1.66m for Class 0. The reason is
illustrated in Fig 15b where isolines are displayed for the
MDD radar image (see Section III-C) before and after the
harvest (09-07-2020). Red to blue colored isolines indicate
the predicted probability for a radar echo to belong to the
Class 1. Thus, radar echoes segmented by red colored isolines
belong to Class 1 with a probability of 0%, while radar echoes
segmented by blue colored isolines belong to Class 1 with a
probability of 100%. Before the harvest, most of the radar
echoes in Class 1 are at ranges for which highest echo levels
are found. After the harvest, the number of radar echoes in
Class 1 decreases and is more evenly distributed between
Rfront and Rback.

true positives (grapes and clutter)

true negatives (clutter)

(a)

2.00

before harvest

after harvest

(clutter) (grapes and clutter)

(b)

Fig. 15. (a) Distribution ϕR of the range R for true positives (grapes and
clutter; blue triangles) and true negatives (clutter; red triangles) radar echoes
of training and testing dataset. (b) Segmented radar echoes of the radar image
MDD (R10 - Mourvèdre variety - part of group 5) before the harvest (09-07-
2020) and after the harvest (09-30-2020). Red (0) to blue (1) colors indicate
the predicted probability for a radar echo to belong to the class grapes and
clutter.

E. Definitions for the Estimation of the Yield

The classification proposed in Section III-C is used to build
an estimator of the yield from radar images in HH polarization
configuration (step (ix) in Fig 8). We define the statistical
estimator of the yield as follows:

est0 = a× (

M∑
m=1

pm ×Nm)b (7)

where Nm denotes the number of pixels of the mth radar
echo, and pm is the probability for the mth radar echo to
belong to the Class 1 (grapes and clutter). M designates the
total number of radar echoes in the Class 1 (i.e, for pm > 0.5),
and a and b are two positive and real numbers. According to
the definition of equation (7), we expect that the yield increases
with the number of pixels of the Class 1. Moreover, if all
radar echoes belong to the Class 0 (clutter), the estimated
yield should be zero. Values of a and b are computed with the
non-linear least square method [24] for groups of vine plants
with yield of at least 12kg measured at the following dates:
09-12-2019, 09-07-2020 and 08-31-2020. The yield estimator
is defined at these dates for a maximum variability since low
and high speeds are used for the radar data obtained in 2019
and 2020, respectively. We obtain a=8.6×10−2 kg.pixels−b

with b=8.8×10−1. The statistical estimator est0 is plotted as
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a function of the measured (ground truth) yield in Fig 16a
and 16b at the following dates: 09-12-2019 (red crosses), 09-
07-2020 (blue crosses) and 08-31-2020 (green crosses). Each
cross represents the combined summation of yields for several
groups of vine plants, such as the smallest yields are measured
from single groups of vine plants while the largest yield is
the summation of all measured yields. We observe different
estimations: the yield estimations obtained in 09-07-2020 and
08-31-2020 are found very close, while they differ in 2019.
To evaluate the validity of the proposed estimator, the relative
error of yield estimation is defined as follows:

ε =
|yest − ymeas|

ymeas
(8)

where yest and ymeas denote respectively the estimated and
measured (ground truth) yields. The relative error is displayed
in Fig 16c and 16d. Error ε in 09-07-2020 (blue crosses) and
08-31-2020 (green crosses) are identical and tend to 25% as
the measured yield increases. In date 09-12-2019 (red crosses),
ε is smaller than the symbolic limit of 10% (in black dashed
line). These results demonstrate that the statistical estimator
est0 for the yield estimation defined in Equation (7) provides
inaccurate results for measurements performed both in 2019
and 2020. One possible cause of this inaccuracy is the speed-
time characteristics difference between 2019 and 2020 (see
Section III-B). To overcome this issue, next paragraph reports
a solution for enhancing the accuracy of the yield estimation
from radar data obtained with different rover’s speeds.

09 12 2019

(a)

09 12 2019

(b)

019

(c)

09 12 2019

(d)

Fig. 16. (a)-(b) Estimated yield est0 and (c)-(d) relative error ε as a function
of the measured yield for combined summation of yields (>12kg) of several
groups of vine plants at dates 09-12-2019 (red crosses), 09-07-2020 (blue
crosses) and 08-31-2020 (green crosses).

