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Abstract. We propose a semi-decision procedure for checking general-
ized reachability properties, on generalized Petri nets, that is based on
the Property Directed Reachability (PDR) method. We actually de�ne
three di�erent versions, that vary depending on the method used for ab-
stracting possible witnesses, and that are able to handle problems of in-
creasing di�culty. We have implemented our methods in a model-checker
called SMPT and give empirical evidences that our approach can handle
problems that are di�cult or impossible to check with current state of
the art tools.

1 Introduction

We propose a new semi-decision procedure for checking reachability properties
on generalized Petri nets, meaning that we impose no constraints on the weights
of the arcs and do not require a �nite state space. We also consider a generalized
notion of reachability, in the sense that we can not only check the reachability of
a given state, but also if it is possible to reach a marking that satis�es a combina-
tion of linear constraints between places, such as (p0+p1 = p2+2)∧(p1 6 p2) for
example. Another interesting feature of our approach is that we are able to re-
turn a �certi�cate of invariance�, in the form of an inductive linear invariant [26],
when we �nd that a constraint is true on all the reachable markings. To the best
of our knowledge, there is no other tool able to compute such certi�cates in the
general case.

Our approach is based on an extension of the Property Directed Reachability
(PDR) method, originally developed for hardware model-checking [8,9], to the
case of Petri nets. We actually de�ne three variants of our algorithm�two of
them completely new when compared to our previous work [1]�that vary based
on the method used for generalizing possible witnesses and can handle problems
of increasing di�culty.

Reachability for Petri nets is an important and di�cult problem with many
practical applications: obviously for the formal veri�cation of concurrent systems,
but also for the study of diverse types of protocols (such as biological or business
processes); the veri�cation of software systems; the analysis of in�nite state
systems; etc. It is also a timely subject, as shown by recent publications on this
subject [7,15], but also with the recent progress made on settling its theoretical
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complexity [12,13], which asserts that reachability is Ackermann-complete, and
therefore inherently more complex than, say, the coverability problem.

A practical consequence of this �inherent complexity�, and a general consen-
sus, is that we should not expect to �nd a one-size-�ts-all algorithm that could
be usable in practice. A better strategy is to try to improve the performances
on some cases�for example by developing new tools, or optimizations, that
may perform better on some examples�or try to improve �expressiveness��by
�nding algorithms that can manage new cases, that no other tool can handle.

This wisdom is illustrated by the current state of the art at the Model Check-
ing Contest (MCC) [3], a competition of model-checkers for Petri nets that in-
cludes an examination for the reachability problem. Albeit strongly oriented
towards the analysis of bounded nets. As a matter of fact, the top three tools
in recent competitions�ITS-Tools [30], LoLA [34], and Tapaal [14]�all rely
on a portfolio approach. Methods that have been proposed in this context in-
clude the use of symbolic techniques, such as k-induction [31]; abstraction re-
�nement [10]; the use of standard optimizations with Petri nets, like stubborn
sets or structural reductions; the use of the �state equation�; reduction to integer
linear programming problems; etc.

The results obtained during the MCC highlight the very good performances
achieved when putting all these techniques together, on bounded nets, with a col-
lection of randomly generated properties. Another interesting feedback from the
MCC is that simulation techniques are very good at �nding a counter-example
when a property is not an invariant [7,31].

In our work, we seek improvements in terms of both performance and ex-
pressiveness. We also target what we consider to be a di�cult, and less studied
area of research: procedures that can be applied when a property is an invariant
and when the net is unbounded, or its state space cannot be fully explored. We
also focus on the veri�cation of �genuine� reachability constraints, which are not
instances of a coverability problem. These properties are seldom studied in the
context of unbounded nets. Interestingly enough, our work provides a simple
explanation of why coverability problems are also �simpler� in the case of PDR;
what we will associate with the notion of monotonic formulas.

Concerning performances, we propose a method based on a well-tried sym-
bolic technique, PDR, that has proved successful with unbounded model-checking
and when used together with SMT solvers [11,22]. Concerning expressiveness,
we de�ne a small benchmark of �di�cult nets�: a set of synthetic examples,
representative of patterns that can make the reachability problem harder.

Outline and Contributions. We de�ne background material on Petri nets
in Sect. 2, where we use Linear Integer Arithmetic (LIA) formulas to reason
about nets. Section 3 describes our decision method, based on PDR and SMT
solvers, for checking the satis�ability of linear invariants over the reachable states
of a Petri net. Our method builds sequences of incremental invariants using
both a property that we want to disprove, and a stepwise approximation of
the reachability relation. It also relies on a generalization step where we can
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abstract possible �bad states� into clauses that are propagated in order to �nd
a counter-example, or to block inconsistent states.

We describe a �rst generalization method, based on the upset of markings,
that is able to deal with coverability properties. We propose a new, dual variant
based on the concept of hurdles [21], that is without restrictions on the prop-
erties. In this method, the goal is to block bad sequences of transitions instead
of bad states. We show how this approach can be further improved by de�n-
ing a notion of saturated transition sequence, at the cost of adding universal
quanti�cation in our SMT problems.

We have implemented our approach in an open-source tool, called SMPT,
and compare it with other existing tools. In this context, one of our contributions
is the de�nition of a set of di�cult nets, that characterizes classes of di�cult
reachability problems.

2 Petri Nets and Linear Reachability Constraints

Let N denote the set of natural numbers and Z the set of integers. Assuming P
is a �nite, totally ordered set {p1, . . . , pn}, we denote by NP the set of mappings
from P → N and we overload the addition, subtraction and comparison operators
(=,≥,≤) to act as their component-wise equivalent on mappings. A QF-LIA
formula F , with support in P , is a Boolean combination of atomic propositions
of the form α ∼ β, where ∼ is one of =,≤ or ≥ and α, β are linear expressions,
that is, linear combinations of elements in N∪P . We simply use the term linear
constraint to describe F .

