
HAL Id: hal-03525068
https://laas.hal.science/hal-03525068

Submitted on 13 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A project scheduling problem with periodically
aggregated resource-constraints

Pierre-Antoine Morin, Christian Artigues, Alain Haït, Tamás Kis, Frits C.R.
Spieksma

To cite this version:
Pierre-Antoine Morin, Christian Artigues, Alain Haït, Tamás Kis, Frits C.R. Spieksma. A project
scheduling problem with periodically aggregated resource-constraints. Computers and Operations
Research, 2022, 141, pp.105688. �10.1016/j.cor.2021.105688�. �hal-03525068�

https://laas.hal.science/hal-03525068
https://hal.archives-ouvertes.fr

A project scheduling problem with periodically aggregated1

resource-constraints2

Pierre-Antoine Morin1,2 Christian Artigues1 Alain Haït2,1 Tamás Kis3
3

Frits C.R. Spieksma4
4

1 LAAS CNRS, University of Toulouse, CNRS, Toulouse, France.5

2 ISAE SUPAERO, University of Toulouse, Toulouse, France.6

3 MTA SZTAKI, Hungarian Academy of Sciences, Budapest, Hungary.7

4 Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven,8

The Netherlands.9

Abstract10

We consider the so-called periodically aggregated resource-constrained project scheduling problem. This11

problem, introduced by Morin et al. 2017, is a variant of the well-known resource-constrained project scheduling12

problem that allows for a more flexible usage of the resource constraints. While the start and completion times of13

the activities can be arbitrary moments in time, the limitations on the resource usage are considered on average14

over aggregated periods of parameterized length. This paper presents new theoretical and experimental results15

for this problem. First, we settle the complexity status of the problem by proving NP-hardness of a number16

of special cases of the problem. Second, we propose a new mixed-integer programming formulation of the17

problem by disaggregating the precedence constraints over the periods. A theoretical comparison shows that the18

new formulation dominates the previously proposed one in terms of relaxation strength. Finally, we carry out19

computational experiments on instances from the literature to compare the merits of the different formulations.20

21

keywords: Project Scheduling; Periodic Aggregation of resource-constraints; Computational complexity;22

Mixed-integer linear programming23

1 Introduction24

In the extensively studied standard resource-constrained project scheduling problem (RCPSP), at any time, the sum25

of the requirements of the activities that are currently processed must not exceed the resource capacity. This scheme26

permits to generalize a wide range of scheduling problems. However, in some practical applications, the time27

horizon is divided uniformly into consecutive intervals, and only the average activity requirements on each interval28

is considered. This aggregated form of resource constraints appears notably in employee scheduling where the29

load generated by the different activities and its compatibility with the number of present employees is evaluated30

on average in each shift (Paul and Knust 2015). However, the schedule of the activities can, and often should31

be determined on a more precise time scale for specific reasons such as the necessary anticipation for the usage32

1

of scarce resources or the contractual relationships with suppliers and customers (Artigues et al. 2009). Another33

example can be found in manufacturing or smart building applications, where the electricity consumption of jobs34

is only computed in intervals fixed by the electricity provider while the schedule of the jobs can be more detailed35

(Haït and Artigues 2011). In the literature, averaging the resource demand of activities inside fixed length periods36

has been proposed for problems with variable-intensity activities: the rough cut capacity planning (RCCP) (Hans37

2001) and the resource-constrained project scheduling problem with variable intensity activities (RCPSVP) (Kis38

2005). An extension of the RCPSP with partially renewable resources, entitled RCPSP/Π, has been introduced by39

Böttcher et al. (1999), that allows to define intervals with specific rules for resource consumption. However, the40

formulations proposed by Hans for the RCCP and by Kis for the RCPSVP do not involve variables representing41

start times; moreover, there is no assumption (a priori) nor algorithm (a posteriori) that provides values for start42

times. However, the average “energy” (duration × demand) is an explicit variable. For a given solution (average43

energy of each activity on each resource in each period), resource constraints induce bounds on start times for44

compatible schedules (i.e. schedules whose energy profile matches the solution). In some cases, any such schedule45

is precedence-infeasible. For the RCCP, a workaround has been proposed, but might fail. For the RCPSVP, in order46

to avoid this phenomenon, for each predecessor/successor pair, the standard end-to-start precedence constraint is47

replaced with the following constraint: if the predecessor completes in period `, then the successor may start only48

in period `+ 1 or later, which leads to overconstrained precedence constraints, compared to the standard ones. In49

both cases, no start times are involved. Apart from being undesirable for the above-mentioned specific reasons,50

generally, this enforcement also has a strong negative impact on the scheduling objectives.51

For the RCPSP/Π, start times must coincide with sub-interval bounds and so can be seen as discrete variables:52

because of this, not only optimal but also feasible solutions, possibly even all of them, may be excluded.53

This paper focuses on the Periodically Aggregated Resource-Constrained Project Scheduling Problem54

(PARCPSP), introduced in Morin et al. (2017), that permits to address this modification of resource constraints,55

while considering the activity start times as continuous variables. In organizations, this model allows to consider56

decisions at an intermediate level between planning at the tactical level for the resource limitation constraints and57

scheduling at the operational level for time windows and precedence constraints.58

Let us consider the following example (cf. figure 1), with a project composed of two activities and one resource59

(cf. figure 1a). Each activity has one unit processing time and a unit resource consumption, while the resource has60

one unit capacity. We suppose that the activities are not subject to a precedence relation. In the case of the RCPSP,61

the resource is disjunctive: the standard cumulative resource constraint forbids that the activity execution windows62

overlap, even partially. However, if these resource constraints are aggregated over time periods, e.g. of unit length,63

such that the total average request should not exceed the resource capacity, then there exists feasible schedules such64

that the two activities overlap, and even start and complete at the same moments in time. More precisely, among65

such schedules, some remain infeasible (cf. figure 1b), while others become feasible (cf. figure 1c). This example66

will be further commented in section 2.67

In Morin et al. (2017), a mixed-integer linear programming (MILP) formulation and heuristics are discussed,68

while the problem itself is conjectured to be NP-complete. The aim of the current paper is, first, to establish69

2

A1

A2

R

1

(1)

1

(1)

(1)

(a) Project instance

t

0 1 2

A1

A2

`
1 2

1

2

(b) Infeasible solution

t

0 1 20.5 1.5

A1

A2

`
1 2

1

2

(c) Feasible solution

Figure 1: Example #1

the NP-completeness of the PARCPSP, with various restrictions on the input, to highlight non-standard structural70

properties of this problem and, second, to propose alternative mixed-integer linear programming formulations with71

tighter relaxations.72

The paper is structured as follows. In section 2, the PARCPSP is defined formally and compared to traditional73

resource-constrained project scheduling problems. In section 3, the PARCPSP is proved to be strongly NP-hard,74

by focusing on the computational complexity characterization of three particular cases. In section 4, the MILP75

formulation proposed in Morin et al. (2017) is recalled and a new formulation is proposed. The new formulation is76

shown to dominate the previous formulation in terms of LP relaxation. Computational experiments to compare the77

new formulation with the previous one are given in section 5. Finally, in section 6, some concluding remarks are78

drawn and possible extensions of the problem are discussed.79

2 PARCPSP – Problem statement80

In this section, we formally introduce the problem studied. It is a variant of the extensively studied Resource81

Constrained Project Scheduling Problem (RCPSP), based on a temporal aggregation of resource constraints over82

periods defining a uniform subdivision of the time horizon, hence the name Periodically Aggregated Resource83

Constrained Project Scheduling Problem (PARCPSP).84

2.1 Input and notations85

The input of the problem can be split into two independent parts.86

3

• On the one hand, a project instance X is considered. An activity set and a resource set are given. Activities87

require a given amount of capacity on some or all resources throughout their execution. They cannot be88

interrupted: preemption is not allowed. Precedence relations possibly exist between activities.89

The notations related to the project instance are listed hereafter.90

A Finite set of n activities

R Finite set of m renewable resources

pi Processing time of activity i ∈A

bk Capacity of resource k ∈R

ri,k Request (demand) of activity i ∈A on resource k ∈R

E ⊆A ×A ; precedence relations (arc list)

Let X the set of project instances.91

• On the other hand, the time horizon is divided uniformly into L periods of parameterized length ∆∈R>0. The92

convention chosen for period numbering is represented in figure 2.93

−2∆ −∆ 0 ∆ 2∆ 3∆ 4∆

−1 0 1 2 3 4 `

t

Figure 2: Uniform subdivision of the time horizon

A solution is a vector S = (Si)1≤i≤n ∈ Rn, where Si is the start date of activity i ∈ A . The start date and the94

completion date of the project are denoted by S0 = mini∈A (Si) and Sn+1 = maxi∈A (Si + pi), respectively.95

2.2 A formulation of the PARCPSP96

Let S ∈ Rn a solution of the PARCPSP. We consider two alternative objective functions linked to the temporal

execution of the project.

Cmax = Sn+1 (project makespan)

dur(S) = Sn+1−S0 (project duration)

Notice that, for the PARCPSP, unlike the RCPSP, these two objectives are not equivalent, because there is97

no guarantee that, for any of these objectives, at least one activity starts at t = 0 (hence S0 > 0). This is further98

discussed in section 2.5. Moreover, if we set S0 ≥ 0, the problem defined with objective duration is indeed a99

relaxation of the one defined with objective makespan, since Sn+1 =Cmax.100

101

Two families of constraints are taken into account.102

1. Precedence constraints103

For each arc (i1, i2) ∈ E, activity i1 has to complete before activity i2 starts.104

4

2. Resource constraints (periodically aggregated)105

For each resource k ∈R, in each period ` ∈ Z, the sum of the average requests of the activities cannot exceed106

the capacity of the resource.107

Let di,`(S) ∈ [0,∆] denote the execution duration of activity i ∈A in period ` ∈ Z depending on solution S, i.e.,

di,`(S) is the length of the intersection of two intervals: the execution interval of activity i, and period ` (figure 3).

di,`(S) = |[Si,Si + pi]∩ [(`−1)∆, `∆]|

= max
(

0 , min
(
Si + pi , `∆

)
−max

(
Si , (`−1)∆

))

t
0 4 8 121 2 3 5 6 7 9 10 11

Si = 2
pi = 9

di,1(S) = 2 di,2(S) = 4 di,3(S) = 3

∆ = 4

Figure 3: Evaluation of the execution duration in aggregated periods

Notice that, given a solution S, the expression of the average request of activity i ∈A on resource k ∈R over

period ` ∈ Z is ri,k
di,`(S)

∆
. Therefore, the PARCPSP can be formulated as follows:

Minimize dur(S) (1)

subject to Si2−Si1 ≥ pi1 ∀(i1, i2) ∈ E (2)

∑
i∈A

ri,k
di,`(S)

∆
≤ bk ∀k ∈R , ∀` ∈ Z (3)

Remark. Activities may start at any time within a period. In other words, the PARCPSP permits to tackle start and108

completion events in a precise way, as well as precedence constraints, while the resource consumption is evaluated109

on average over (aggregated) periods.110

Remark. Notice that the formulation is easily adjusted when capacities depend on the period, in which case bk is111

replaced by bk,`. Non uniform period length can similarly be obtained by replacing ∆ by ∆`.112

In the following, the notation PARCPSP[X ,∆] is used to identify the problem instance considered, composed of113

a project X ∈X and a period length ∆ ∈ R>0. Similarly, the notation RCPSP[X] is used.114