According to our previous works [15], the presence or
absence of fruits (grapes or apples) in the scanned scene
may have an impact on the average size of segmented radar

echoes. In presence of grapes, the so-called condensation of
the segmented radar echoes (or set of isolines) generates an
increase of the pixel number of the segmented radar echoes
as the total number of segmented radar echoes decreases.
Inversely, a fragmentation of the segmented radar echoes is
observed in absence of grapes. These observations may be
advantageously used here to accurately estimate the yield
for different speeds of the rover. For this purpose, the mean
number N of pixels of segmented radar echoes of class grapes
and clutter is defined by the following expression:

N =
1

M

M∑
m=1

Nm (9)

From equations (7) and (9), a new second statistical estimator
of the yield is defined as follows:

est1 = ξc,d(N )× est0
with ξc,d(x) =

1
2 (1 + tanh(c× x+ d))

(10)

where c and d are real numbers and such that the function
ξc,d is defined in ℜ and 0 ≤ ξc,d(x) ≤ 1 for all x values.
Since est1 depends also on est0, the values of a, b, c and
d can be computed from the non-linear least square method
with the data used in Section III-E. We obtain a=5.9×10−2

kg.pixels−b, b=9.8×10−1, c=0.7 pixels−1 and d=-3.6. Note
that b is close to 1 and est0(M) is considered linear. The
resulting yield estimation est1 is plotted in Fig 17a and Fig
17b as a function of the measured (ground truth) yield at the
following dates: 09-12-2019 (red crosses), 09-07-2020 (blue
crosses) and 08-31-2020 (green crosses). In comparison with
est0, both 2019 and 2020 data fit better the ground-truth value
of the yield. The relative error ε is plotted in Fig 17c and Fig
17d: it is smaller than 10% (black dashed line) for a measured
yield of 780kg or more. We conclude that the contribution
of the function ξc,d improves significantly the accuracy of
the yield estimation for different speeds of the rover. To
understand its role , ξc,d is plotted in Fig 18 as a function
of N for the computed values c=0.7 pixels−1 and d=-3.6.
Since c >0, ξc,d is an increasing function. For higher values
of N , that is, for the condensation of the set of segmented
radar echoes, both ξc,d and est1 increase according to (10).

F. Yield Estimation Results

Yield estimator est1 computed in Section III-E is first
validated on radar data for which the yield per group is of 12kg
or more. The estimated yield and relative error are displayed
in Table V for all measurements. We observe that one month
before the harvest (starting at 8-27-2019 and 8-17-2020), the
relative error ε does not exceed 5% for various meteorological
conditions (such as rain at date 8-27-2019 or humidity at 09-
12-2019). In 2020, the estimated yield increases from 548.0kg
(40.6%) to 890.4kg (2.1%). As explained in Section II-A,
this result was expected since the volume of grapes increases
significantly from July to August. Note that the yield is also
estimated after the harvest (09-23-2019 and 09-30-2020). The
slight overestimation of the yield at date 31-08-2020 may
be explained by losses of grapes observed between 08-31-
2020 and 09-07-2020. We assume that these unexpected losses



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 11

(a) (b)

019

020

(c)

019

020

(d)

Fig. 17. (a)-(b) Estimated yield est1 and (c)-(d) relative error ε as a function
of the measured yield for combined summation of yields (>12kg) of several
groups of vine plants at the dates 09-12-2019 (red crosses), 09-07-2020 (blue
crosses) and 08-31-2020 (green crosses).

Fig. 18. ξc,d as a function of N for the computed values c=0.7 pixels−1

and d=-3.6.

were caused by animal or human interventions. At 09-30-
2020, the estimated yield is of 280.9kg for 46 groups of
vine plants (6.1kg per group). This value is the minimal
detectable yield per group of 6 vine plants with the used
beamscanning. Below this threshold, grapes and clutter are
not easily distinguishable. At 09-23-2019, the estimated yield
is abnormally high (1121.7kg for 66 groups of vine plants)
with a minimal detectable yield per group of 6 vine plants
of 17.0kg. A possible explanation of this overestimation is
proposed in Section IV-F.

The yield estimator est1 is also computed for all yield
values and reported in Table VI. We note that the error on
the total yield estimation does not change significantly but as
it will be shown in Section IV-A, the variation of the relative
error is higher when the yield estimation is computed for all
yield values. The estimated yield after the harvest in 2020 is of
377.9kg for 64 groups of vine plants. The minimal detectable

yield is then 5.9kg per group of 6 vine plants.