A Petri net N is a tuple (P, T,pre,post) where P = {p1, . . . , pn} is a �nite
set of places, T is a �nite set of transitions (disjoint from P ), and pre : T → NP
and post : T → NP are the pre- and post-condition functions (also called the
�ow functions of N). A state m of a net, also called a marking, is a mapping of
NP . We say that the marking m assigns m(pi) tokens to place pi. A marked net
(N,m0) is a pair composed from a net and an initial marking m0.

A transition t ∈ T is enabled at marking m ∈ NP when m > pre(t). When
t is enabled at m, we can �re it and reach another marking m′ ∈ NP such that
m′ = m − pre(t) + post(t). We denote this transition m

t−→m′. The di�erence
between m and m′ is a mapping ∆(t) = post(t)− pre(t) in ZP , also called the
displacement of t.

By extension, we say that a �ring sequence σ = t1 . . . tk ∈ T ∗ can be �red
from m, denoted m

σ
=⇒m′, if there exist markings m0, . . . ,mk such that m = m0,

m′ = mk and mi
ti+1−−→mi+1 for all i < k. We can also simply write m→? m′. In

this case, the displacement of σ is the mapping ∆(σ) = ∆(t1) + · · ·+∆(tk). We
denote by R(N,m0) the set of markings reachable from m0 in N . A marking m
is k-bounded when each place has at most k tokens. By extension, we say that
a marked Petri net (N,m0) is bounded when there is k such that all reachable
markings are k-bounded.

While reachable states are computed by adding a linear combination of �dis-
placements� (vectors in ZP ), the set R(N,m0) is not necessarily semilinear or,
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Fig. 1: Two examples of Petri nets: Parity (left) and PGCD (right).

equivalently, de�nable using Presburger arithmetic [20,26]. This is a consequence
of the constraint that transitions must be enabled before �ring. But there is still
some structure to the set R(N,m0), like for instance the following monotonicity
constraint:

∀m ∈ NP . m1
σ
=⇒m2 implies m1 +m

σ
=⇒m2 +m (H1)

We have other such results, such as with the notion of hurdle [21]. Just as
pre(t) is the smallest marking for which a given transition t is enabled, there is
a smallest marking at which a given �ring sequence σ is �reable. This marking,
denoted by H(σ), has a simple inductive de�nition:

H(t) = pre(t) and H(σ1 · σ2) = max (H(σ1), H(σ2)−∆(σ1)) (H2)

Given this notion of hurdles, we obtain that m
σ
=⇒ m′ if and only if (1) the

sequence σ is enabled: m > H(σ), and (2) m′ = m+∆(σ). We use this result in
the second variant of our method.

We can go a step further and characterize a necessary and su�cient condition
for �ring the sequence σ.σk, meaning �ring the same sequence more than once.
Given ∆(σ), a place p with a negative displacement (say −d) means that we
�loose� d token each time we �re σ. Hence we should budget d tokens in p for
each new iteration. On the opposite, nothing is needed for places with a positive
displacement, which accrue tokens.

Therefore we havem
σ
=⇒ σk

=⇒m′ if and only if (1)m > H(σ)+k·max(0,−∆(σ)),
and (2) m′ = m+(k+1) ·∆(σ). Equivalently, if we denote by m+ the �positive�
part of mapping m, such that m+(p) = 0 when m(p) 6 0 and m+(p) = m(p)
otherwise, we have:

H(σk+1) = max (H(σ), H(σ)− k ·∆(σ)) = H(σ) + k · (−∆(σ))
+

(H3)

2.1 Examples

We give two simple examples of unbounded nets in Fig. 1, which are both part
of our benchmark. Parity has a single place, hence its state space can be inter-
preted as a subset of N: with an initial marking of 1, this is exactly the set of
odd numbers (and therefore state 0 is not reachable). We are in a special case
where the set R(N,m0) is semilinear. For instance, it can be seen as solution to
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the constraint ∃k.(p = 2k + 1), or equivalently p ≡ 1 (mod 2). But it cannot be
expressed with a linear constraint involving only the variable p without quanti�-
cation or modulo arithmetic. This example can be handled by most of the tools
used in our experiments, e.g. with the help of k-induction.

In PGCD, transitions t0/t1 can decrement/increment the marking of p0 by 1.
Nonetheless, with this initial state, it is the case that the number of occurrences
of t0 is always less than the one of t1 in any feasible sequence σ. Hence the two
predicates p0 ≥ 2 and p2 ≥ p1 are valid invariants. (Since some tools do not
accept literals of the form p ≥ q, we added the �redundant� place p3 so we can
restate our second invariant as p3 ≥ 1.) These invariants cannot be proved by
reasoning only on the displacements of traces (using the state equation) and are
already out of reach for LoLA or Tapaal.

2.2 Linear Reachability Formulas

We can revisit the semantics of Petri nets using linear predicates. In the following,
we use p for the vector (p1, . . . , pn), and F (p) for a formula with variables in
P . We also simply use F (α) for the substitution F{p1 ← α1} . . . {pn ← αn},
with α = (α1, . . . , αn) a sequence of linear expressions. We say that a mapping
m of NP is a model of F , denoted m |= F , if the ground formula F (m) =
F (m(p1), . . . ,m(pn)) is true. Hence we can also interpret F as a predicate over
markings. Finally, we de�ne the semantics of F as the set JF K = {m ∈ NP |
m |= F}.