2.3 Conditions for the existence of feasible schedules115

Let X ∈X be a project instance and ∆ ∈ R>0 a (fixed) period length.116

• The precedence constraints are satisfiable iff the precedence graph is acyclic.117

• Let i ∈A . Let k ∈R. Let S denote a feasible solution of PARCPSP[X ,∆]. Let `i = 1+
⌊Si

∆

⌋
denote the period118

in which activity i starts (i.e. such that (`i−1)∆≤ Si < `i∆).119

– If pi ≥ 2∆120

The execution window [Si,Si + pi] fully includes period `i+1. So, in this period: ri,kdi,`i+1(S) = ri,k∆≤121

bk∆. Hence: ri,k ≤ bk.122

5

– If pi < 2∆123

The least restrictive configuration is such that the middle of the execution window is a period bound124

(otherwise by shifting the activity in any direction, the maximum overlapping with the left or the right125

period increases, which increases the maximum resource requirement of the activity among all periods)126

i.e.: Si +
pi
2 = `i∆. In this case, di,`i(S) = di,`i+1(S) =

pi
2 while di,`(S) = 0 in all other periods ` ∈127

Zr {`i, `i +1}. In other words, the demand of activity i is split equally over two consecutive periods.128

So, the resource constraints in periods `i and `i +1 result in the same inequality: ri,k
pi
2 ≤ bk∆.129

Hence: ri,k ≤ bk
2∆

pi
130

Therefore, the (aggregated) resource constraints are satisfiable iff :

∀i ∈A ∀k ∈R ri,k ≤ bk max
{

1,
2∆

pi

}

Remark If the project instance X satisfies the following conditions, then, whatever the value of ∆ (period length),131

there exist feasible schedules.132

• The precedence graph is acyclic.133

• ∀i ∈A ∀k ∈R ri,k ≤ bk134

2.4 Comparison with the RCPSP135

A possible formulation for the RCPSP is:

Minimize dur(S) (4)

subject to Si2−Si1 ≥ pi1 ∀(i1, i2) ∈ E (5)

∑
i∈At(S)

ri,k ≤ bk ∀k ∈R , ∀t ∈ R (6)

In this formulation, At(S) denote the set of activities in progress at t ∈ R depending on solution S.

At(S) =
{

i ∈A
∣∣ t ∈ [Si,Si + pi)

}
Notice that the only difference between the RCPSP and the PARCPSP lies in the definition of the resource136

constraints, which are evaluated either exactly at each instant t ∈R or on average in each (aggregated) period ` ∈ Z137

(see figure 4), which makes the PARCPSP a relaxation of the RCPSP.138

Another way of viewing this is to consider the impact of very small ∆. Indeed, if ∆ becomes small, then, given139

the definition of di,`(S), intervals ` in which the activity is processed will be completely occupied by the activity,140

and hence feature di,`(S) = 1. This means that, as ∆ becomes smaller, formulation (1)-(3) converges to formulation141

(4)-(6).142

2.5 Impact of aggregation on resource feasibility143

Finally, let us consider two simple examples, respectively in figure 1 page 3 (example 1, already investigated in the144

introduction), and in figure 5 page 8 (example 2).145

6

t
0 4 8 121 2 3 5 6 7 9 10 11

Si = 2
pi = 9 ∆ = 4

`

Request

1 2 3
0

1
4 ri,k

1
2 ri,k

3
4 ri,k

ri,k

PARCPSP

RCPSP

Figure 4: Evaluation of activity demands on resources

Example 1 We recall that, in this example, the project instance X1 ∈X (see figure 1a) is composed of a single re-146

source of capacity 1 and two identical activities (same processing time equal to 1, same request on the resource equal147

to 1) with no precedence relations. We consider solutions such that the two activities are executed simultaneously,148

i.e. S1 = S2 (so, the project duration is equal to 1).149

For the RCPSP[X1], such solutions are not feasible, since they violate resource constraints (evaluated at150

each instant). An optimal solution is obtained by executing one activity at a time, with no idle time; hence151

Opt(RCPSP[X1]) = 1+1 = 2.152

Let us consider a uniform subdivison of the temporal horizon, with periods of length ∆ = 1. What about the153

feasibility of such solutions for the PARCPSP[X1,1] ?154

• If S1 = S2 = 0, then both activities are completed at t = 1, i.e. both execution windows match exactly the first155

period (`= 1). In this period: d1,1(S) = d2,1(S) = ∆. Therefore, the average request of each activity is equal156

to ∆

∆
= 1. So, as shown in figure 1b, the sum of the average requests in this period (= 2) exceeds the capacity157

of the resource (= 1). Hence this solution is not feasible.158

• If S1 = S2 = 0.5, then both activities are completed at t = 1.5, i.e. both execution windows are split equally159

over two consecutive periods (` ∈ {1,2}). In these periods: d1,`(S) = d2,`(S) = ∆

2 . Therefore, the average160

request of each activity is equal to ∆/2
∆

= 1
2 . So, as shown in figure 1c, the sum of the average requests in these161

periods (= 1) does not exceed the capacity of the resource (= 1). Hence this solution is feasible.162

Indeed, this solution is optimal (since the two activities run in parallel, no other configuration can lead to a163

shorter project duration).164

This first example enhances the following points.165

• Even when resources have a constant capacity over time, in the case of the PARCPSP, unlike the RCPSP,166

shifting a schedule can affect its feasibility.167

• The gap between the optimum of the RCPSP and the PARCPSP can be large (here 50%) even with unit168

periods (∆ = 1). In fact the example shows that the standard resource capacity lower bound equal to169

maxk∈R ∑i∈A ri,k pi/bk is not a valid lower bound for the PARCPSP.170

7

For this particular instance, the project duration is reduced by dispatching the average requests equally over two171

consecutive periods. However, the rule “the more periods used, the shorter the project duration” does not apply to172

all instances, as shown in the next example.173

A1

A2

A3

R

1

(3)

2

(4)

1

(3)

(5)

(a) Project instance

t

0 1 2 3 40.5 2.5

A1

A2

A3

`
1 2 3 4

1

2

3

4

5

(b) Feasible solution

t

0 1 2 3 40.5 1.5 2.5 3.5

A1

A2

A3

`
1 2 3 4

1

2

3

4

5

(c) Infeasible solution

Figure 5: Example #2

Example 2 The project instance X2 ∈X is composed of a single resource with capacity 5 and three activities with174

one precedence relation (see figure 5a for the numerical parameter values). We still consider unit periods (∆ = 1).175

• As shown in figure 5b, the solution (0,0.5,2) is feasible. It is not optimal: one can shorten the project duration176

by shifting activity 1 to the right for an amount of 1/6 and shifting activity 3 to the left for an amount of 1/6,177

leading to a duration of 2.5.178

Notice that 3 periods are intersected by at least one activity execution window.179

• As shown in figure 5c, the solution (0.5,1,2.5), obtained by shifting the previous solution by +0.5, is not180

feasible. It is possible to repair it, by shifting activities 1 and 3 by −1
6 and +1

6 , respectively, thus enlarging181

the project duration by 1
3 but now using 4 periods.182

Therefore, we showed that the feasibility of a schedule depends not only on the relative positions of activity183

execution windows as in the RCPSP, but also on their absolute positions, which determines the average resource184

usage in aggregated periods. This problem has consequently fundamental differences with the related RCPSP.185

8

3 Complexity186

The complexity of the problem was left open in Morin et al. 2017. This section first establishes that the problem is187

in NP, even if the time horizon is not part of the input. Then, the computational complexity of three particular cases188

are considered, which yields the complexity result for the PARCPSP.189

3.1 Inclusion in NP190

To check whether a start time solution vector is feasible w.r.t. a fixed makespan requires checking the resource and191

the precedence constraints. Since the number of time periods over a time horizon which covers both S0 and Sn+1192

may not be bounded by a polynomial in the size of the input, computing the average resource consumption in every193

time period is not a viable approach to check the feasibility of a schedule in polytime. Testing resource constraints194

only in periods where the resource usage increases is sufficient. Recall that activities may start at any time in a195

period, and that preemption is not allowed. Therefore, each activity i ∈A may increase the resource usage only in196

two periods: the period when it starts
(
`i = 1+

⌊Si
∆

⌋)
, and possibly the next one. So, for each activity, at most two197

periods have to be checked. A single test in a given period on a given resource consists in verifying that the sum of198

the mean demands of the activities is not greater than the capacity of the resource.199

This yields an algorithm in O (1+ |E|+m×2n×n), thus polynomial in the input size.200

3.2 One resource, constant capacity201

Theorem 1. The PARCPSP with makespan objective and a single resource of fixed capacity b ≥ 2 is weakly NP-202

hard.203

Proof. We show that PARTITION ≤P PARCPSP. In the PARTITION problem (Karp 1972), we have n items, and204

each item i has a size ai ≥ 1. All the data is integral, and ∑i ai is an even integer. Is there a partitioning of the items205

into two subsets S1 and S2, such that S1∩S2 = /0, S1∪S2 = {1, . . . ,n}, and ∑i∈S1 ai = ∑i∈S2 ai ?206

For any instance of the PARTITION problem, we define an instance of PARCPSP as follows. There is a single207

resource of capacity 2. There are n activities, activity i corresponds to item i in the PARTITION problem instance,208

and it has processing time pi := 2ai. The resource requirement of each activity is 1 from the single resource during209

its execution. We let ∆ = 1. We claim that the PARTITION problem instance has a YES answer if and only if the210

corresponding instance of PARCPSP admits a feasible schedule of length (∑n
i=1 pi)/2.211

First suppose that the PARTITION problem instance has a YES answer. Then it must be the case that212

∑i∈S1 pi = ∑i∈S2 pi = (∑n
i=1 pi)/2. We define the following schedule: the activities corresponding to the items in213

S1 are scheduled in a single sequence from time 0 onwards. Notice that each activity starts and ends at integral214

time points. This sequence occupies one unit of the resource from time 0 to time (∑n
i=1 pi)/2. Now schedule all the215

activities corresponding to the items in S2 in any sequence from time 0 onwards. Again, this sequence finishes at216

time (∑n
i=1 pi)/2. Since ∆ = 1, the total capacity of the resource is 2 in each interval [t−1, t]. Further on, in each in-217

terval [t−1, t] with t ≤ (∑n
i=1 pi)/2, the total resource usage is 2, because exactly two activities are processed in the218

intervals, each requiring one unit from the resource. Therefore, the schedule is feasible, and all jobs are completed219

by time (∑n
i=1 pi)/2.220

9

Conversely, suppose there is a feasible schedule of length (∑n
i=1 pi)/2.221

Claim 1a. In any feasible schedule of length (∑n
i=1 pi)/2, exactly two units of resource are used in each interval.222

Proof. The total resource requirement of the activities is ∑
n
i=1 pi. Since the total capacity of the resource from time223

0 to time (∑n
i=1 pi)/2 is equal to (∑n

i=1 pi), the claim follows. �224

Claim 1b. Exactly two activities start at time 0.225

Proof. Suppose it is not the case. Observe that there can be at most two activities processed in the interval [0,1],226

because if there were 3 or more activities starting in the interval [0,1], then all these 3 or more activities should be227

processed throughout the interval [1,2], as each activity is of length 2 or more (pi = 2ai, and ai ≥ 1). But this is228

impossible, because the resource has capacity 2, and the activities would require 3 or more units of the resource.229

