
HAL Id: hal-03562064
https://laas.hal.science/hal-03562064v1

Submitted on 8 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tracing Based Model to Identify Bottlenecks in
Physically Distributed Applications

Clément Cassé, Pascal Berthou, Philippe Owezarski, Sebastien Josset

To cite this version:
Clément Cassé, Pascal Berthou, Philippe Owezarski, Sebastien Josset. A Tracing Based
Model to Identify Bottlenecks in Physically Distributed Applications. 2022 International Con-
ference on Information Networking (ICOIN), Jan 2022, Jeju-si, South Korea. pp.226-231,
�10.1109/ICOIN53446.2022.9687217�. �hal-03562064�

https://laas.hal.science/hal-03562064v1
https://hal.archives-ouvertes.fr


A Tracing Based Model to Identify Bottlenecks in
Physically Distributed Applications

Clément Cassé∗†, Pascal Berthou∗, Philippe Owezarski∗ and Sébastien Josset†
∗LAAS - CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Email: {clement.casse,pascal.berthou,philippe.owezarski}@laas.fr
†Orange Labs, Blagnac, France

Abstract—The Cloud computing paradigm has become the
new industry standard way of designing large scale applications.
Over the past years, we observe an increased adoption of this
technology on numerous IoT - Edge applications. And while
this technology comes with its promises and benefits, considering
almost infinite scalability, it also comes along with its drawbacks
and challenges. Detecting partial failures or bottlenecks are new
obstacles that arose with the adoption of Cloud Applications.
Distributed Tracing now allows developers to gain insight on the
composition of services within a distributed Application. Today
we observe an increased adoption of this technology on numerous
cloud-native architectures. The project OpenTelemetry proposes
a specification for traces that normalizes this new monitoring data
format. In this publication we present an approach that leverages
these traces to identify bottlenecks at the scale of a physically
distributed application. We propose an extension of our model
that builds a hierarchical property graph to exhibit bottlenecks
in an application that follows the layered Cloud - IoT network
model. Based on OpenTelemetry traces we can maintain a model
at runtime of the whole application and compute bottlenecks.
Their identification relies on the scores provided by centrality
algorithms.

Index Terms—Distributed Tracing, Multi-zones Cloud, Edge-
IoT, Property Graph, Graph Rewriting, Hierarchical Model

I. INTRODUCTION

The Cloud Computing has become the industry-standard
way of designing large-scale applications. Initially, Cloud Ser-
vice Providers (CSP) designed a catalogue of services capable
of addressing the constraints that rose on Web applications
design over the last decade. Although, the Cloud-Native design
also spread out to other multiple domains such as Big Data
processing pipelines or IoT applications. Indeed, Cloud-Native
software architectures are well known to be both scalable and
resilient. Many companies reported successful stories on the
capacity of their architecture to deliver the service under an
extremely high load or under poor conditions.

The way Cloud-Native Applications are built represents
a major shift in the way software is developed nowadays.
Applications hosted on such platforms have a new model; they
are now made of components managed by third parties, hosted
in multiple data centres distributed around the world. Cloud
Native Applications are usually designed as microservices:
the application is separated into business-centric components,
communicating with each other via Web APIs. This shift in
design has a direct implication on the way monitoring should
be done; and, what events / metrics should be reported to

characterize overall application performance. These profound
structural changes raised several new challenges to Application
Performance Monitor (APM):

Adopt the heavily distributed architecture paradigm:
Cloud Applications can be made of hundreds or even thou-
sands of components communicating with each other. In the
microservices model, each component can be implemented in
the language that best fits its functional needs. CSPs now pro-
pose multi data centres deployments as well as Edge features
that allow an application to be geographically scattered on
multiple continents [1], [2].

Handle changes at runtime: Cloud orchestrators can
handle automatically the scalability of computing resources:
additional resources may be created or deleted to follow the
variation of the load generated by users. In addition, it is a
common pattern to have ephemeral components in a Cloud
Application: recurring tasks are often performed in dedicated
computation units [3]. Finally, in the DevOps culture, for each
new version of a component, a fully automated pipeline runs
a cycle of tests and then deploys the software in production
(CI/CD) [4].

Handle various instrumentation levels: Unlike traditional
software design, Cloud Application heavily rely on third-party
software-defined-services [5]. Whereas it eases development, it
also obscures both monitoring and debugging [6], [7]. Indeed,
CSP rarely expose their internal metrics; performance of these
third-party services is evaluated regarding the Service Level
Agreement (SLA) with the client.