As usual, we say that a predicate F is valid, denoted |= F , when all its
interpretations are true (JF K = NP ); and that F is unsatis�able (or simply
unsat), denoted 2 F , when JF K = ∅.

We can de�ne many properties on the markings of a net N using this For
instance, we can model the set of markings m such that some transition t is
enabled using predicate ENBLt (see Equation (2) below). We can also de�ne a
linear predicate to describe the relation between the markings before and after
some transition t �res. To this end, we use a vector p′ of �primed variables�
(p′1, . . . , p

′
n), where p

′
i will stand for the marking of place pi after a transition

is �red. With this convention, formula FIREt(p,p
′) is such that FIREt(m,m

′)
entails m

t−→ m′ or m = m′ when t is enabled at m. With all these notations,
we can de�ne a predicate T(p,p′) that �encodes� the e�ect of �ring at most one
transition in the net N .

GEQm(p)
def
=
∧
i∈1..n (pi > m(pi)) (1)

ENBLt(p)
def
=
∧
i∈1..n (pi > pre(t)(pi)) = GEQH(t)(p) (2)

∆t(p,p
′)

def
=
∧
i∈1..n (p

′
i = pi + post(t)(pi)− pre(t)(pi)) (3)

EQ(p,p′)
def
=
∧
i∈1..n (p

′
i = pi) (4)

FIREt(p,p
′)

def
= EQ(p,p′) ∨ (ENBLt(p) ∧∆t(p,p

′)) (5)
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T(p,p′)
def
= EQ(p,p′) ∨

∨
t∈T (ENBLt(p) ∧∆t(p,p

′)) (6)

In our work, we focus on the veri�cation of safety properties on the reachable
markings of a marked net (N,m0). Examples of properties that we want to check
include: checking if some transition t is enabled (commonly known as quasi-
liveness); checking if there is a deadlock; checking whether some linear invariant
between place markings is true; . . . All properties that can be expressed using a
linear predicate.

De�nition 1 (Linear Invariants and Inductive Predicates). A linear pred-
icate F is an invariant on (N,m0) if and only if we have m |= F for all
m ∈ R(N,m0). It is inductive if for all markings m we have m |= F and m→ m′

entails m′ |= F .

It is possible to characterize inductive predicates using our logical framework.
Indeed, F is inductive if and only if the QF-LIA formula (i) F (p) ∧ T (p,p′) ∧
¬F (p′) is unsat. Also, an inductive formula is an invariant when (ii) m0 |= F , or
equivalently |= F (m0). As a consequence, a su�cient condition for a predicate
F to be invariant is to have both conditions (i) and (ii); conditions that can
be checked using a SMT solver. Unfortunately, the predicates that we need to
check are often not inductive. In this case, the next best thing is to try to build
an inductive invariant, say R, such that JRK ⊆ JF K (or equivalently R ∧ ¬F
unsat). This predicate provides a certi�cate of invariance that can be checked
independently.

Lemma 1 (Certi�cate of Invariance). A su�cient condition for F to be
invariant on (N,m0) is to exhibit a linear predicate R that is (i) initial: R(m0)
valid; (ii) inductive: R(p) ∧ T (p,p′) ∧ ¬R(p ) unsat; and (iii) that entails F ,
for instance: R ∧ ¬F unsat.

This result is in line with a property proved by Leroux [26], which states
that when a �nal con�guration m is not reachable there must exist a Presburger
inductive invariant that contains m0 but does not contain m. This result does
not explain how to e�ectively compute such an invariant. Moreover, in our case,
we provide a method that works with general linear predicates, and not only
with single con�gurations. On the other side of the coin, given the known results
about the complexity of the problem, we do not expect our procedure to be
complete in the general case.

In the next section, we show how to (potentially) �nd such certi�cates using
an adaptation of the PDR method. An essential component of PDR is to abstract
a �scenario� leading to the model of some property F�say a transition m

σ
=⇒m′

with m′ |= F�into a predicate that contains m (and potentially many more
similar scenarios). More generally, a generalization of the trio (m,σ, F ) is a
predicate G satis�ed by m such that m1 |= G entails that there is m1 →? m2

with m2 |= F .

We can use properties (H1)�(H3), de�ned earlier, to build generalizations.
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Lemma 2 (Generalization). Assume we have a scenario such that m
σ
=⇒m′

and m′ |= F . We have three possible generalizations of the trio (m,σ, F ).

(G1) If property F is monotonic, then m1 |= GEQm(p) implies there is m2 > m′

such that m1
σ
=⇒m2 and m2 |= F .

(G2) If m1 |= GEQH(σ)(p) ∧ F (p+∆(σ)) then m1
σ
=⇒m2 and m2 |= F .

(G3) Assume a, b are mappings of NP such that a = H(σ) and b = (−∆(σ))
+
,

with the notations used in (H3). Then

m1 |= ∃k.
([∧

i∈1..n(pi > a(i) + k · b(i))
]

∧F (p+ (k + 1) ·∆(σ))

)
implies

{
∃k.m1

σk+1

===⇒m2

and m2 |= F

Proof. Each property is a direct result of properties (H1) to (H3).

Property (G3) is the �rst and only instance of linear formula using an extra
variable, k, that is not in P . The result is still a linear formula though, since we
never need to use the product of two variables. This generalization is used when
we want to �saturate the sequence σ�. This is the only situation where we may
need to deal with quanti�ed LIA formulas. Another solution would be to replace
each quanti�cation with the use of modulo arithmetic, but this operation may
be costly and could greatly increase the size of our formulas. It would also not
cut down the complexity of the SMT problems.