TABLE V
ESTIMATED YIELD AND RELATIVE ERROR FROM MEASUREMENTS
PERFORMED IN 2019 AND 2020 AND YIELD PER GROUP >12KG.

datea measured (kg) estimated (kg) ε (%)
07-30-2019 711.8 773.9 8.7
08-08-2019 711.8 722.7 1.5
08-22-2019 132.0 123.3 6.6
08-27-2019 1142.5 1184.4 3.7
09-03-2019 1142.5 1164.7 1.9
09-12-2019 ∗ 1142.5 1168.6 2.3
09-23-2019 0 1199.0 -
07-01-2020 922.4 548.0 40.6
07-08-2020 922.4 739.5 19.8
07-13-2020 922.4 791.1 14.2
07-22-2020 922.4 796.9 13.6
08-17-2020 † 922.4 898.5 2.6
08-31-2020 † ∗ 922.4 942.4 2.2
09-07-2020 † ∗ 922.4 890.4 3.5
09-30-2020 † 0 280.9 -
estimator est1 is computed with a=5.9×10−2 kg.pixels−b,
b=9.8×10−1, c=0.7 pixels−1 and d=-3.6
a : mm-dd-yyyy format
† : training data for yield per group>15kg and vine rows R3, R6,
R7, R9, R10 and R12
∗ : data used to compute estimator est1

TABLE VI
ESTIMATED YIELD AND RELATIVE ERROR FROM MEASUREMENTS

PERFORMED IN 2019 AND 2020 FOR ALL YIELDS

datea measured (kg) estimated (kg) ε (%)
07-30-2019 897.8 1013.5 12.9
08-08-2019 897.8 945.0 5.3
08-22-2019 200.7 279.7 39.4
08-27-2019 1469.4 1541.6 4.9
09-03-2019 1469.4 1516.2 3.2
09-12-2019 ∗ 1469.4 1511.9 2.9
09-23-2019 0 1581.2 -
07-01-2020 1232.3 732.0 40.6
07-08-2020 1232.3 1020.8 17.2
07-13-2020 1232.3 1098.1 10.9
07-22-2020 1232.3 1116.7 9.4
08-17-2020 † 1232.3 1241.1 0.7
08-31-2020 † ∗ 1232.3 1283.8 4.2
09-07-2020 † ∗ 1232.3 1240.3 0.6
09-30-2020 † 0 377.9 -
estimator est1 is computed with a=4.7×10−2 kg.pixels−b,
b=9.7×10−1, c=1.0 pixels−1 and d=-4.7
a : mm-dd-yyyy format
† : training data for yield per group>15kg and vine rows R3, R6,
R7, R9, R10 and R12
∗ : data used to compute estimator est1

IV. DISCUSSION

A. Comments on the Relative Error of Yield Estimation

The relative error reported in Section III-F for the total
yield does not highlight the relative error ε at smallest plot
scales. In Fig 19a, the estimations provided by est1 for high
yields (in blue crosses) and for all yields (in red crosses)
are reported at the date 09-07-2020. The relative error is
also plotted in Fig 19b. In both cases, the relative error
decreases when the measured yield increases, that is, when the
surface of the beamscanned plot increases. This phenomenon
is explained by the average effect that occurs during the
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computation of the estimator est1 with the non-linear least
square method. Individual groups of vine plants may present
higher relative errors due to various environmental conditions
(such as different wood shapes, hidden grapes or the variable
rover speed), but the relative error converges to an average
value when the total number of groups of vine plants increases.
As long as b is close to 1, est1 is approximately linearly
dependent on the yield (see equation (7)) and the relative error
does not exceed 10% when the surface of the beamscanned
plot increases. The function ξc,d tends to a limit as the surface
of the beamscanned plot increases, as this function depends
on the average number of pixels of segmented radar echoes
N (see equations (9)-(10)).

Moreover, the relative error of the yield estimation is higher
when all yields are estimated: the relative error does not exceed
10% (black dashed line in Fig 19b) when the measured yield
is larger than 750kg. For all yields, the relative error of the
estimation does not exceed 10% when the measured yield
is higher than 1100kg. These results can be explained from
the increasing difficulty to distinguish grapes from the clutter
for low yield values (<12kg per group of 6 vine plants).
As a result, the standard deviation of the relative error is
higher when est1 is computed for estimating all yields, and
the convergence of ε to its limit is slower. As expected,
performing the yield estimation for different scenarios and
various environmental conditions increases the relative error
of the yield estimation.

(a) (b)

Fig. 19. (a) Estimated yield est1 and (b) relative error ε as a function of the
measured yield for combined summation of yields at date 09-07-2020 for all
yields (red crosses) and high yields >12kg per group of 6 vine plants (blue
crosses) only.