Now suppose that less than 2 activities start at time 0. Then the resource usage of the activities in interval [0,1] must230

be less than 2, which contradicts claim 1a. �231

So far we have shown that exactly two activities start at time 0 in the feasible schedule. Since the processing232

times are integral, these two activities finish at integral time points, at t1 and t2, say. If t1 = t2, then we can repeat the233

same argument to show that there are exactly two activities starting right at time t1 = t2. If t1 6= t2, then without loss234

of generality, t1 < t2. Then in the interval [t1, t1 + 1], one unit of the resource is used by the activity which is still235

in progress. Since both t1 and t2 are divisible by 2 (as each pi is divisible by 2), t2 ≥ t1 +2, and again, at most one236

activity may start in the interval [t1, t1 +1], otherwise in the interval [t1 +1, t1 +2] the total resource usage would be237

more than 2. It follows that a new activity must be started at time t1, otherwise in the interval [t1, t1 +1], less than 2238

units of the resource would be used by the feasible schedule, which would contradict claim 1a. Proceeding in this239

way, we prove that all the activities start at integral time points, and at any time, at most two activities are processed.240

Hence, the schedule can be decomposed into two sequences of activities, S1 and S2, each of the same total length241

(∑n
i=1 pi)/2. Then S1 and S2 give rise to a partitioning of the items such that ∑i∈S1 ai = ∑i∈S2 ai. Hence, the instance242

of the PARTITION problem has answer YES.243

The reduction does not hold for the duration (Sn+1−S0) objective. Consider the simple multiset of 5 elements244

{1,1,1,1,1}. Obviously, there is no partition of such set. If we now consider the PARCPSP obtained by the245

reduction, we obtain a set of 5 tasks of duration 2, each having a unit resource requirement on a resource of capacity246

2 and we also have ∆ = 1. Fig. 6 displays a feasible schedule of duration Sn+1−S0 = 5 = ∑
5
i=1 pi/2.247

0 1 2 3 4 5 6

1

2

3

4

5

Figure 6: Feasible schedule, no partition

10

3.3 One resource, arbitrary capacity248

The previous reduction (from the PARTITION problem) can be transformed slightly to derive the strong NP-249

hardness of the PARCPSP with objective makespan from the 3-PARTITION problem (Garey and Johnson 1979),250

when considering a single resource with arbitrary capacity.251

Theorem 2. The PARCPSP with makespan objective and a single resource is strongly NP-hard when capacity b is252

part of the input.253

Proof. Let us show that 3-PARTITION≤P PARCPSP. Given 3n items of integral size ai such that ∑i ai = nD, and254

D
4 < ai <

D
2 for all i ∈ {1, . . . ,3n}, the 3-PARTITION problem consists in determining whether a partitioning of the255

items into n pairwise disjoint triples T1, . . . ,Tn of equal sum, i.e. ∑i∈Tj ai = D for all j ∈ {1, . . . ,n}, exist.256

The reduction from the 3-PARTITION problem to PARCPSP is almost the same as the previous reduction from257

PARTITION. Each item i is converted into an activity with processing time pi := 2ai, and a resource requirement258

of 1; we only change the capacity of the single resource, setting it to n (previously set to 2).259

Let us show that the 3-PARTITION problem instance has a YES answer if and only if the corresponding instance260

of PARCPSP admits a feasible schedule of length 2D = (∑n
i=1 pi)/n.261

First suppose that the 3-PARTITION problem instance has a YES answer. A similar reasoning as the one262

presented in the previous proof entails that scheduling the activities corresponding to a triple Tj in any order from263

time 0 on in a single sequence yields a feasible schedule such that all jobs complete by time 2D.264

Conversely, suppose there is a feasible schedule of length 2D. Claims 1a and 1b can be adapted seamlessly as265

follows.266

Claim 2a (generalization of claim 1a). In each interval [t−1, t] for t ∈ {1, . . . ,2D}, exactly n units of the resource267

is used.268

Claim 2b (generalization of claim 1b). Exactly n activities start at time 0.269

Moreover, there is no interval [t − 1, t], with t ∈ {1, ...,2D}, containing a moment during which less than n270

activities are active (an activity being active at moment t if S j ≤ t < S j + p j). This can be seen using a contradiction271

argument; suppose there is an interval containing a moment with less than n activities being active. Since, in this272

interval, n units of resource must be used (after claim 2a), there must also be a moment in this interval in which more273

than n activities are active. But that implies that a neighboring interval must feature more than n activities active274

during that whole interval (since p j ≥ 2 and ∆ = 1), thereby exceeding the available capacity, which contradicts275

claim 2a.276

Therefore, at each instant in [0,2D], exactly n activities are active. Hence, the instance of the 3-PARTITION277

problem has answer YES.278

3.4 Multiple resources, constant capacities279

The third reduction, inspired from Blazewicz et al. (1983), establishes the strong NP-hardness of the PARCPSP280

with objective duration or makespan for instances with an unlimited number of resources with constant capacities.281

11

The proof presented hereafter considers the objective duration; notice that the proof for the objective makespan is282

very similar, because claim 3a holds regardless of the actual objective.283

Theorem 3. The PARCPSP with duration or makespan objective and unlimited number of resources with constant284

capacities is strongly NP-hard.285

Proof. We establish that Chromatic Number≤P PARCPSP. Given a non-oriented graph G = (V ,E), the Chromatic286

Number problem (Karp 1972) consists in coloring the vertices of G using a minimum number of colors (c j) j∈V so287

that no two adjacent vertices are assigned the same color. Let G = (V ,E) a non-oriented graph. Let ∆ ∈ R>0 (e.g.288

∆ = 1). Let X(G) ∈X the project instance defined by:289

• A = V (activity = vertex)290

• R = E (resource = edge)291

• ∀i ∈A pi = 2∆292

• ∀k ∈R bk = 1293

• ∀i ∈A ∀k ∈R ri,k = 1 if vertex i is one of the two extremities of edge k, 0 otherwise294

• E = /0 (no precedence relations)295

Clearly, this is a polynomial time reduction; so, the theorem holds if the following assertions are equivalent.296

1. G admits a feasible coloring c such that:297

max(c j)1≤ j≤n ≤ γ298

2. There exists a feasible schedule S such that:299

dur(S)≤ 2γ∆300

Suppose G admits a feasible coloring c such that max(c j)1≤ j≤n ≤ γ . Let S be the schedule defined by:

∀i ∈A Si = 2(ci−1)∆

Given an edge (resource), its extremities (the two activities that require it) are colored differently (are not

executed simultaneously, since processing times are all equal to 2∆). So, S is feasible for the PARCPSP (indeed, it

is even feasible for the RCPSP). Moreover:

dur(S) = Sn+1−S0 ≤ 2γ∆−0 = 2γ∆

Hence, the direct implication holds.301

Conversely, suppose there exists a feasible schedule S such that dur(S) ≤ 2γ∆. Without loss of generality, the302

project execution starts in period `= 1, i.e., 0≤ S0 < ∆.303

Claim 3a. The execution windows of the two activities that share a common resource are disjoint.

∀(i1, i2) ∈R (Si1 + pi1 ≤ Si2)∨ (Si2 + pi2 ≤ Si1)

12

Proof. Let k = (i1, i2) ∈R. Suppose that Si1 ≤ Si2 . For i ∈A , let `i = 1+
⌊Si

∆

⌋
denote the period in which activity i304

starts. Notice that `i1 ≤ `i2 .305

For any activity i∈A , including i1 and i2, since pi = 2∆, one can determine bounds on di,`(S) (see also figure 7):

∀` ∈ Z di,`(S)



∈ (0,∆] if `= `i

= ∆ if `= `i +1

∈ [0,∆) if `= `i +2

= 0 otherwise

Indeed: di,`i+2(S) = ∆−di,`i(S)306

di,`i(S) di,`i+1(S) di,`i+2(S)

pi = 2∆

Si Si + pi

t

(`i−1)∆ `i∆ (`i +1)∆ (`i +2)∆

Figure 7: Execution interval (PARCPSP complexity proof)

Moreover, S is feasible; the resource constraints state that, in any period ` ∈ Z :

di1,`(S)+di2,`(S)≤ ∆

• Suppose that: `i2 = `i1307

Then, in period `= `i1 +1 = `i2 +1 :

di1,`(S)+di2,`(S) = 2∆ > ∆

Therefore, this configuration cannot occur.308

• Suppose that: `i2 = `i1 +1309

Then, in period `= `i1 +1 = `i2 :

di1,`(S)+di2,`(S) = ∆+di2,`i2
(S)> ∆

Therefore, this configuration cannot occur.310

• Suppose that: `i2 = `i1 +2311

Then, in period `= `i1 +2 = `i2 :

di1,`(S)≤ ∆−di2,`(S)

⇔ (`−1)∆+di1,`(S)≤ `∆−di2,`(S)

⇔ (`i1 +1)∆+di1,`i1+2(S)≤ `i2∆−di2,`i2
(S)

⇔ Si1 + pi1 ≤ Si2

13

• Suppose that: `i2 ≥ `i1 +3312

Then:

Si1 + pi1 < (`i1 +2)∆≤ (`i2−1)∆≤ Si2

It follows that Si1 ≤ Si2 ⇒ Si1 + pi1 ≤ Si2 . Hence, the claim holds. �313

Let c the coloring defined by:

∀ j ∈ V c j = 1+
⌊

S j

2∆

⌋
Let (j1, j2) ∈ E . Recall that processing times are all equal to 2∆ ; so, after claim 3a,

∣∣S j2−S j1

∣∣ ≥ 2∆ . By314

construction,
∣∣c j2− c j1

∣∣≥ 1 i.e. c j1 6= c j2 . Therefore, c is feasible.315

Since dur(S)≤ 2γ∆:

∀i ∈A S0 ≤ Si ≤ Sn+1− pi ≤ (S0 +2γ∆)−2∆

Consequently, 1≤ c j ≤ γ for all j ∈ V , and max(c j)1≤ j≤n ≤ γ .316

Hence, the reciprocal implication also holds.317

3.5 General case318

The general result comes from the reductions provided for the three particular cases. In table 1, an arrow points to a319

more general/less restricted context for makespan minimization. Hence, the destination problem is at least as diffi-320

cult as the origin problem. The grey boxes correspond to complexity results holding also for duration minimization.321

One resource

Constant capacity

Weakly NP-hard

Theorem 1

Multiple resources

Constant capacity

Strongly NP-hard

Theorem 3

One resource

Arbitrary capacity

Strongly NP-hard

Theorem 2

Multiple resources

Arbitrary capacity

Strongly NP-hard

Table 1: Summary of the results on the NP-hardness of the PARCPSP for makespan minimization

It follows that the PARCPSP is strongly NP-hard in the general case. In the remaining of the paper, solution322

approaches are investigated.323

14

4 A new mixed-integer linear programming formulation324

In this Section, we consider mixed-integer linear programming formulations for the problem. Continuous variables325

are used to represent activity starting times while period-indexed variables allow to model the aggregated resource326

constraints. We consider two formulations and their strenghtened variants. The first one was proposed by Morin327

et al. (2017) and the second one is a new formulation based on the decomposition of a period relatively to the328

execution of an activity. Both formulations can be strengthened by using bounds on the number of periods possibly329

intersected by an activity. In addition, the new formulation allows to use disaggregated precedence constraints. We330

show that the disaggregated second formulation is stronger than the first one in terms of LP relaxation.331

4.1 First formulation332

4.1.1 Variables333

The decision variables used in the model proposed by Morin et al. (2017) are summarized in table 2. A continuous334

start time variable Si gives the start time of each activity i ∈A while a continuous variable di,` gives the length of335

the intersection of the time window of activity i ∈A with period ` ∈L . Two period-indexed binary step variables336

zsi,` and z fi,` are used to mark the first and last periods of an activity. An illustration of the link between these337

variables is given in figure 8.338

Si ≥ 0 Start time of Activity i ∈A

S0 (resp Sn+1) represents the start (resp the end) of the project.

di,` ∈ [0,∆] intersection length of intervals [Si,Si + pi] and [(`−1)∆, `∆]

zsi,` ∈ {0,1} Binary step variables: zsi,`−1 ≤ zsi,`

zsi,` = 1 if Si is in period `, i.e. Si ∈ [(`−1)∆, `∆]

z fi,` ∈ {0,1} Binary step variables: z fi,`−1 ≤ z fi,`

z fi,` = 1 if Si + pi is in period `, i.e. Si + pi ∈ [(`−1)∆, `∆]

Table 2: Variables of the first period-indexed formulation

15

Ai

Si

`
1 2 3 4 5 6 7 8 9 10 11

0
∆ di,`

0
1 zsi,`

0
1 z fi,`

Figure 8: Representation of an execution time window with the variables of the first period-indexed formulation

4.1.2 Initial formulation339

We recall below the main constraints of the formulation proposed by Morin et al. (2017), the domains of the decision

variables being those of table 2.