3 Property Directed Reachability

Some symbolic model-checking procedure, such as BMC [6] or k-induction [28],
are a good �t when we try to �nd counter-examples on in�nite-state systems.
Unfortunately, they may perform poorly when we want to check an invariant.
In this case, adaptations of the PDR method [8,9] (also known as IC3, for �In-
cremental Construction of Inductive Clauses for Indubitable Correctness�) have
proved successful.

We assume that we start with an initial state m0 satisfying a linear property,
I, and that we want to prove that property P is an invariant of the marked net
(N,m0). (We use blackboard bold symbols to distinguish between parameters of
the problem, and formulas that we build for solving it.) When checking for the
reachability from the initial state, we can simple choose I such that JIK = {m0}.

We de�ne F = ¬P as the �set of feared events�; such that P is not an invariant
if we can �nd m in R(N,m0) such that m |= F. To simplify the presentation, we
assume that F is a conjunction of literals (a cube), meaning that P is a clause.
In practice, we assume that F is in Disjunctive Normal Form.

PDR is a combination of induction, over-approximation, and SAT or SMT
solving. The goal is to build an incremental sequence of predicates F0, . . . , Fk
that are �inductive relative to stepwise approximations�: such that m |= Fi and
m→ m′ entails m′ |= Fi+1, but not m

′ |= F. The method stops when it �nds a
counter-example, or when we �nd that one of the predicates Fi is inductive.
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Function prove(I, F: linear predicates)
Result: ⊥ if F is reachable (P = ¬F is not an invariant), otherwise >

1 if sat(I(p) ∧ T (p,p′) ∧ F(p′)) then
2 return ⊥
3 k ← 1, F0 ← I, F1 ← P
4 while > do
5 if not strengthen(k) then
6 return ⊥
7 propagateClauses(k)
8 if CL(Fi) = CL(Fi+1) for some 1 6 i 6 k then
9 return >

10 k ← k + 1

We adapt the PDR approach to Petri nets, using linear predicates and SMT
solvers for the QF-LIA and LIA logics in order to learn, generalize, and propagate
new clauses. The most innovative part of our approach is the use of speci�c
�generalization algorithms� that take advantage of the Petri nets theory, like the
use of hurdles for example.

3.1 Algorithm

Our implementation follows closely the algorithm for IC3 described in [9]. We
only give a brief sketch of the OARS construction.

The main function, prove, computes an Over Approximated Reachability Se-
quence (OARS) (F0, . . . , Fk) of linear predicates, called frames, with variables
in p. An OARS meets the following constraints: (1) it is monotonic: Fi ∧ ¬Fi+1

unsat for 0 6 i < k; (2) it contains the initial states: I ∧ ¬F0 unsat; (3) it
does not contain feared states: Fi ∧ F unsat for 0 6 i 6 k; and (4) it satis�es
consecution: Fi(p) ∧ T(p,p′) ∧ ¬Fi+1(p

′) unsat for 0 6 i < k.

By construction, each frame Fi in the OARS is de�ned as a set of clauses,
CL(Fi), meaning that Fi is built as a formula in CNF: Fi =

∧
cl∈CL(Fi)

cl . We

also enforce that CL(Fi+1) ⊆ CL(Fi) for 0 6 i < k, which means that the
monotonicity property between frames is trivially ensured.

The body of function prove contains a main iteration (line 4) that increases
the value of k (the number of levels of the OARS). At each step, we enter a
second, minor iteration (line 2 in function strengthen), where we generate new
minimal inductive clauses that will be propagated to all the frames. Hence both
the length of the OARS, and the set of clauses in its frames, increase during
computation.

The procedure stops when we �nd an index i such that Fi = Fi+1. In this
case we know that Fi is an inductive invariant satisfying P. We can also stop
during the iteration if we �nd a counter-example (a model m of F). In this case,
we can also return a trace leading to m.
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Function strengthen(k : current level)

1 try:
2 while (m

t−→m′) |= Fk(p) ∧ T (p,p′) ∧ F(p′) do
3 s← generalizeWitness(m, t, F)
4 n← inductivelyGeneralize(s, k - 2, k)
5 pushGeneralization({(s, n+1)}, k)

6 return >

7 catch counter example:
8 return ⊥

Procedure propagateClauses(k: level)

1 for i← 1 to k do
2 foreach cl ∈ CL(Fi) do
3 if 2 Fi(p) ∧ T (p,p′) ∧ ¬cl(p′) then
4 CL(Fi+1)← CL(Fi) ∪ {cl}

When we start the �rst minor iteration, we have k = 1, F0 = I and F1 = P.
If we have Fk(p)∧T (p,p′)∧F(p) unsat, it means that P is inductive, so we can
stop and return that P is an invariant. Otherwise, we proceed with the strengthen
phase, where each model of Fk(p)∧T (p,p′)∧F(p) becomes a potential counter-
example, or witness, that we need to �block� (line 3�5 of function strengthen).

Instead of blocking only one witness, we �rst generalize it into a predicate
that abstracts similar dangerous states (see the call to generalizeWitness).
This is done by applying one of the three generalization results in Lemma 2. We
give more details about this step later. By construction, each generalization is a
cube s (a conjunction of literals). Hence, when we block it, we learn new clauses
from ¬s that can be propagated to the previous frames.

Before pushing a new clause, we test whether s is reachable from previous
frames. We take advantage of this opportunity to �nd if we have a counter-
example and, if not, to learn new clauses in the process. This is the role of
functions pushGeneralization and inductivelyGeneralize.