B. Impact of the Rover Speed on the Yield Estimation

The choice of a rover as a moving platform was a flexible
solution to investigate the feasibility and limitations of the
yield estimation from a dynamic beamscanning. Future work
will consist of performing measurements at various speeds and
with different agricultural vehicles, such as quad or straddle
tractors. Yield estimation was performed with a rover speed
comprised between 0.1m.s−1 and 0.5m.s−1. With other agri-
cultural vehicles, the speed will increase (1m/s or more). Thus
we may expect an increase of the yield estimation error per
scanned surface plot, but compensated by larger beamscanned
plot surfaces. To evaluate the impact of the rover speed on the
yield estimation error, the cross-range resolution dx defined

in Section III-B is degraded on purpose from dx=1cm to
dx=10cm and the size of the zoom footprint (fx=v.Trep

dx
,fr)

decreases when dx increases. From a mathematical point
of view, degrading the cross-range resolution is equivalent
to increase the repetition time Trep or the rover speed v
(however it does not take into account physical impacts such
as Doppler effects). An example of radar image MDD (R7-
Cabernet-Franc variety - group 7 - 09-07-2020) for cross-range
resolutions dx=1cm, dx=5cm and dx=10cm are displayed
respectively in Fig 20a, 20b and 20c. Computed isolines of
radar echoes are also represented by solid color lines. Impact
of the increasing cross-range resolution is clearly visible on
radar images: it modifies values of features N , emax, emean

and estd.

(a)

(b)

(c)

Fig. 20. Radar image MDD (R7- Cabernet-Franc variety - group 7 - 09-07-
2020) and computed isolines for (a) dx=1cm, (b) dx=5cm and (c) dx=10cm.

The yield estimator est1 defined in Section III-F is com-
puted for values of dx varying from 1cm to 10cm. To compare
pixels of equivalent surfaces, the estimator is re-built with
the updated feature dx × fr × dR × N instead of the initial
feature N defined in Section III-C. The re-built yield estimator
est1 at date 07-09-2020 is plotted on Fig 21a as a function
of the cross-range resolution and mean speed of the rover.
In this figure, est1 is normalized by the yield estimation
obtained for dx=1cm such as est1,norm(dx) =

est1(dx)
est1(dx=1cm) .

As observed, est1,norm decreases when dx increases because
of the variations features values emax, emean and estd. The
underestimated yield can be compensated by the proposed
linear model (blue solid line on Fig 21a) obtained from a
linear regression. Slope of -0.10 cm−1 and intercept of 1.08 are
obtained with a correlation coefficient R2=0.96 and a standard
error of 0.05. The underestimated yield may be compensated
in the future by adding the speed of the rover as a new feature
of the radar echoes classification.

The corrected yield estimator est1 and its relative error ϵ are
displayed respectively on Fig 21b and Fig 21c as a function of
the measured yield. Blue, green and red crosses represent est1
at date 07-09-2020 for rover speeds of 0.3m.s−1, 1.5m.s−1

and 3m.s−1. As expected the yield estimation error increases
with the speed of the rover (i.e. with the resolution of the
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radar image MDD). This effect is enlightened by plotting
the mean relative error of ϵ computed over all data at date
07-09-2020 as a function of the cross-range resolution and
rover speed on Fig 21d. The mean relative error is lower than
15% for dx=1cm and reaches values greater than 40% for
dx=10cm. Consequently, to obtain equivalent mean relative
errors at a higher speed, yield estimations should be performed
on larger plot surfaces. These results obtained by degrading
the resolution of radar images will be confirmed in the future
with measurements at higher speeds.

,n
o

r
m

(a)

(b) (c)

(d)

Fig. 21. (a) Normalized yield estimator est1,norm as a function of the
cross-range resolution dx and mean speed of the rover v at date 09-07-2020.
(b) Corrected yield estimator est1 and (c) relative error ϵ as a function of
the measured yield at date 09-07-2020 for rover speeds of 0.3m.s−1 (blue
crosses), 1.5m.s−1 (green crosses) and 3.0m.s−1 (red crosses). (d) Mean
relative error ϵ computed over all measurements at date 07-09-2020 as a
function of the cross-range resolution and rover speed.

Up to now, mechanical vibrations and trajectory deviation of
the rover (due to ground irregularities) have not been compen-
sated during the yield estimation. When strong deviations are
observed, a range compensation algorithm could be applied
in order to correct the magnitude of radar echoes. Mechanical
vibrations and trajectory deviation should be minimized with
the use of agricultural vehicles.

C. Impact of Meteorological Conditions and Grapes Varieties
on the Yield Estimation

As reported in Table II, measurements were performed for
various meteorological conditions. For example, there was a
light rain at date 08-27-2019 and it had no major influence
on the yield estimation: the estimated yield is 1541kg at
date 08-27-2019, and 1516kg at date 09-03-2019. However,
heavy rain may impact the yield estimation: a large amount
of water drops on wood or leaves may increase the level
of undesirable electromagnetic clutter. Moreover, strong wind
may alter the yield estimation by moving the vegetation. Yield
estimation with these particular meteorological conditions can
be investigated in future studies.