(F1) Minimize Sn+1−S0 (7)

Si2−Si1 ≥ pi1 ∀(i1, i2) ∈ E (8)

∑
i∈A

ri,k di,` ≤ bk ∆ ∀k ∈R , ∀` ∈L (9)

`∆(1− zsi,`)≤ Si ≤ L∆− (L− `)∆zsi,` ∀i ∈A , ∀` ∈L (10)

`∆(1− z fi,`)≤ Si + pi ≤ L∆− (L− `)∆z fi,` ∀i ∈A , ∀` ∈L (11)

∆(zsi,`−1− z fi,`)≤ di,` ≤ ∆(zsi,`− z fi,`−1) ∀i ∈A , ∀` ∈L (12)

di,` ≥ `∆−Si−∆z fi,`− `∆zsi,`−1 ∀i ∈A , ∀` ∈L (13)

di,` ≥ Si + pi− (`−1)∆−∆(1− zsi,`−1)− (L− `+1)∆(1− z fi,`) ∀i ∈A , ∀` ∈L (14)

∑
`∈L

di,` = pi ∀i ∈A (15)

Objective (7) minimizes the project duration, under precedence constraints (8) and aggregated resource con-340

straints (9). Constraints (10) link start time variables Si and variables zsi,`, while constraints (11) link completion341

time variables Si + pi to variables z fi,`.342

The remaining constraints allow to compute the intersection lengths di,`. Constraints (12) enforce di,` to take343

value 0 when period ` is either before or after the execution interval of activity i, and value ∆ when period ` is344

integrally included in the execution interval of i. Constraints (13) allow to compute di,` when ` is the period that345

contains Si, while Si + pi belongs to a period `′ > `. Constraints (14) allow to compute di,` when ` is the period that346

contains Si + pi while Si belongs to a period `′ < `. Constraints (15) state that the sum of the intersection lengths of347

activity i over all the periods must be equal to the processing time of i. These constraints are necessary to compute348

16

the correct dil when the duration of an activity is lower than ∆ and the activity is fully included in one period (see349

proof of Theorem 4 for further details).350

Theorem 4. Formulation (F1) is a correct formulation for the PARCPSP351

Proof is given in Appendix A.352

4.1.3 Strengthening the first formulation353

Morin et al. 2017 proposed to strengthen the formulation as follows. Since all periods have the same duration ∆,

starting the project in the first period is a dominant policy. Hence the following constraint is valid.

0≤ S0 ≤ ∆ (16)

Furthermore, since preemption is not allowed, the number of periods intersected by an activity is bounded as354

stated by the following theorem. As in the proof of Theorem 4, let us define the first period of an activity `si as the355

one that satisfies (`si−1)∆≤ Si <`si∆ and let last period of an activity ` f i be defined by (` f i−1)∆≤ Si+ pi <` f i∆.356

Lemma 1. The first and the last period of an activity are such that either ` f i = `si +
⌊ pi

∆

⌋
or ` f i = `si +

⌈ pi
∆

⌉
.357

Proof. Since we have (`si−1)∆≤ Si < `si∆, it follows:

(`si−1)∆+ pi ≤ Si + pi < `si
∆+ pi

⇔ (`si−1+
pi

∆
)∆≤ Si + pi < (`si +

pi

∆
)∆

⇒ (`si−1+
⌊ pi

∆

⌋
)∆≤ Si + pi < (`si +

⌈ pi

∆

⌉
)∆,

which yields the desired result.358

In the proof of Theorem 4 (Appendix A), we show that for any solution Si, i ∈A , a compatible assignment of359

the other variables can be obtained by setting zsi,` = 0 for each ` < `si, zsi,` = 1 for each `≥ `si, z fi,` = 0 for each360

` < ` f i and z fi,` = 1 for each `≥ ` f i.361

Hence, a consequence of Lemma 1 is that variables zsi,` and z fi,` can be linked via a binary variable πi (only one362

binary variable per activity), such that:363

πi = 0 ⇔ zsi,` = z fi,`+b pi
∆ c

πi = 1 ⇔ zsi,` = z fi,`+d pi
∆ e

364

In this case the integrality constraint on variables z fi,` can be relaxed and the linking constraint can be easily365

linearized by the adjunction of the following constraints:366

17

z fi,` ∈ [0,1] ∀i ∈A , ∀` ∈L (17)

πi ∈ {0,1} ∀i ∈A (18)

zsi,` ≥ z fi,`+b pi
∆ c ∀i ∈A , ∀` ∈L (19)

zsi,` ≤ z fi,`+d pi
∆ e ∀i ∈A , ∀` ∈L (20)

zsi,` ≤ z fi,`+b pi
∆ c+πi ∀i ∈A , ∀` ∈L (21)

zsi,` ≥ z fi,`+d pi
∆ e+πi−1 ∀i ∈A , ∀` ∈L (22)

If the number of periods is large this reduces considerably the number of explicit binary variables of the problem.367

Remark. If activity i ∈ A is such that pi mod ∆ = 0, the first and the last period of this activity are such that368

` f i = `si + pi
∆

. Then there is no need to introduce variable πi and the above-defined constraints can be simply369

replaced by:370

zsi,` = z fi,`+ pi
∆

∀i ∈A , ∀` ∈L (23)

We denote by (F1s) the strengthened formulation of Morin et al. (2017).371

4.2 An alternative formulation372

4.2.1 Variables description373

In time-indexed formulations of scheduling problems, precedence constraints expressed directly under the form of

constraints (8) are called aggregated precedence constraints. There exists indeed a disaggregated form of these

precedence constraints that strengthen the relaxation (see e.g. Artigues (2017)). We show in this section that a

disaggregated form of the precedence constraints can be proposed for the PARCPSP despite the continuous nature

of the start time variables. For each activity i ∈A and each time period ` ∈L , let us define new variables λi,` and

µi,` such that

λi,` = |[0,Si]∩ [(`−1)∆, `∆]| and µi,` = |[Si + pi,L∆]∩ [(`−1)∆, `∆]|.

The other decision variables used in the new model are described in table 3.374

18

Si Start time of activity i ∈A

S0 (respectively Sn+1) represents the start (resp. the end) of the project.

di,` intersection length of intervals [Si,Si + pi] and [(`−1)∆, `∆]

λi,` intersection length of intervals [0,Si] and [(`−1)∆, `∆]

µi,` intersection length of intervals [Si + pi,L∆] and [(`−1)∆, `∆]

zλ
i,` Binary variables ensuring a decreasing step behavior for variables λi,`

zµ

i,` Binary variables ensuring an increasing step behavior for variables µi,`

Table 3: Variables of the second period-indexed formulation

From this definition it immediately follows that λi,` is a decreasing step function of `, while, symmetrically, µi,`375

is an increasing step function of `. In the case that pi ≥ ∆, illustrated by Figure 9 for activity Ai, λi,` is equal to ∆376

for each period ` < `si, then equal to ∆−di,` for `= `si and finally equal to 0 for ` > `si. Under the same condition377

(pi ≥ ∆), µi,` is equal to 0 for ` < ` f i, then equal to ∆−di,` for `= ` f i and finally equal to ∆ for ` > ` f i.378

Ai

Si
`

1 2 3 4 5 6 7 8 9 10 11

0
∆

λi,`

0
∆ di,`

0
∆

µi,`

0
1

zλ
i,`

0
1 zµ

i,`

Figure 9: Scheduling variables of an activity for the second period-indexed formulation with pi ≥ ∆

In the case where pi < ∆ and if the execution of activity i overlaps a period change (precisely `si∆ ∈ [Si,Si+ pi])379

the same behavior is observed.380

In the case where pi < ∆ and there is no period ` such that `∆ ∈ [Si,Si + pi] (such as for Activity Ai, fully381

included in period 2 in Figure 10), then a slightly different behavior is observed. The difference in this case is that382

for `= `si = `ci, the period that fully includes the activity, we have λi,`+di,`+µi,` = ∆ with λi,` > 0 and µi,` > 0.383

In Figure 10, we have λi,2 = 0.5∆ and µi,2 = di,2 = 0.25∆.384

19

Ai

Si
`

1 2 3

0

∆

λi,`

0

∆

di,`

0

∆
µi,`

0

1
zλ

i,`

0

1
zµ

i,`

Figure 10: Scheduling variables of an activity for the second period-indexed formulation with pi < ∆

The monotonicity of the new variables allow a simpler linearization and furthermore, by definition, λi,`, µi,` and385

di,` define a partition of period `. More precisely, we always have λi,`+di,`+µi,` = ∆.386

20

4.2.2 Initial formulation387

Given the proposed variables, the new formulation can be written as follows.

(F2) Minimize Sn+1−S0 (24)

Si2−Si1 ≥ pi1 ∀(i1, i2) ∈ E (25)

∑
i∈A

ri,kdi,` ≤ bk∆ ∀k ∈R , ∀` ∈L (26)

λi,`+di,`+µi,` = ∆ ∀i ∈A , ∀` ∈L (27)

Si = ∑
`∈L

λi,` ∀i ∈A (28)

∑
`∈L

di,` = pi ∀i ∈A (29)

λi,` ≤ ∆zλ
i,` ∀i ∈A , ∀` ∈L (30)

λi,` ≥ ∆zλ
i,`+1 ∀i ∈A , ∀` ∈L (31)

µi,` ≤ ∆zµ

i,` ∀i ∈A , ∀` ∈L (32)

µi,` ≥ ∆zµ

i,`−1 ∀i ∈A , ∀` ∈L (33)

zλ
i,` ∈ {0,1} ∀i ∈A , ∀` ∈L (34)

zµ

i,` ∈ {0,1} ∀i ∈A , ∀` ∈L (35)

di,`,µi,`,λi,` ≥ 0 ∀i ∈A , ∀` ∈L (36)

Objective function (24) , precedence constraints (25) and resource constraints (26) are the same as in the first388

formulation. Constraints (27) define the partition of each period ` by variables λi,`, µi,` and di,`. Constraints (28)389

allow to express Si from the λi,` variables. Constraints (29) take the the activity processing times into account.390

Constraints (30) and (31) define the step behavior of variables λi,` and zλ
i,`, in such a way that a single variable λi,`391

may vary between 0 and ∆, while the others take either value 0 or value ∆. Constraints (32) and (33) define the same392

process for variables µi,` and zµ

i,` (cf figure 9). Finally zλ
i,` and zµ

i,` are binary variables (constraints 34 and 35) while393

di,`, µi,` and λi,` are non negative (constraints 36).394

Theorem 5. Formulation (F2) is a correct formulation of the PARCPSP.395

Proof is given in Appendix B.396

4.2.3 Formulation strengthening397

As for the previous formulation the start time of the project can be assigned to the first period.