We �nd a counter example (in the call to inductivelyGeneralize) if the
generalization from a witness found at level k, say s, reaches level 0 and F0(p)∧
T (p,p′) ∧ s(p′) is satis�able (line 1 in inductivelyGeneralize). Indeed, it
means that we can build a trace from I to F by going through F1, . . . , Fk.

Procedure generateClause(s : cube, i: level, k: level)

1 cl← ¬ unsat_core(¬s(p) ∧ Fi(p) ∧ T (p,p′) ∧ s(p′))
2 for j ← 1 to i+1 do
3 CL(Fj)← CL(Fj) ∪ {cl}
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Function inductivelyGeneralize(s : cube, min: level, k: level)

1 if min < 0 and sat(F0(p) ∧ T (p,p′) ∧ s(p′)) then
2 raise Counterexample

3 for i← max(1,min+ 1) to k do
4 if sat(Fi(p) ∧ T (p,p′) ∧ ¬s(p) ∧ s(p′)) then
5 generateClause(s, i-1, k)
6 return i− 1

7 generateClause(s, k, k)
8 return k

Function pushGeneralization(states: set of (state, level), k: level)

1 while > do
2 (s, n)← from states minimizing n
3 if n > k then
4 return
5 if (m

t−→m′) |= Fn(p) ∧ T (p,p′) ∧ s(p′) then
6 p← generalizeWitness(m, t, s)
7 l← inductivelyGeneralize(p, n - 2, k)
8 states← states ∪ {(p, l + 1)}
9 else
10 l← inductivelyGeneralize(s, n, k)
11 states← states \ {(s, n)} ∪ {(s, l + 1)}

The method relies heavily on checking the satis�ability of linear formulas in
QF-LIA, which is achieved with a call to a SMT solver. In each function call, we
need to test if predicates of the form Fi∧T ∧G are unsat and, if not, enumerate
its models. To accelerate the strengthening of frames, we also rely on the unsat
core of properties in order to compute a minimal inductive clause (MIC).

Our approach is parametrized by a generalization function (generalizeWit-
ness) that is crucial if we want to avoid enumerating a large, potentially un-
bounded, set of witnesses. This can be the case, for example, in line 5 of pushGene-
ralization. In this particular case, we �nd a state m at level n (because
m |= Fn), and a transition t that leads to a problematic clause in Fn+1. Therefore
we have a sequence σ of size k − n+ 1 such that m

σ
=⇒m′ and m′ |= F. We con-

sider three possible methods for generalizing the trio (m,σ,F), that corresponds
to property (G1)�(G3) in Lemma 2.

3.2 State-based Generalization

A special case of the reachability problem is when the predicate F is monotonic�
meaning that m1 |= F entails m1+m2 |= F for all markings m1,m2. A su�cient
(syntactic) condition is for F to be a positive formula with literals of the form∑
i∈I pi ≥ a. This class of predicates coincide with what is called a coverability

property, for which there exists specialized veri�cation methods (see e.g. [18,19]).
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By property (G1), If we have to block a witness m such that m
σ
=⇒m′ and

m′ |= F, we can as well block all the states greater than m. Hence we can
choose the predicate GEQm to generalize m. This is a very convenient case for
veri�cation and one of the optimizations used in previous works on PDR for
Petri nets [1,16,23,24]. First, the generalization is very simple and we can easily
compute a MIC when we block predicate GEQm in a frame. Also, we can prove
the completeness of the procedure when F is monotonic. An intuition is that it
is enough, in this case, to check the property on the minimal coverability set
of the net, which is always �nite [18]. The procedure is also complete for �nite
transition systems. These are the only cases where we have been able to prove
that our method always terminates.

3.3 Transition-based Generalization

We propose a new generalization based on the notion of hurdles. This approach
can be used when F is not monotonic, for example when we want to check an
invariant that contains literals of the form p = k (e.g. the reachability of a �xed
marking) or p > q.

Assume we need to block a witness of the from m
σ
=⇒m′ |= s. Typically, s is a

cube in F, or a state resulting from a call to pushGeneralization. By property
(G2), we can as well block all the states satisfying Gσ(p)

def
= GEQH(σ)(p)∧s(p+

∆(σ)). This generalization is interesting when property s does not constraint all
the places, or when we have few equality constraints. In this case Gσ may have
an in�nite number of models. It should be noted that using the duality between
�feasible traces� and hurdles is not new. For example, it was used recently [19]
to accelerate the computation of coverability trees. Nonetheless, to the best of
our knowledge, this is the �rst time that this generalization method has been
used with PDR.

3.4 Saturated Transition-based Generalization

We still assume that we start from a witness m
σ
=⇒m′ |= s. Our last method relies

on property (G3) and allows us to consider several iterations of σ. If we �x the
value of k, then a possible generalization is Gkσ

def
=
(∧

i∈1..n(pi > a(i) + k · b(i))
)
∧

s(p + (k + 1) · ∆(σ)), where a, b are the mappings of NP de�ned in Lemma 2.
(Notice that G1

σ = Gσ.) More generally the predicate G6k
σ = G1

σ ∨ · · · ∨ Gkσ is
a valid generalization for the witness (m,σ, s), in the sense that if m1 |= G6k

σ

then there is a trace m1 →? m2 such that m2 |= s. At the cost of using exis-
tential quanti�cation (and therefore a �top-level� universal quanti�cation when
we negate the predicate to block it in a frame), we can use the more general
predicate G?σ

def
= ∃k.Gkσ, which is still linear and has its support in P .