Cloud Application monitoring borrows many concepts of
distributed system monitoring where elements of the system
have different life-cycles and report different metrics. With
the environment heterogeneity, each service performance may
be evaluated through a different set of metrics; although
single component monitoring is a well-known and well-studied
problem. But monitoring an application only by monitoring
its individual components does not highlight global issues. In-
deed, in a distributed system, there is a range of issues specific
to their nature: Identifying cascading errors, bottlenecks and
noisy neighbours, which are relative to the way component
communicate with each other.

In this paper, we propose an approach based on the recent
open source initiative OpenTelemetry to detect bottlenecks.
The following section provides a history on the use of dis-
tributed tracing in cloud applications. Then we present our



model and how to derive a hierarchical property graph from
OpenTelemetry traces. In a later section, we focus on the use
of centrality algorithms on the graph to exhibit bottlenecks.
Finally, this paper concludes on running centrality algorithms
on a simulation of a distributed application inspired by the
Riak database.

II. BACKGROUND

In the last years, we observed various initiatives introducing
a new kind of software monitoring tools related to tracing
service composition in Cloud environments. This technique
has been named Distributed-Tracing, it grants a unified view of
components interactions serving a single request. Distributed
tracing enables developers and operators to reason on their
system in a global way. Indeed, most of the major actors
of Cloud-Computing reported they have been developing in-
ternally distributed tracing for various monitoring needs [8]–
[11]. They reported how they are using distributed tracing to
detect performance anomalies [9], [11], [12], but also for other
scenarios involving a high observability need: like running
tests in production [1].

Unlike metrics gathering or logging, distributed tracing
provides a unified view of the propagation of a request in a
distributed system, crossing the boundaries of its components.
A single propagation of a request in the application is called
a trace: it establishes causality between latency measurements
of the components of the application. Traces are often dis-
played as a Gantt chart of the time spent in each component
involved in the request. To ensure the consistency of traces, the
prevailing approach to aggregate measurements is the Google
Dapper’s span model [9]. This technique to create traces has
also been used by academics to identify bottlenecks and root
cause in application deployed on PaaS [7].

Due to the variety of Distributed-Tracing solutions, a recent
open source initiative, OpenTelemetry, merged the two most
mature technologies: OpenTracing and OpenCensus. The first
one provides a unified API for tracing to avoid Application
Performance Monitor (APM) vendor locking whereas the sec-
ond one focuses on a production-ready default implementation
for various languages. This project has a high visibility in both
the Cloud-Computing and the Open-Source communities and,
by normalizing Tracing in Cloud Applications, aims to provide
a reliable data source for traces. OpenTelemetry recently
became the reference in terms of semantic and implementation
of Cloud-Native monitoring systems and is now hosted by the
Cloud Native Computing Foundation (CNCF).

This project, in early-release at the time of writing, acts as
an element part of the pipeline transforming tracing data. This
project can interface with the various existing implementation
ensuring their mutual compatibility. In addition, it defines
a semantic of attributes in spans collected, these elements
make this technology a promising candidate to go toward
normalization of tracing data.

In our previous works on zonal Kubernetes clusters, we put
a focus on a way to leverage OpenTelemetry traces to describe
the monitored application as a whole entity [13]. In the later,

we propose a variation of this model to adapt to a multi-
zone AWS application: this pattern exhibits several structural
layers and purposes an approach that pushes toward the
edge computations units. Both the topic and the hierarchical
network structure resonate to actual IoT challenges regarding
service placement. In this work, we present how to use our
previous model to aggregate traces in a global hierarchical
graph. Then we propose using this graph to exhibit potential
bottlenecks within the application architecture that cannot be
identified otherwise.

III. MODELLING A GLOBAL APPLICATION WITH TRACES

In the following, a focus will be made on leveraging
tracing data from OpenTelemetry in order to structure a graph
representing communication between entities in a distributed
Application. In a later section, this graph will be used as
support to spot bottlenecks within a distributed application.
Throughout the following, we will refer to the terms of Service
Instance, Availability Zone and Region as they are defined in
the OpenTelemetry specifications [14].

In our previous work, traces were processed independently
to spot inefficient communications in a Zonal Kubernetes
Cluster [13]. This work proposes an adaptation of the previous
model to describe a multi layers networking model for Cloud-
Edge deployments inspired by the AWS concepts of location
of resources. This type of location hierarchy corresponds to a
containment hierarchy [15], where entities are embedded into
each other forming a pure tree. This hierarchy can be repre-
sented as Service Instances ⊂ Availability Zones ⊂ Regions.