0≤ S0 ≤ ∆ (37)

As a consequence of Lemma 1, a binary variable πi can also be defined for each activity to express the link398

between the start and the first period of an activity399

21

πi = 0 ⇔ zλ
i,`+ zµ

i,`+b pi
∆ c−1

= 1

πi = 1 ⇔ zλ
i,`+ zµ

i,`+d pi
∆ e−1

= 1
400

The linearization of these constraints gives:

zµ

i,` ∈ [0,1] ∀i ∈A , ∀` ∈L (38)

πi ∈ {0,1} ∀i ∈A (39)

zλ
i,`+ zµ

i,`+b pi
∆ c−1

≤ 1 ∀i ∈A , ∀` ∈L (40)

zλ
i,`+ zµ

i,`+d pi
∆ e−1

≥ 1 ∀i ∈A , ∀` ∈L (41)

zλ
i,`+ zµ

i,`+b pi
∆ c−1

≥ 1−πi ∀i ∈A , ∀` ∈L (42)

zλ
i,`+ zµ

i,`+d pi
∆ e−1

≤ 2−πi ∀i ∈A , ∀` ∈L (43)

Remark. As for (F1) if an activity i ∈A is such that pi mod ∆ = 0, there is no need to introduce πi for this activity,401

as the last period of the activity can be obtained by a constant translation from the first period.402

zλ
i,`+ zµ

i,`+ pi
∆
−1

= 1 ∀i ∈A , ∀` ∈L (44)

λi,`+µi,`+ pi
∆

= ∆ ∀i ∈A , ∀` ∈L (45)

We denote by (F2s) the so-strengthened formulation.403

4.2.4 Disaggregated precedence constraints404

Consider two formulations A and B, and let zA(I) (zB(I)) denote the value of the linear relaxation of model A405

(B) applied to instance I of the PARCPSP. Following standard terminology, we say that the linear relaxation of406

Formulation A is stronger than the linear relaxation of Formulation B when the two following conditions are fulfilled:407

C1: for each instance I of PARCPSP, zA(I)≥ zB(I), and408

C2: there exists an instance I of PARCPSP for which zA(I)> zB(I).409

Thanks to the introduction of variables λi,` and µi,`, a further tightening of the formulation (F2s) can be obtained410

through the definition of disaggregated precedence constraints. For that purpose, aggregated precedence constraints411

(25) can be replaced by:412

µi1,`+λi2,` ≥ ∆ ∀(i1, i2) ∈ E , ∀` ∈L (46)

Theorem 6. Replacing in formulation (F2s), aggregated precedence constraints (25) by disaggregated constraints413

(46) yields a correct formulation for the PARCPSP, which is stronger.414

Proof. It is easy to see that the aggregated precedence constraints (25) are implied by the conjunction of disaggre-

gated constraints (46) and constraints (27–29). Indeed, summing up constraints (46) for all l ∈L yields:

∑
l∈L

λi2,` ≥ L∆− ∑
l∈L

µi1,`

22

This gives the aggregated precedence constraints since Si = ∑l∈L λi2,` by (28) and Si + pi = L∆−∑l∈L µi,` by

(27–29). Hence we have shown that the LP relaxation of the new formulation with the disaggregated precedence

constraints is not weaker than the new formulation with the aggregated precedence constraints. Consider now the

problem instance with L = 3 periods of duration ∆ = 1 and n = 3 activities with durations p1 = p2 = p3 = 1 and

a single resource of capacity b1 = 3 and activity requirements b1 = b2 = 2 and b3 = 3. Furthermore there are

two precedence constraints E = {(1,3),(2,3)}. Consider the following (optimal) fractional solution of (F2s), with

objective value 2.

Si λi,1 λi,2 λi,3 zλ
i,1 zλ

i,2 zλ
i,3 µi,1 µi,2 µi,3 zµ

i,1 zµ

i,2 zµ

i,3 di,1 di,2 di,3

1 3⁄4 3⁄4 0 0 1 0 0 0 1⁄4 1 0 1 1 1⁄4 3⁄4 0

2 3⁄4 3⁄4 0 0 1 0 0 0 1⁄4 1 0 1 1 1⁄4 3⁄4 0

3 7⁄4 7⁄8 7⁄8 0 1 7⁄8 0 0 1⁄8 1⁄8 0 1⁄8 1 1⁄8 0 7⁄8

This solution satisfies the LP relaxation of constraints (25–36) but violates the disagregated constraints. For period

` = 1 and precedence (1,3), we have µ1,1 + λ3,1 = 7
8 < ∆ although we have S3 = 7

4 ≥ S2 + p2 = 7
4 . Hence the

new formulation augmented with the disaggregates precedence constraints is stronger. Furthermore solving the LP

relaxation with the disaggregated constraint gives the following solution with optimal solution 25
12 > 2. Furthermore,

since the zλ
i,` and zµ

i,` variables are all integer-valued, the solution of the relaxation is feasible for the PARCPSP and

consequently optimal, which illustrates the potential quality of the new valid inequalities.

Si λi,1 λi,2 λi,3 zλ
i,1 zλ

i,2 zλ
i,3 µi,1 µi,2 µi,3 zµ

i,1 zµ

i,2 zµ

i,3 di,1 di,2 di,3

1 1⁄4 1⁄4 0 0 1 0 0 0 3⁄4 1 0 1 1 3⁄4 1⁄4 0

2 1⁄4 1⁄4 0 0 1 0 0 0 3⁄4 1 0 1 1 3⁄4 1⁄4 0

3 4⁄3 1 1⁄3 0 1 1 0 0 0 2⁄3 0 0 1 0 2⁄3 1⁄3

415

We denote by (F2s+) the new formulation with the disaggregated precedence constraints.416

4.3 Theoretical comparison of formulations (F1s) and (F2s+)417

Theorem 7. The linear relaxation of (F2s+) is stronger than the linear relaxation of (F1s).418

Proof. Let us first compare the relaxations of formulations (F1s) and (F2s), with aggregated precedence constraints

only. We remark there exist linear non singular transformations between the binary variables (zsi,` and z fi,`) of the

first model and the one of the second model (zλ
i,` and zµ

i,`).

zsi,` = 1− zλ
i,`+1

z fi,` = zµ

i,`

Continuous variables (Si and di,`) appear in both models with the same meaning, while variables (λi,` and µi,`)419

appear only in the second model.420

The start time of an activity i is a linear expression of variables λi,` (Constraints (28)).

Si = ∑
L
`=1 λi,`

23

Similarly, recall that the completion time of an activity i is a linear expression of variables µi,` (using constraints

(27) to (29)).

Si + pi = L∆−∑
L
`=1 µi,`

Aggregated precedence constraints have the same expression in both models (constraints (8) and (25)). We

remark that rewriting the other constraints of formulation (F1s) by substituting variables of the first model by the

variables of the second model yields constraints that are implied by the constraints of (F2s). Let us provide the

proof for the lower bound part of Constraints (10). We first rewrite the constraint for activity i and period `−1, by

using the transformation zsi,`−1 = 1− zλ
i,`, we obtain the following equivalent constraint in variable zλ

i,`.

Si ≥ (`−1)∆− (`−1)∆
(

1− zλ
i,`

)
(10′LB)

Now we evaluate expression Si− (`−1)∆+(`−1)∆
(

1− zλ
i,`

)
by using Si = ∑

L
`=1 λi,`. We obtain:

Si− (`−1)∆+(`−1)∆
(

1− zλ
i,`

)
=−(`−1)∆+

(
∑

L
`′=1 λi,`′

)
+(`−1)∆−

(
∑
`−1
`′=1 ∆

)
zλ

i,`

≥ ∑
L
`′=1 λi,`′−∑

`−1
`′=1 ∆zλ

i,`′+1

≥ ∑
L
`′=1 λi,`′−∑

`−1
`′=1 λi,`′

= ∑
L
`′=` λi,`′

≥ 0

The proof for the upper bound part of Constraints (10) and Constraints (11) (link between Si, zsi,` and z fi,`) and421

the proof for Constraints (12) to (14) (expression of di,`) are given in the Appendix. Constraints (15) of the first422

model are also present in the second model (Constraints (36) and (29)).423

Lastly, Constraints (19) to (23) that link variables zsi,` and z fi,` of the first model via binary variable πi are424

equivalent to constraints (40) to (44) that link variables zλ
i,` and zµ

i,` of the second model via the same binary variable425

πi: The above described linear transformations can be used to switch from one formulation to the other. From426

what precedes, we conclude that formulation (F2s) cannot be weaker than formulation (F1s) in terms of linear427

programming relaxation. As Theorem 6 states that formulation (F2s+) is stronger than formulation (F2s), the428

result follows.429

5 Computational experiments430

In this section, we compare the different MILP formulations on a set of benchmark instances from the literature. As431

in Morin et al. (2017), we select standard resource-constrained-project scheduling instances, to which we associate432

a period ∆ with ∆ = 1,2,3,4 and 5. We use IBM ILOG CPLEX 20.1 for solving the (mixed-integer) linear programs433

with default parameters. All experiments were run with 2 threads on 8 cluster nodes, each with 36 Intel Xeon CPU434

E5-2695 v3 2.10GHz cores running Linux Ubuntu 16.04.4.435

We first compare the LP relaxations of the Morin et al. (2017) strengthened formulation (F1s) with the new436

ones (F2s and F2s+) on the 30, 60, 90 and 120 activity RCPSP instances from the PSPLIB library, named KSD30,437

KSD60, KSD90 and KSD120 (Kolisch and Sprecher 1996), as well as on the Pack instances (Carlier and Néron438

24

2003). With the different values of ∆, we obtain a set of 2400 KSD30 instances, 2400 KSD60 instances, 2400439

KSD90 instances, 3000 KSD120 instances and 280 Pack instances. For each instance, an upper bound of the440

number of periods is obtained by selecting the best solution in terms of project duration returned by the randomized441

multi-start priority-rule based heuristic presented in Morin et al. (2017) with 1000 iterations.442

Table 4 reports the results of the LP relaxations compared to the trivial critical path lower bound (CPM) given443

by the precedence constraints only. Each row of the table correspond to the instances of a specific set for a given444

∆, except the last row “all” of each instance set that regroups all the ∆ values and the last “all” row that regroups445

the statistics over all instances and ∆ values. Column #UB>CPM displays the number of instances for which the446

upper bound is not equal to the CPM lower bound. Indeed, the LP relaxations have the potential of increasing the447