We know examples of invariants where the PDR method does not terminate
except when using saturation. A simple example is the net Parity, used as an
example in Sect. 2, with the invariant P = (p > 1). In this case, F = ¬P = (p =
0). Hence we are looking for witnesses such that m→? 0. The simplest example
is 2

t2−→ 0, which corresponds to the �blocking clause� p 6= 2. In this case, we
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have H(t2) = 2 and ∆(t2) = −2. Hence the transition-based generalization is
(p ≥ 2) ∧ (p − 2 = 0) ≡ (p = 2), which does not block new markings. At this
point, we try to block (p = 0) ∨ (p = 2). The following minor iteration of our
method will consider the witness 4

t2.t2===⇒ 0, etc. Hence after k minor iterations,
we have Fk ≡ (p 6= 0)∧ (p 6= 2)∧ · · · ∧ (p 6= 2k). If we saturate t2, we �nd in one
step that we should block ∃k.(p− 2 · (k + 1) = 0). This is enough to prove that
(p > 1) is an invariant as soon as the initial marking is an odd number.

This example proves that PDR is not complete, without saturation, in the
general case. We conjecture that it is also the case with saturation. Even though
example Parity is extremely simple, it is also enough to demonstrate the limit
of our method without saturation. Indeed, when we only allow unquanti�ed
linear predicates with variables in P , it is not possible to express all the possible
semilinear sets in NP . (We typically miss some periodic sets.) In practice, it is not
always useful to saturate a trace and, in our implementation, we use heuristics
to limit the number of quanti�cations introduced by this operation. Actually,
nothing prevents us from mixing our di�erent kinds of generalization together,
and there is still much work to be done in order to �nd good tactics in this case.

4 Experimental Results

We have implemented our complete approach in a tool, called SMPT (for Satis-
�ability Modulo P/T Nets), and made our code freely available under the GPLv3
license. The software, scripts and data used to perform our analyses are available
on Github (htttps://github.com/nicolasAmat/SMPT) and are archived in Zen-
odo [2]. The tool supports the declaration of reachability constraints expressed
using the same syntax as in the Reachability examinations of the Model Check-
ing Contest (MCC). For instance, we use PNML as the input format for nets.
SMPT relies on a SMT solver to answer sat and unsat-core queries. It inter-
acts with SMT solvers using the SMT-LIBv2 format, which is a well-supported
interchange format. We used the z3 solver for all the results presented in this
section.

4.1 Evaluation on Expressiveness

It is di�cult to �nd benchmarks with unbounded Petri nets. To quote Blondin et
al. [7], �due to the lack of tools handling reachability for unbounded state spaces,
benchmarks arising in the literature are primarily coverability instances�. It is
also very di�cult to randomly generate a true invariant that does not follow, in
an obvious way, from the state equation. For this reason, we decided to propose
our own benchmark, made of �ve synthetic examples of nets, each with a given
invariant. This benchmark is freely available and presented as an archive similar
to instances of problems used in the MCC.

Our benchmark is made of deceptively simple nets that have been engineered
to be di�cult or impossible to check with current techniques. We already de-
picted our two �rst examples in Fig. 1. We display all our other examples in
Figs. 2, 3 and 4.

htttps://github.com/nicolasAmat/SMPT
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Fig. 2: CryptoMiner with P = ¬(Block = 4 ∧ Connection = 1 ∧ Coin = 10)

Instance SMPT ITS-Tools LoLA Tapaal

Murphy 0.75∗ TLE TLE TLE
PGCD 0.11∗ 139.08 TLE TLE
CryptoMiner 0.19 ∗ 5.92 TLE 0.18
Parity 0.40 ∗ 3.36 0.01 4.16
Process 83.39 TLE 0.03 0.18

Table 1: Computation time on our synthetic examples (time in seconds).

We give a brief description of the nets composing our �reachability� bench-
mark (except for Parity and PGCD from Fig. 1 already described previously).
Each of our example is quite small, with less than 10 places or transitions, and is
representative of patterns that can make the reachability problem harder: the use
of self-loops; dead transitions that cannot be detected with the state equation;
weights that are relatively prime; etc. Also, most of our examples can be turned
into families of nets using parameters such has the initial marking, weights on
the arcs, or by adding copies of a sub-net.

� CryptoMiner describes the, simpli�ed, daily schedule of someone mining
bitcoins. The net is composed of two disjoint state machines synchronized
by self-loops (trivial cycles of weight 1). Removing the self-loops do not
modify the incidence matrix, and so do not change the solutions of the
state equation. The di�culty when analysing this net lies in the presence
of constraints that cannot be derived from the state equation alone. For
instance, the presence of tokens in Coin implies Connection empty.

� Process is a net composed of three subnets coupled by self-loops on the
places p2, p3 and p4. The component at the bottom includes a dead transition
(t6); it will never be enabled although the state equation ensures at least one
possibility of �ring it. Like with our previous example, reasoning only on the
state equation is not enough to capture the exact behaviour of this net.
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Fig. 3: Process with P = (p2 + p3 + p4 > 1 ∧ p7 6 2)
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Fig. 4: Murphy with P = (p1 6 2 ∧ p4 > p5)

For instance, the state equation allows to get 3 tokens in p7, which would
contradict our invariant.

� Murphy is a net combining PGCD with the �bottom component� of net
Process.

We compared SMPT against ITS-Tools, LoLA, and Tapaal and give our
results in Table 1. All results are computed using 4 cores, a limit of 16GB of
RAM, and a timeout of 1 h. A result of TLE stands for �Time Limit Exceeded�.
For SMPT, we marked with an asterisk (∗) the results computed using our
saturation-based generalization. Our results show that SMPT is able to answer
on several classes of examples that are out of reach for some, or all the other
tools; often by orders of magnitude.