Instead of processing individual traces, this work focuses on
merging the trace graphs in a hierarchical global networking
model. The resulting graph therefore exhibits behaviours of
the whole system, building a global view of components in-
teractions. The first step of our approach has been to transform
each traces into a hierarchical property-graph as part of our
previous work. Then, we merge all these graphs in order to
maintain at runtime a graph representing communications of
the application as a whole.

A. Getting Individual Trace Graphs

With the recent adoption of OpenTelemetry as a framework
for monitoring distributed applications, we can expect tracing
tools to follow a better “normalization”. Traces are more than
a collection of data objects living in a multi-dimensional
space independently. The core of this data resides in the
interdependencies expressed between latency measurements.
Property graphs provide a powerful machinery to represent
these traces; indeed, as a graph, relationships are as important
as the data represented in nodes. There is existing work consid-
ering every trace as a Directed Acyclic Graph (DAG) of spans
linked by causal relationship [16], [17]. In our previous work,
we leveraged OpenTelemetry semantic to exhibit the layered
structure of the network and add a hierarchical structure to
these span graphs.

In OpenTelemetry various concepts have been defined: the
concept of Span holds the description of a latency measure-



ment at a precise point in time, it comes with a variety of
attributes aiming to provide an exhaustive description of the
action measured. The concept of a resource is also defined;
it characterizes the executor of the measure, it comes with a
variety of attributes that describe the process on which the
measurement has been done. In our model, resources are used
as common vertices shared by multiple traces.

In Figure 1, an example of this transformation is provided
where a trace made of seven spans is decomposed in a graph
highlighting the resources involved: four Service Instances
scattered on two Zones; for the sake of clarity of the graph,
Regions vertices have been omitted.

Fig. 1. Transforming a Trace in a Property Graph.

This graph has two different labels for edges. The label
REFERENCE comes from the span metadata, the field “refer-
ence” within data point to another span within the same trace;
traversing the graph by following edges labelled REFERENCE
will provide a DAG of Spans. The second edge label: EXE-
CUTES ON links the Span to the resources (Service instance,
Zone, Region) that have been deduced from the resource field
from within tracing data.

B. Showing Network Communications With Graph Rewriting

In order to exhibit network communications between the
services of the application, we use a graph rewriting approach.
A network call between two services is represented by two
spans referencing each other and having different resources
attached to them. The goal of the rewriting approach is to
add an edge between the communicating entities of the type
NET COMM, the edge would hold important information
characterizing the communication: the latency induced by
the communication, but also properties from metadata held
by the spans. As a result, in our approach, we identify all
couples of spans linked via REFERENCE edge but having
different execution entities (i.e. Services instances, but also
zones and regions) in order to create a single relationship with
meaningful properties.

Figure 2 describes the graph rewriting approach, it takes
the same conventions as in Figure 1. On the first line, the left
side of the operand is the pattern that will be searched into
the graph, and on the right side, the result of the rewriting
process: the creation of the new edge with the span vertices
deleted. On the second line, the left part of the operand is the

graph from trace in Figure 1 (with only services instances as
resources for the sake of clarity), and on the left part the result
of the graph rewriting.

Fig. 2. Graph Rewriting operation to deduce Service instance dependencies.

C. Graph Hierarchical Model

In order to structure the newly created edges NET COMM,
a hierarchical graph model has been used. We define a
hierarchical graph model as a Directed Acyclic Graph whose
vertices are graphs and whose edges represent morphisms
between graphs. With this model, we can maintain the view
of the different topologies of Resources. The hierarchy ex-
pressed by the model is the containment hierarchy of re-
sources: Service Instances ⊂ Availability Zones ⊂ Regions
are the vertices of the hierarchical graph model, and the
IS CONTAINED relationships form the morphism describing
the containment. Edges within each hierarchy level are the
NET COMMs. Figure 3 is a visual representation of a portion
of this graph involving the “Pods” and “Nodes” hierarchical
vertices where the different network topologies have been
reconstructed based on a trace.

Fig. 3. Hierarchical Graph Representation.

As a result, traces, which are flat graphs where abstraction
levels are hidden, have been turned in a multi-level location-
aware model that highlights the composition of service and
resources.