CPM lower bound only on these instances. A first remark is that this number is a decreasing function of ∆, which448

illustrates the fact that decreasing the period lengths globally tightens the resource constraints, yielding larger project449

durations. There are two columns of results for each formulation F1s, F2s and F2s+. The first column (gap CPM)450

gives the average improvement upon the CPM bound, only on the instances for which the CPM bound is strictly451

lower than UB (number given in column #UB>CPM). The second column (cpu) gives the average cpu time in seconds.452

The best results in terms of gap and CPU time are highlighted in bold.453

The ranking F1s < F2s < F2s+ from the weakest to the strongest upper bound is well illustrated by the results.454

Globally, for the larger values of ∆, all bounds are rather weak and each bound gets tighter as ∆ decreases. The455

improvement brought by the new formulation with aggregated precedence constraints (F2s) on the previous formu-456

lation is modest, except on the Pack set. The new formulation with disaggregated precedence constraints (F2s+)457

significantly improves the previous formulation upon the CPM-based lower bound on all instances with small ∆.458

The large gaps observed for the Pack instance set are explained by the small number of precedence constraints in459

this set and the predominance of resource constraints. This allows to remark that the improvement brought by F2s460

and F2s+ on the previous formulation F1s can be drastic and indicates that the new formulation better captures461

resource conflicts. About the computational times, the fastest bounds are obtained either by F1s or F2s, the latter462

offering the best compromise quality/speed. The computational times become very large for the KSD120 set and463

illustrates the limits of time-indexed MILP approaches for large scheduling horizons, even with aggregated resource464

constraints.465

The F2s+ formulation is superior to the other ones in terms of LP relaxations. We now switch to the comparison466

of the quality of the integer solutions found by CPLEX under a limited time.467

We limit the CPU time to 1 hour for the KSD30 instances and to 2 hours for the remaining instances. The468

randomized multi-start priority-rule based heuristic of Morin et al. (2017) with 1000 iterations is used to obtained469

an initial feasible solution provided as a “MILP start”.470

Table 5 reports the obtained results on the KSD30 and KSD60 sets for the three formulations. For each formu-471

lation and value of ∆, the table displays the number of optimal solutions found and certified within the alloted time472

(column #opt), the average gap between the lower and the upper bound returned by the solver, and the average CPU473

time. The last column (av. gap LB RCPSP) gives the average gap for each value of ∆ of the optimal solution (or474

the best found lower bound when optimailty is not verified) for the PARCPSP to the optimal solution (of the best475

known lower bound when the optimum is unknown) of the RCPSP. The number in this column for row all is the476

25

F1s F2s F2s+

set ∆ #UB>CPM gap CPM cpu (s) gap CPM cpu (s) gap CPM cpu (s)

5 146 0.00% 0.11 0.00% 0.23 0.23% 0.30

4 171 0.00% 0.15 0.00% 0.27 0.21% 0.38

KSD30 3 198 0.00% 0.20 0.02% 0.33 0.85% 0.41

2 234 0.00% 0.31 0.20% 0.47 1.89% 0.41

1 264 0.02% 0.54 1.00% 0.62 4.00% 0.33

all 1013 0.01% 0.29 0.31% 0.41 1.71% 0.37

5 158 0.00% 0.51 0.00% 0.76 0.33% 2.02

4 167 0.00% 0.91 0.00% 1.01 0.42% 2.93

KSD60 3 181 0.00% 1.40 0.04% 1.52 1.51% 3.29

2 202 0.00% 3.32 0.49% 2.56 3.16% 4.57

1 233 0.00% 6.97 2.05% 3.19 5.73% 7.76

all 941 0.00% 2.96 0.62% 1.94 2.52% 4.39

5 164 0.00% 1.68 0.00% 2.88 0.27% 5.14

4 174 0.00% 3.82 0.00% 2.96 0.34% 6.64

KSD90 3 179 0.00% 8.11 0.01% 5.16 1.39% 19.06

2 198 0.00% 28.82 0.52% 13.86 3.60% 37.46

1 214 0.00% 57.28 2.43% 22.01 7.12% 46.93

all 929 0.00% 21.91 0.67% 10.08 2.79% 24.62

5 485 0.00% 10.71 0.07% 5.03 1.48% 14.43

4 496 0.00% 27.98 0.22% 8.45 1.84% 31.09

KSD120 3 508 0.00% 72.78 1.07% 17.56 3.75% 66.96

2 521 0.00% 145.90 2.90% 48.35 6.83% 138.41

1 550 0.01% 282.09 6.22% 73.84 11.52% 247.16

all 2560 0.00% 112.19 2.19% 31.78 5.25% 103.31

5 54 0.00% 0.09 1.74% 0.13 15.72% 0.19

4 55 0.00% 0.13 3.97% 0.19 20.37% 0.22

Pack 3 55 0.00% 0.26 14.05% 0.26 35.64% 0.30

2 55 0.31% 0.51 32.26% 0.37 51.32% 0.41

1 55 4.45% 1.28 64.17% 0.46 73.89% 0.62

all 274 0.96% 0.46 23.32% 0.28 39.48% 0.35

all all 5717 0.00% 54.34 1.25% 16.26 3.52% 51.05

Table 4: Comparisons of F1s, F2s and F2s+ LP relaxations on various instance sets

26

best gap over all ∆ values. Note that for KSD30 instances the optimal makespan for the RCPSP are known while477

for KSD60 we use for comparison the best current LB1.478

The av. gap LB RCPSP gaps is increasing on average in function of ∆ and is of significant magnitude. This479

confirms that aggregating the resource constraints without restricting the start time values is highly beneficial for480

reducing the makespan, as mentioned in the introduction. For each instance set, the largest obtained bound for the481

different values of ∆ gives a gap to the best known RCPSP LB of less than 3%. No lower bound is improved on the482

KSD60 set. The results in table 5, compared to the best results obtained by MILP for the standard RCPSP in Koné483

et al. (2011), suggest that the PARCPSP is not much easier to solve than the RCPSP. So it is still unclear whether484

the PARCPSP can be used as an efficient bounding scheme of the RCPSP.485

Turning now to the comparison of formulations, the best results are displayed in bold. The aggregated variant486

of the new formulation (F2s) appears dominated on all criteria, including the CPU time2. The previous formulation487

(F1s) obtains the best results for solving the KSD30 instances with ∆ = 1 and ∆ = 2 as well as the KSD60 instances488

with ∆ = 3 in terms of optimal solutions found with a faster or equivalent CPU time. This indicates that the quality489

of the LP relaxation of F2s+ does not always compensate the search slowdown it incurs. However, the F2s+490

dominates on all criteria for the remaining instances and is always the best one in terms of average gap for all ∆491

values. Averaging all instances and all ∆ values, the F2s+ formulation outperforms the other ones for all criteria.492

F1s F2s F2s+

set ∆ #opt gap time #opt gap time #opt gap time gap LB RCPSP

5 457 0.13% 226.40 447 0.24% 323.09 474 0.02% 110.41 6.70%

4 441 0.39% 342.46 432 0.52% 411.52 459 0.14% 234.62 6.25%

KSD30 3 438 0.62% 386.32 423 0.89% 465.93 437 0.42% 380.21 5.69%

2 436 0.97% 386.46 425 1.41% 477.13 433 0.83% 430.54 4.72%

1 447 1.05% 336.47 422 2.04% 492.52 437 1.03% 406.05 2.82%

all 2219 0.63% 335.62 2149 1.02% 434.04 2240 0.49% 312.36 2.82%

5 402 0.97% 1235.91 400 1.22% 1290.65 426 0.32% 974.67 3.57%

4 397 1.36% 1278.81 394 1.89% 1337.82 406 0.79% 1224.08 3.48%

KSD60 3 395 2.08% 1335.99 390 3.64% 1388.57 394 1.57% 1354.49 3.35%

2 383 3.37% 1504.17 381 5.86% 1534.21 383 2.77% 1498.22 3.17%

1 377 6.98% 1604.12 372 6.91% 1664.11 380 3.59% 1535.03 2.50%

all 1954 2.95% 1391.80 1937 3.90% 1443.07 1989 1.81% 1317.30 2.45%

Table 5: Comparisons of integer solutions for instances KSD30 and KSD60

We now switch to the KSD90, KSD120 and Pack benchmarks, which are much harder to solve in the RCPSP493

setting. Here, only the non dominated formulations (F1s and F2s+) are compared. As seen in Table 6, except for494

three exceptions (average CPU time criterion for KSD90-∆ = 3 instances and number of optima found for KSD90-495

∆ = 2 instances), the new formulation outperforms the previous one on all instances and all criteria. Two additional496

observations are worth mentioning. First while the optimality gaps moderately increase for KSD30, KSD60 and497

1Recorded at http://solutionsupdate.ugent.be/, last visit Novembre 9, 2021
2Recall that the time limit is 1 hour for KSD30 and 2 hours for KSD60

27

http://solutionsupdate.ugent.be/

KSD90 sets, the limit of the time-indexed MILP approach seems to be reached for the KSD120 set since large gaps498

are observed as ∆ decreases. This is inline with the large needed CPU time for solving the LP relaxation. A second499

remark is the relative quality of the RCPSP bbound on the Pack instances. These instances seem as challenging in500

the PARCPSP setting as they are in the RCPSP setting, even for ∆= 5 instances since only 38 instances out of 55 are501

solved to optimality. However 4 of the RCPSP lower bounds reported in Schutt et al. (2013) were improved, while502

no lower bound was improved for KSD60, KSD90 and KSD120 instances. The main notorious difference between503

the Pack and the KSD sets is that the Pack instances are “highly cumulative” in the sense that many activities can504

be scheduled in parallel and have very few precedence constraints (which explains the name Pack with reference to505

the 2D packing problem). In this case, the resource aggregation seems to pay off although all improvements were506

obtained for ∆ = 1. The improved lower bounds are reported in Table 7.507

F1s F2s+

set ∆ #opt gap time #opt gap time gap LB RCPSP

5 390 1.55% 1366.66 411 0.86% 1208.99 1.88%

4 388 2.25% 1401.56 393 1.85% 1334.47 2.01%

KSD90 3 385 3.36% 1439.20 387 2.89% 1441.82 2.14%

2 384 6.79% 1490.47 378 4.16% 1575.43 2.33%

1 376 10.69% 1655.45 378 4.64% 1561.48 1.78%

all 1923 4.93% 1470.67 1947 2.88% 1424.44 1.42%

5 302 8.82% 3738.88 353 7.66% 3270.11 5.81%

4 283 13.92% 3946.06 314 10.34% 3731.16 6.83%

KSD120 3 260 20.30% 4232.44 272 12.74% 4137.12 7.25%

2 232 28.12% 4555.50 238 16.79% 4420.86 7.76%

1 203 35.02% 4958.74 223 18.05% 4601.85 6.47%

all 1280 21.24% 4286.32 1400 13.12% 4032.22 4.82%

5 27 1.12% 4937.18 38 2.02% 2959.33 11.77%

4 19 2.04% 5577.67 37 0.47% 3292.10 9.24%

Pack 3 16 3.27% 5787.41 27 3.10% 4179.22 7.44%

2 13 5.08% 6185.74 26 2.24% 4632.17 5.01%

1 6 8.26% 7085.33 32 1.89% 3857.74 1.85%

all 63 3.95% 5914.67 160 1.94% 3784.11 1.83%

Table 6: Comparisons of integer solutions for instances KSD90, KSD120, Pack

name LB (Schutt et al. 2013) LB F2s+

Pack037 116 125

Pack046 110 118

Pack050 94 100

Pack053 97 105

Table 7: Improved RCPSP lower bounds on the Pack instance set compared to Schutt et al. (2013)