We also experimented with two other tools for reachability recently presented
at TACAS:KReach [15], that provides a complete implementation of Kosaraju's
original decision procedure, and FastForward [7], a tool for e�ciently �nding
counter-examples in unbounded Petri nets (but that may report that an invariant
is true in some cases). We do not include these tools in our �ndings since they
were unable to answer any of our problems. (But input �les for our benchmark,
for both tools, are available in our artifact.)

4.2 Computing Certi�cate of Invariance

A distinctive feature of SMPT is the ability to output a linear inductive in-
variant for reachability problems: when we �nd that P is invariant, we are also
able to output an inductive formula C, of the form P ∧ G, that can be checked
independently with a SMT solver. We can �nd the same capability in the tool
Petrinizer [16] in the case of coverability properties.

To get a better sense of this feature, we give the actual outputs computed with
SMPT on the two nets of Fig. 1. The invariant for the net Parity is P1 = (p0 > 1),
and for PGCD it is P2 = (p1 6 p2)
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The certi�cate for property P1 on Parity is C1 ≡ (p0 > 1) ∧ ∀k.((p0 <
2 k + 2) ∨ (p0 > 2 k + 3)), which is equivalent to (p0 > 1) ∧ (∀k > 1).(p0 6= 2.k),
meaning the marking of p0 is odd. This invariant would be di�erent if we changed
the initial marking to an even number.

[PDR] Certificate of invariance

# (not (p0 < 1))

# (forall (k1) ((p0 < (2 + (k1 * 2))) or (p0 + (-2 * (k1 + 1))) >= 1))

The certi�cate for property P2 on PGCD is C2 ≡ (p1 6 p2) ∧ ∀k.((p0 <
k+ 3) ∨ (p2 − p1 > k+ 1)) and may seem quite inscrutable. It happens actually
that the saturation �learned� the invariant p0 + p1 = p2 + 2 and was able to use
this information to strengthen property P2 into an inductive invariant.

[PDR] Certificate of invariance

# (not (p1 > p2))

# (forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))

4.3 Evaluation on Performance

Since it is not su�cient to use only a small number of hand-picked examples to
check the performance of a tool, we also provide results obtained on a set of 30
problems (a net together with an invariant) that are borrowed from test cases
used by the tool Sara [32,33] (examples test{3, 4, 12}) and a similar software,
called Reach, that is part of the Tina toolbox [5] (examples 1, 3u, . . . , zz).
Most of these problems can be easily answered, but are interesting to test our
reliability on a relatively even-handed benchmark.

Our benchmark also include 6 examples of bounded nets obtained by limiting
the number of times we can �re transitions in the nets PGCD and CryptoMiner.
(This is achieved by adding a new place that loses a token when a transition is
�red.)

The experiments were performed with the same conditions as previously, but
with a timeout of only 255s. We display our results in the chart of Fig. 5, which
gives the number of feasible problems, for each tool, when we change the timeout
value. We also provide the computation times, for the same dataset, in Table 2.
We observe that our performances are on par with Tapaal, which is the fastest
among our three reference tools on this benchmark.

Our tool is actually quite mature. In particular, a preliminary version of
SMPT [1] (without many of the improvements described in this work) partic-
ipated in the 2021 edition of the MCC, where we ranked fourth, out of �ve
competitors, and achieved a reliability in excess of 99.9%.

Even if it was with a previous version of our tool, there are still lessons to
be learned from these results. In particular, it can inform us on the behavior of
SMPT on a very large and diverse benchmark of bounded nets, with a majority
of reachability properties that are not invariants.

We can compare our results with those of LoLA, that fared consistently well
in the reachability category of the MCC. LoLA is geared towards model checking
of �nite state spaces, but it also implements semi-decision procedures for the
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Instance SMPT ITS-Tools LoLA Tapaal

1 0.15 0.78 5.01 0.17
3u 1.84 ∗ 0.80 0.01 0.16
5pi 6.86 0.88 0.01 0.17
6pi 0.21 0.88 0.01 0.16
7pi 0.15 0.78 5.00 0.16
Crypto 0.20 ∗ 4.94 TLE 0.16
Crypto-10000 0.25 ∗ 4.88 0.02 0.16
Crypto-50 0.22 ∗ 1.04 0.01 0.18
Crypto-500 0.24 ∗ 4.57 0.01 0.17
PGCD-10000 0.14∗ 142.63 TLE 96.59
PGCD-50 0.10 ∗ 0.87 0.01 0.17
PGCD-500 0.11 ∗ 1.13 0.08 0.30
b 0.09 0.79 5.02 0.16
kw2 0.18 0.78 5.01 0.16
mtx 0.60 0.86 0.00 0.16
nope 0.12 0.78 5.01 0.16
nope2 0.10 0.76 5.01 0.17
test12 0.10 0.76 5.00 0.05
test3 0.15 0.91 5.02 0.18
test4 0.15 0.82 0.01 0.17
u 0.09 0.77 5.00 0.17
w 0.10 0.79 5.02 0.16
w1 0.10 0.75 5.01 0.05
w2 0.10 0.80 5.00 0.17
wb 0.29 ∗ 0.80 5.00 0.17
we 0.16 0.78 5.01 0.17
x 1.24 ∗ 0.84 0.01 0.16
z 0.10 1.22 5.00 0.30
ze 0.71 0.88 5.03 0.17
zz 0.12∗ 1.64 5.01 0.25

Table 2: Computation times with existing benchmarks (time in seconds)

unbounded case. Out of 45 152 reachability queries at the MCC in 2021 (one
instance of a net with one formula), LoLA was able to solve 85% of them (38 175
instances) and SMPT only 52% (23 375 instances); it means approximately ×1.6
more instances solved using LoLA than using SMPT. Most of the instances
solved with SMPT have also been solved by LoLA; but still 1 631 instances are
computed only with our tool, meaning we potentially increase the number of
computed queries by 4%. This is quite an honorable result for SMPT, especially
when we consider the fact that we use a single technique, with only a limited
number of optimizations.
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Fig. 5: Minimal timeout to compute a given number of queries.