We may also note that the yield has been estimated indepen-
dently of the grape variety or color (see Table I). It is possible
because the yield estimation relies only on the electromagnetic
backscattering of the grapes at millimeter-waves. Thus, colors
of grapes do not impact the yield estimation from radar data,
unlike optical solutions.

D. Data Size and Computation Time

The raw data is recorded in a binary file, and the radar
echo level of one pixel is a 8 bytes number. By including
additional files such as parameters of measurements, the mean
data size of a measured group of 6 vine plants with one radar
is 16.9ko (216.8Mo for all measurements performed in 2020
with the two radars). The computation time of the different
steps leading to the generated isolines per group of 6 vine
plants is reported in Table VII. These steps are:

• Step called "MTD corrections" (not detailed in this paper)
which includes a range shift correction and redundant
data removal that may occur during the communication
between the radar and the embedded CPU. This step takes
17.6% of the computation time;

• Step called "range focus" which is described in Section
III-A. This step takes 0.6% of the computation time;

• Step called "generating MDD" which is detailed in
Section III-B. This step takes 0.9% of the computation
time and it depends mainly on chosen values for dx and
fr;

• Step called "generating isolines" which is described in
Section III-C. This step takes 80.9% of the computation
time.

As observed, the computation time is mainly determined from
the radar echoes segmentation algorithm. Different parameters
can be tuned in order to reduce the computation time, such
as the dimensions of MDD or the minimal threshold of echo
level. In return, the accuracy of the yield estimation might be
impacted.

E. Influence of θmin and θmax on the Yield Estimation

We note that θmin and θmax have different values at the
dates 07-30-2019 and 08-08-2019 (0◦ and 10◦, see Table II).
The impact of this 10◦ elevation shift can be evaluated by
comparing yield estimations for high yield values (Table V)
and all yield values (Table VI). For high yield values, the
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TABLE VII
MEAN COMPUTATION TIME OF THE MAIN PROCESSING STEPS PER

GROUP OF 6 VINE PLANTS

steps computation
time (ms)a

computation
time (%)

MTD corrections 953 17.6
range focus 34 0.6
generating MDD 51 0.9
generating isolines 4390 80.9

a: performed with Intel® Core™i5-3330 CPU @
3.00GHz × 4 and 7.7 Gio Memory

elevation shift seems to have no influence (the relative error of
the estimation does not exceed 8.7%). For all yield values, the
relative error is higher (12.9% at 07-30-2019). At these dates,
grapes did not reach their final volume and the mass of grapes
might be overestimated. The reason is that between 0◦ and
10◦ are located horizontal metallic wires and irrigation hoses
that may add clutter in the HH configuration polarization.
Therefore it is preferable to illuminate the beamscanned scene
with an elevation angle higher than 10◦. However, performing
a beamscanning with the higher maximal elevation angle
θmax generates segmented radar echoes at a larger range R.
According to Fig 15a, these segmented radar echoes have a
small impact on the yield estimation, as most of these echoes
originate from the clutter (Class 0).

F. Possible Reasons for Explaining the Overestimation of the
Yield at the Date 09-23-2019

Several reasons may explain the overestimation observed at
the date 09-23-2019 :

• In 2019, the radar was mounted on a platform which
was 10 cm lower than the height used in 2020. Then
the beamscanned scene may include horizontal irrigation
hoses generating more clutter in HH polarization con-
figuration;

• Aliasing may occur on the beat frequency spectra deliv-
ered by the radar due to, e.g., the undesirable detection
of obstacles or vine rows by the side lobe of the radar
Rx-antennas;

• The signal-to-noise ratio of the radar used in 2019 was
found to be lower that one used in 2020.

To confirm or refute these hypotheses, more investigations will
be made in future works based on, e.g., the tuning the number
of time samples NS or the modification of the radar height
h0.

V. CONCLUSION

Based on a novel statistical estimators, we have demon-
strated in this paper that accurate estimation (<10%) of
the vineyard yield can be obtained before the harvest from
using millimeter-wave radars mounted on a rover that moves
along the furrows between vine rows. The estimation has
been obtained for various grape varieties and meteorological
conditions. As no particular precautions have been taken to
the control the displacement of the rover (such as, its speed
or lateral movement) or to minimize the vibrations, roll or

pitch, these results are very encouraging and pave the way of
the systematic estimation of the yield before the harvest in
viticulture. The proposed technique may be applied to other
type of fruits in orchards.
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