28

6 Conclusion and perspectives508

In this paper, an original variant of the RCPSP, namely the PARCPSP, has been studied from a theoretical point509

of view. This problem is indeed a relaxation of the RCPSP, that permits to model periodically aggregated resource510

constraints arising from practical applications, where the resource usage is limited only on average over periods511

of parameterized length. Contrarily to the RCPSP, the feasibility of a solution (with respect to the resource con-512

straints) is no more invariant by shifting. We proposed three reductions to establish the computational complexity of513

particular cases of the problem, which is strongly NP-hard in the general case. We designed a new period-indexed514

mixed-integer linear programming formulation of the problem, defining the precedence constraint in a disaggregated515

form. We carried out a polyhedral study that established that the new formulation is stronger than the previously516

proposed formulation in terms of linear programming relaxation. A computational experiment on the set of PSPLIB517

project scheduling instances with five different period lengths, showed that the practical improvement of the lower518

bound is significant. When using the formulations for exact solution approaches in a commercial MILP solver, the519

new formulation is still globally better in terms of optimal solution found and optimality gaps, except for a few520

exceptions. The PARCPSP appears as a challenging NP-hard problem. Although it provides a bounding scheme521

for the widely studied RCPSP, it is still unclear whether efficient approaches can be designed to this aim. However522

this research direction is worth pursuing as a few lower bounds were improved for the difficult RCPSP instance523

set Pack. For a global improvement of mixed-integer linear programming approches, the disaggregated precedence524

constraints could be added on-the-fly to obtain a better compromise between the formulation size and the relaxation525

quality. The question whether an extended formulation based on a Dantzig-Wolfe decomposition of the resource526

constraint, as successfully done for the RCPSP (Mingozzi et al. 1998; Brucker and Knust 2000; Baptiste and De-527

massey 2004), would yield a competitive relaxation is open, as the aggregated resource constraints are less tight528

than the standard ones. In order to fit practical applications, various extensions can be considered. For instance, the529

definition of a consumption rate, either fixed (data) or variable (decision to make), on resources for each activity530

would allow to model a wider range of resource usage profiles. Also, one could take into account additional limi-531

tations, in a similar way as in Okubo et al. 2015, where a RCPSP/Π original formulation is enriched with specific532

constraints. More flexible activities with variables intensities should also be considered such as in Hans 2001; Kis533

2005. A promising research direction consists in considering varying period lengths. Indeed, models with time534

buckets of non homogeneous lengths were successfully applied to a scheduling problem issued from particle ther-535

apy for cancer treatment (Riedler et al. 2020). The latter work reveals that this approach has a double potential:536

to better model practical situations where resource scarceness is time-dependent, and to improve primal and dual537

bound for the RCPSP.538

Acknowledgement539

The research of Christian Artigues and Alain Haït is supported by ANR Project PER4MANCE (ANR-18-CE10-540

0007). The research of Christian Artigues is partially supported by ANITI (ANR-19-PI3A-0004). The research of541

Frits Spieksma is supported by NWO Gravitation Project NETWORKS, Grant Number 024.002.003. The research542

of Tamás Kis was supported by the National Research, Development and Innovation Office – NKFIH, Grant no.543

29

SNN 129178, and ED_18-2-2018-0006544

References545

Artigues, C. (2017). “On the strength of time-indexed formulations for the resource-constrained project scheduling546

problem”. In: Operations Research Letters 45.2, pp. 154–159.547

Artigues, C., Gendreau, M., Rousseau, L.-M., and Vergnaud, A. (2009). “Solving an Integrated Employee548

Timetabling and Job-Shop Scheduling Problem via Hybrid Branch-and-Bound”. In: Computers & Operations549

Research 36.8, pp. 2330–2340.550

Baptiste, P. and Demassey, S. (2004). “Tight LP bounds for resource constrained project scheduling”. In: OR Spec-551

trum 26.2, pp. 251–262.552

Blazewicz, J., Lenstra, J., and Rinnooy Kan, A. (1983). “Scheduling Subject to Resource Constraints: Classification553

and Complexity”. In: Discrete Applied Mathematics 5.1, pp. 11–24.554

Böttcher, J., Drexl, A., Kolisch, R., and Salewski, F. (1999). “Project scheduling under partially renewable resource555

constraints”. In: Management Science 45.4, pp. 543–559.556

Brucker, P. and Knust, S. (2000). “A linear programming and constraint propagation-based lower bound for the557

RCPSP”. In: European Journal of Operational Research 127.2, pp. 355–362.558

Carlier, J. and Néron, E. (2003). “On linear lower bounds for the resource constrained project scheduling problem”.559

In: European Journal of Operational Research 149.2, pp. 314–324.560

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness.561

W. H. Freeman.562

Haït, A. and Artigues, C. (2011). “A Hybrid CP/MILP Method for Scheduling with Energy Costs”. In: European563

Journal of Industrial Engineering 5.4, pp. 471–489.564

Hans, E. W. (2001). “Resource Loading by Branch-and-Price Techniques”. Enschede: Twente Univ. Press.565

Karp, R. M. (1972). “Reducibility Among Combinatorial Problems”. In: Proceedings of a symposium on the Com-566

plexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,567

Yorktown Heights, New York, USA. Ed. by R. E. Miller and J. W. Thatcher. The IBM Research Symposia Series.568

Plenum Press, New York, pp. 85–103.569

Kis, T. (2005). “A Branch-and-Cut Algorithm for Scheduling of Projects with Variable-Intensity Activities”. In:570

Mathematical Programming 103.3, pp. 515–539.571

Kolisch, R. and Sprecher, A. (1996). “PSPLIB - A project scheduling library”. In: European Journal of Operational572

Research 96, pp. 205–216.573

Koné, O., Artigues, C., Lopez, P., and Mongeau, M. (2011). “Event-based MILP models for resource-constrained574

project scheduling problems”. In: Computers & Operations Research 38.1, pp. 3–13.575

Mingozzi, A., Maniezzo, V., Ricciardelli, S., and Bianco, L. (May 1998). “An Exact Algorithm for the Resource-576

Constrained Project Scheduling Problem Based on a New Mathematical Formulation”. In: Management Science577

44.5, pp. 714–729.578

30

Morin, P.-A., Artigues, C., and Haït, A. (2017). “Periodically Aggregated Resource Constrained Project Scheduling579

Problem”. In: European Journal of Industrial Engineering 11.6, pp. 792–817.580

Okubo, H., Miyamoto, T., Yoshida, S., Mori, K., Kitamura, S., and Izui, Y. (May 2015). “Project Scheduling un-581

der Partially Renewable Resources and Resource Consumption during Setup Operations”. In: Computers &582

Industrial Engineering 83, pp. 91–99.583

Paul, M. and Knust, S. (2015). “A Classification Scheme for Integrated Staff Rostering and Scheduling Problems”.584

In: RAIRO-Operations Research 49.2, pp. 393–412.585

Riedler, M., Jatschka, T., Maschler, J., and Raidl, G. R. (2020). “An iterative time-bucket refinement algorithm for586

a high-resolution resource-constrained project scheduling problem”. In: International Transactions in Opera-587

tional Research 27.1, pp. 573–613.588

Schutt, A., Feydy, T., and Stuckey, P. J. (2013). “Explaining time-table-edge-finding propagation for the cumu-589

lative resource constraint”. In: International Conference on Integration of Constraint Programming, Artificial590

Intelligence, and Operations Research. Springer, pp. 234–250.591

Appendix592

A Proof of Theorem 4: formal correctness of formulation (F1)593

Proof. We first show that a feasible solution for formulation (F1) is a feasible solution for the PARCPSP with the594

same objective function value. Consider a solution Si the MILP and suppose it is unfeasible for the PARCPSP. Since595

constraints (8) translate directly the precedence constraints, the solution must be resource-unfeasible, which means596

that constraints (3) of the conceptual model is violated. This can only be the case if there exists i ∈A and ` ∈L597

such di,` < max
(

0 , min
(
Si + pi , `∆

)
−max

(
Si , (`−1)∆

))
, i.e. di,` is strictly smaller than the intersection length598

of intervals [Si,Si + pi] and [(`− 1)∆, `∆]. Otherwise constraints (9) ensure that constraints (3) are satisfied. The599

lower bound to di,` for each i ∈ A and ` ∈L is set by its non-negativity and by constraints (12–14). The latter600

constraints involve binary variables zsi,`−1 and z fi,`. We show that di,` is not smaller than the intersection length for601

each of the possible values for pair (zsi,`−1,z fi,`).602

• zsi,`−1 = 0 and z fi,` = 0. According to (10), since zsi,`−1 = 0 we have Si ≥ (`−1)∆. Similarly, with z fi,` = 0603

constraint (11) yields Si + pi ≥ `∆. In this case the intersection length is 0 if Si ≥ `∆ and `∆− Si otherwise.604

This is ensured by the non-negativity of di,` in conjunction with constraints (13).605

• zsi,`−1 = 0 and z fi,` = 1. As for the previous case, inserting zsi,`−1 = 0 in (10) gives Si ≥ (`− 1)∆. Setting606

z fi,` = 1 in (11) yields Si + pi ≤ `∆. This is the case where interval [Si,Si + pi] is included in [(`− 1)∆, `∆],607

so the intersection length is equal to pi. Remark that Si ≥ (`− 1)∆ =⇒ Si + pi > (`− 2)∆. Hence, we608

have z fi,`−2 = 0 since z fi,`−2 = 1 and (11) would imply that Si + pi ≤ (`− 2)∆. Then, since z fi,`−2 = 0609

and zsi,`−1 = 0, (12) yields di,`−1 = 0. We have also di,`′ = 0 for all `′ ≤ `− 1 because z fi,`”−1 = 0 and610

zsi,`′ = 0 according to step constraints. Another remark is that Si + pi ≤ `∆ =⇒ Si < (`+ 1)∆. With (10),611

this yields zsi,`+1 = 1. Since in addition z fi,` = 1, constraint (12) yields di,`+1 = 0. With step constraints,612

31

we have z fi,`”−1 = 1 and zsi,`′ = 1 and so with (12) di,`′ = 0 for all `′ ≥ `+1. It follows that di,`′ = 0 for all613

`′ ∈L r{`}. According to constraint (15), we obtain di,` = pi.614

• zsi,`−1 = 1 and z fi,` = 0. (10) and zsi,`−1 = 1 implies that Si ≤ (`− 1)∆, while (11) and z fi,` = 0 imply that615

Si+ pi ≥ (`)∆. In this case interval [(`−1)∆, `∆] is included in interval [Si,Si+ pi] and the intersection length616

is equal to ∆. Inserting zsi,`−1 = 1 and z fi,` = 0 in (12) directly gives di,` ≥ ∆.617