5 Conclusion and Related Works

One of the most important results in concurrency theory is the decidability of
reachability for Petri nets or, equivalently, for Vector Addition Systems with
States (VASS) [25]. Even if this result is based on a constructive proof, and
its �construction� streamlined over time [26], the classical Kosaraju-Lambert-
Mayr-Sacerdote-Tenney approach does not lead to a workable algorithm. It is
in fact a feat that this algorithm has been implemented at all, see e.g. the tool
KReach [15]. While the (very high) complexity of the problem means that no
single algorithm could work e�ciently on all inputs, it does not prevent the
existence of methods that work well on some classes of problems. For example,
several algorithms are tailored for the discovery of counter-examples. We mention
the tool FastForward [7] in our experiments, that explicitly targets the case
of unbounded nets.

We propose a method that works as well on bounded as on unbounded ones;
that behaves well when the invariant is true; and that works with �genuine�
reachability properties, and not only with coverability. But there is of course no
panacea. Our approach relies on the use of linear predicates, which are incremen-
tally strengthened until we �nd an invariant based on: the transition relation of
the net; the property we want to prove (it is �property-directed�); and constraints
on the initial states. This is in line with a property proved by Leroux [26], which
states that when a �nal con�guration is not reachable then �there exist check-
able certi�cates of non-reachability in the Presburger arithmetic.� Our extension
of PDR provides a constructive method for computing such certi�cates, when
it terminates. For our future works, we would like to study more precisely the
completeness of our approach and/or its limits.

This is not something new. There are many tools that rely on the use of in-
teger programming techniques to check reachability properties. We can mention
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the tool Sara [33], that is now integrated inside LoLA and can answer reach-
ability problems on unbounded nets; or libraries like Fast [4], designed for the
analysis of systems manipulating unbounded integer variables. An advantage of
our method is that we proceed in a lazy way. We never explicitly compute the
structural invariants of a net, never switch between a Presburger formula and
its representation as a semilinear set (useful when one wants to compute the
�Kleene closure� of a linear constraint), . . . and instead let a SMT solver work
its magic.

We can also mention previous works on adapting PDR/IC3 to Petri nets.
A �rst implementation of SMPT was presented in [1], where we focused on the
integration of structural reductions with PDR. This work did not use our abstrac-
tion methods based on hurdles and saturation, which are new. We can �nd other
related works, such as [16,23,24]. Nonetheless they all focus on coverability prop-
erties. Coverability is not only a subclass of the general reachability problem, it
has a far simpler theoretical complexity (EXPSPACE vs NONELEMENTARY).
It is also not expressive enough for checking the absence of deadlocks or for
complex invariants, for instance involving a comparison between the marking
of two places, such as p < q. The idea we advocate is that approaches based
on the generalization of markings are not enough. This is why we believe that
abstractions (G2) and (G3) de�ned in Lemma 2 are noteworthy.

We can also compare our approach with tools oriented to the veri�cation of
bounded Petri nets; since many of them integrate methods and semi-decision
procedures that can work in the unbounded case. The best performing tools in
this category are based on a portfolio approach and mix di�erent methods. We
compared ourselves with three tools: ITS-Tools [30], Tapaal [14] and LoLA
[34], that have in common to be the top trio in the Model Checking Contest [3].
(And can therefore accept a common syntax to describe nets and properties.)
Our main contribution in this context, and one of our most complex results, is
to provide a new benchmark of nets and properties that can be used to evaluate
future reachability algorithms �for expressiveness�.

The methods closest to ours in these portfolios are Bounded Model Check-
ing and k-induction [28], which are also based on the use of SMT solvers.
We can mention the case of ITS-Tools [31], that can build a symbolic over-
approximation of the state space, represented as set of constraints. This ap-
proximation is enough when it is included in the invariant that we check, but
inconclusive otherwise. A subtle and important di�erence between PDR and
these methods is that PDR needs only 2n variables (the p and p′), whereas we
need n fresh variables at each new iteration of k-induction (so kn variables in
total). This contributes to the good performances of PDR since the complexity
of the SMT problems are in part relative to the number of variables involved.
Another example of over-approximation is the use of the so-called �state equation
method� [27], that can strengthen the computations of inductive invariants by
adding extra constraints, such as place invariants [29], siphons and traps [16,17],
causality constraints, etc. We plan to exploit similar constraints in SMPT to
better re�ne our invariants.
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To conclude, our experiments con�rm what we already knew: we always ben-
e�t from using a more diverse set of techniques, and are still in need of new tech-
niques, able to handle new classes of problems. For instance, we can attribute the
good results of Tapaal, in our experiments, to their implementation of a Trace
Abstraction Re�nement (TAR) techniques, guided by counter-examples [10]. The
same can be said with LoLA, that also uses a CEGAR-like method [33]. We be-
lieve that our approach could be a useful addition to these techniques.

Acknowledgements. We would like to thank Alex Dixon, Philip O�termatt
and Yann Thierry-Mieg for their support when evaluating their respective tools.
Their assistance was essential in improving the quality of our experiments.
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