• zsi,`−1 = 1 and z fi,` = 1. In this case, we obtain Si ≤ (`−1)∆ with (10) and Si + pi ≤ `∆ with (11). It follows618

that the intersection length is Si + pi− (`−1)∆ if Si + pi ≥ (`−1)∆ and 0 otherwise. Constraints (14) yields619

di,` ≥ Si + pi− (`−1)∆.620

As in all case di,` is not smaller than the actual length of the intersection of intervals [Si,Si + pi] and [(`−1)∆, `∆],621

any feasible solution of the MILP is also feasible for the PARCPSP. Furthermore the objective functions are exactly622

the same.623

It remains to show that for any feasible solution of the PARCPSP, there is a compatible assignment of the624

other decision variables that satisfies all the constraints of the MILP. Let Si, i ∈ A denote a feasible solution of625

the PARCPSP. Obviously the precedence constraints (8) are satisfied. Setting variables di,` to di,`(S) according to626

its definition in §2.2 allows to satisfy constraints (9) and (15). Consider the following assignment for variables627

zsi,`. Let `si the period such that (`si− 1)∆ ≤ Si < `si∆. For all i ∈ A , let us set zsi,` = 0 for each ` < `si and628

zsi,` = 1 for each ` ≥ `si. Similarly, let ` f i the period verifying (` f i− 1)∆ ≤ Si + pi < ` f i∆. For all i ∈ A , let us629

set z fi,` = 0 for each ` < ` f i and z fi,` = 1 for each ` ≥ ` f i. This assignment obviously satisfies the step behavior630

constraints of variables zsi,` and z fi,`. Start time lower bound constraints (10) are satisfied as they give Si ≥ `∆ for631

`= 1, · · · , `si−1 and Si ≥ 0 for `= `si, · · · ,L. Start time upper bound constraints (10) are also satisfied as they can632

be written Si ≤ L∆ for ` = 1, · · · , `si−1 and Si ≤ `∆ for ` = `si, · · · ,L. The same holds for completion time lower633

and upper bound constraints (11), since we obtain `∆ ≤ Si + pi ≤ L∆ for ` = 1, · · · , ` f i− 1 and 0 ≤ Si + pi ≤ `∆634

for ` = ` f i, · · · ,L. Now, let us consider the constraints (10-14) that link di,`, Si, zsi,` and z fi,` variables. Recall635

that di,` is set to max
(

0 , min
(
Si + pi , `∆

)
−max

(
Si , (`− 1)∆

))
. For each task i, we consider the following sets636

L1= {`∈L |`< `si}, L2= {`∈L |`> ` f i} and L3= {`si+1, . . . , ` f i−1}. Note that L = L1∪{`si, ` f i}∪L2∪L3.637

By definition of `si and ` f i, di,`si = `si∆− Si and di,` f i = Si + pi− (` f i− 1)∆ if ` f i > `si and di,` f i = di,`si = pi638

otherwise. For `∈ L1∪L2, di,` = 0. For `∈ L3, di,` = ∆. We show below that constraints (13–14) are all compatible639

with these values.640

Non-negativity constraints are satisfied for all ` ∈L . Constraints (12) are equivalent to di,` ≤ 0 for ` ∈ L1∪L2641

and di,`≤∆ for `= {`si, ` f i}∪L3. Constraints (12) can be written di,`≥ 0 for `∈ L1∪L2∪{`si, ` f i} and di,`≥∆ for642

`∈ L3. Constraints (13) give di,` ≥ `∆−Si < 0 for l ∈ L1, di,` ≥ `si∆−Si for `= `si in the case where z fi,`si = 0 (i.e.643

` f i > `si) and di,` ≥ (`si−1)∆−Si < 0 for `= `si in the case where z fi,`si = 1. For `∈ L3, we obtain di,` ≥−Si. For644

`= ` f i > `si and for ` ∈ L2, we have di,` ≥−∆−Si. Last, constraints (14) give precisely di,` ≥ Si + pi− (` f i−1)∆645

for ` = ` f i and ` f i > `si. For ` = ` f i = `si, we have di,` ≥ Si + pi− ` f i∆ < 0. For ` ∈ L1 or ` = `si < ` f i, the646

constraints is written di,` ≥ Si + pi− (L+ 1)∆ < 0. For ` ∈ L3, we obtain di,` ≥ Si + pi−L∆ < 0. For ` ∈ L2, the647

constraint yields di,` ≥ Si + pi− (`−1)∆ < 0.648

649

32

B Proof of Theorem 5: formal correctness of formulation (F2)650

Proof. Given the common structure with the first formulation and the definition of variables di,`, λi,` and µi,`, we651

just have to show that constraints (27–36) properly model the relationships di,` = [Si,Si + pi]∩ [(`− 1)∆, `∆] for652

each activity i. Constraints (30-31) can be rewritten zλ
i,`+1 ≤

λi,`
∆
≤ zλ

i,`, meaning that variables zλ
i,` have a decreasing653

step behavior. Suppose that a period ` is such that `∆ ≥ Si and λi,` > 0. Then we have zλ
i,` = 1 and so zλ

i,`′ = 1 and654

λi,`′ = ∆, for all `′ < `. In this case we would have ∑
`
`′=1 λi,`′ > Si, a contradiction. It follows that any non zero655

λi,` variable is such that `∆ < Si. It follows that if Si > 0, the first ` ∈ {1, · · · ,bSi
∆
c} periods are such that λi,` = ∆656

and period `= bSi
∆
c+1 is such that λi,` = Si mod ∆. We have precisely λi,` = [0,Si]∩ [(`−1)∆, `∆] for all ` ∈L .657

Similarly, constraints (32–33) yield zµ

i,`−1 ≤
µi,`
∆
≤ zµ

i,` for all ` ∈L . Hence variables zµ

i,`−1 have an increasing step658

behavior. Composition of constraints (27), (28) and (29) give L∆− Si− pi = ∑`∈L µi,`. With the same reasoning659

it comes that µi,` = [Si + pi,L∆]∩ [(`− 1)∆, `∆]. From constraints (27), we obtain di,` = ∆− [Si + pi,L∆]∩ [(`−660

1)∆, `∆]− [0,Si]∩ [(`−1)∆, `∆] = [Si,Si + pi]∩ [(`−1)∆, `∆].661

C Proof details of Theorem 7662

Proof. We provide below the full proof of the implication of model (F1s) by model (F2s) for Constraints (10)663

and (11) (link between Si, zsi,` and z fi,`) and Constraints (12) to (14) (expression of di,`). For each constraint, the664

variables of model (F1s) are substituted by the variable of model (F2s), which yields the constraint with a prime (’)665

that are then shown to be always satisfied.666

Si ≤ (`−1)∆+(L− `+1)∆zλ
i,` using 10UB for l−1 and zsi,`−1 = 1− zλ

i,` (10’UB)

Si− (`−1)∆− (L− `+1)∆zλ
i,`

=−(`−1)∆+
(
∑

L
`′=1 λi,`′

)
−
(
∑

L
`′=` ∆

)
zλ

i,`

≤−∑
L
`′=`

(
∆zλ

i,`′−λi,`′
)
−∑

`−1
`′=1

(
∆−λi,`′

)
≤ 0

Si + pi ≥ `∆− `∆zµ

i,` (11’LB)

Si + pi− `∆+ `∆zµ

i,`

=−`∆+
(
L∆−∑

L
`′=1 µi,`′

)
+
(
∑
`
`′=1 ∆

)
zµ

i,`

≥ ∑
`
`′=1

(
∆zµ

i,`′−µi,`′
)
+∑

L
`′=`+1

(
∆−µi,`′

)
≥ 0

Si + pi ≤ `∆+(L− `)∆
(

1− zµ

i,`

)
(11’UB)

33

Si + pi− `∆− (L− `)∆
(

1− zµ

i,`

)
=−`∆+

(
L∆−∑

L
`′=1 µi,`′

)
− (L− `)∆+

(
∑

L
`′=`+1 ∆

)
zµ

i,`

≤−∑
L
`′=1 µi,`′+∑

L
`′=`+1 ∆zµ

i,`′−1

≤−∑
L
`′=1 µi,`′+∑

L
`′=`+1 µi,`′

=−∑
`
`′=1 µi,`′

≤ 0

di,` ≥ ∆

(
1− zλ

i,`− zµ

i,`

)
(12’LB)

di,`−∆

(
1− zλ

i,`− zµ

i,`

)
= ∆−λi,`−µi,`−∆+∆zλ

i,`+∆zµ

i,`

=
(

∆zλ
i,`−λi,`

)
+
(

∆zµ

i,`−µi,`

)
≥ 0

di,` ≤ ∆

(
1− zλ

i,`+1− zµ

i,`−1

)
(12’UB)

di,`−∆

(
1− zλ

i,`+1− zµ

i,`−1

)
= ∆−λi,`−µi,`−∆+∆zλ

i,`+1 +∆zµ

i,`−1

=
(

∆zλ
i,`+1−λi,`

)
+
(

∆zµ

i,`−1−µi,`

)
≤ 0

di,` ≥ `∆−Si−∆zµ

i,`− `∆
(

1− zλ
i,`

)
(13’)

di,`− `∆+Si +∆zµ

i,`+ `∆
(

1− zλ
i,`

)
= di,`− `∆+

(
∑

L
`′=1 λi,`′

)
+∆zµ

i,`+ `∆− `∆zλ
i,`

= ∑
L
`′=1 λi,`′+di,`+∆

(
zµ

i,`− zλ
i,`

)
−
(
∑
`−1
`′=1 ∆

)
zλ

i,`

≥ ∑
L
`′=1 λi,`′+(∆−λi,`−µi,`)+∆

(
zµ

i,`− zλ
i,`

)
−
(

∑
`−1
`′=1 ∆ zλ

i,`′+1

)
≥
(
∑

L
`′=1 λi,`′−λi,`−∑

`−1
`′=1 λi,`′

)
+
(

∆zµ

i,`−µi,`

)
+∆

(
1− zλ

i,`

)
≥ ∑

L
`′=`+1 λi,`′

≥ 0

di,` ≥ Si + pi− (`−1)∆−∆zλ
i,`− (L− `+1)∆

(
1− zµ

i,`

)
(14’)

34

di,`−Si− pi +(`−1)∆+∆zλ
i,`+(L− `+1)∆

(
1− zµ

i,`

)
= di,`+(`−1)∆−

(
L∆−∑

L
`′=1 µi,`′

)
+∆zλ

i,`+(L− `+1)∆− (L− `+1)∆zµ

i,`

= ∑
L
`′=1 µi,`′+di,`+∆

(
zλ

i,`− zµ

i,`

)
−
(
∑

L
`′=`+1 ∆

)
zµ

i,`

≥ ∑
L
`′=1 µi,`′+(∆−λi,`−µi,`)+∆

(
zλ

i,`− zµ

i,`

)
−
(

∑
L
`′=`+1 ∆ zµ

i,`′−1

)
≥
(
∑

L
`′=1 µi,`′−µi,`−∑

L
`′=`+1 µi,`′

)
+
(

∆zλ
i,`−λi,`

)
+∆

(
1− zµ

i,`

)
≥ ∑

`−1
`′=1 µi,`′

≥ 0

667

35

	Introduction
	PARCPSP – Problem statement
	Input and notations
	A formulation of the PARCPSP
	Conditions for the existence of feasible schedules
	Comparison with the RCPSP
	Impact of aggregation on resource feasibility

	Complexity
	Inclusion in NP
	One resource, constant capacity
	One resource, arbitrary capacity
	Multiple resources, constant capacities
	General case

	A new mixed-integer linear programming formulation
	First formulation
	Variables
	Initial formulation
	Strengthening the first formulation

	An alternative formulation
	Variables description
	Initial formulation
	Formulation strengthening
	Disaggregated precedence constraints

	Theoretical comparison of formulations (F1s) and (F2s+)

	Computational experiments
	Conclusion and perspectives
	Proof of Theorem 4: formal correctness of formulation (F1)
	Proof of Theorem 5: formal correctness of formulation (F2)
	Proof details of Theorem 7