D. Merging Trace Graphs

However, considering every trace as independent graphs
does not allow a wider view of the application, or the exhi-
bition of observations correlation from other traces. With this
work, we consider all traces as a single graph decomposing
tracing data into multiple vertices and edges merged with
previously observed data, thus establishing correlation over
multiple traces. In our model, Spans are single instances of a
latency measurement observed between two services. Services
Instances, Availability Zones and Regions are nodes that may
be set in common across multiple trace graphs. Edges, in
another hand, may accumulate, as a result, an aggregation
method is required to represent communications within the
applications. Multiple aggregation methods may be considered
based on the data present in traces.

IV. ANALYSING THE MODEL

The proposed model and techniques leverage the heavily
connected nature of traces and their semantic to maintain
at runtime a hierarchical property graph. Each layer is a
directed graph with vertices being the resource considered at
this hierarchy level; edges being the network communications
observed between these entities. As one prominent challenge
of monitoring a Cloud Application is to identify bottlenecks,
the main goal of the final graph is to represent a global view
its behaviour.

A. Distributed Applications Bottlenecks

Bottlenecks can take two main forms, the first one being
the resource saturation bottleneck, it manifests when a single
component reaches its limits. While these the kind of limit
may vary according to the type of service described, it can go
from CPU or memory usage to disk queue; it always causes
significant delays to requests processing. Common methods to
handle these bottlenecks are the use of message queues that
can handle the back pressure or the use of a dynamic scaling of
such critical resources. The second form of bottleneck is the
resource contention bottleneck, it manifests in environments
having semaphores, message queues, buffers and mutexes.
It is commonly found in environments having concurrent
access to the same resources, which happens a lot in Cloud
environments, indeed the over allocation made by providers in
data centres causes the noisy neighbours issue. This type of
bottleneck also causes significant delays but is more difficult
to spot as CSPs usually do not provide underlying metrics
which may highlight this critical behaviour.

Bottlenecks manifestations causes performance anomalies
which are usually contention, saturation, deadlocks or even
partial failures of the system [18]. Their causes, however, are
numerous : misconfigurations or bad system tuning can greatly
decrease performance, applications updates and introduction
of buggy code can also lead to performance issues on the
short term. Finally, underlying transient events or platforms re
configurations are common events that may cause bottlenecks
within the system. In the following, we propose using the

global application network model in order to spot potential
bottleneck services in a Cloud application.

As each technology deployed in a Cloud application may
exhibit different bottleneck metrics or behaviours, our contri-
bution focuses on identifying the potential bottlenecks based
on components interactions. To identify specific and critical
vertices in a graph, centrality algorithms are often used to spot
important vertices within a network. Although various central-
ity algorithms exist and they all have a different approach for
identifying a vertex “importance”.

B. Overview of Graph Centrality Algorithm
Degree Centrality Ranking: The degree centrality sorts

vertices by the number of edges associated to them, the higher
is the number of edges for each single vertex, the more
important this vertex is. In the case of a distributed application,
a focus on the number of incoming edges would represent
how many services depends on each particular service. A
degree centrality therefore highlights the most solicited ser-
vices which are, therefore the inclined of having a contention
bottleneck.

Betweenness Centrality Ranking: The betweenness cen-
trality gives importance to vertices based on the total number
of paths any given vertex is involved into. The betweenness
centrality is known to exhibit so-called bridges vertices which
are nodes that help link different communities. The entities
represented by these vertices do indeed represent bottlenecks.
When identifying such vertices with high betweenness score,
the underlying service acts as a single bridge between two
communities. Scaling up these bridges services would reduce
their betweenness score. Considering an IoT application, gate-
ways often acts as central points of collection for many sensors
or mobile devices. The betweenness centrality would rank the
gateways based not only on their direct neighbours but by their
implication in the whole network.

V. IMPLEMENTATION AND SIMULATION

For this implementation we reused the trace processing
pipeline initially developed in [13]. We instrumented a simula-
tion software representing Cloud applications inspired by the
Netflix architecture named spigo 1. This simulation software
uses the actor design pattern to mimic the microservices
architecture. It is written in Go and leverages the lightweight
implementation of threads in the language to run hundreds
of actors simultaneously, each representing a micro-service.
For our purpose, actors have been modified to produce traces
with a semantic compliant with OpenTelemetry specifications.
This simulation therefore produces traces that are ingested
by the Jaeger Tracing tool, the de facto tool to visualize
OpenTelemetry Traces.

A. Creating a Pipeline for Trace Processing
The graph modelling, rewriting and merging processes have

been written in Scala by using a functional programming
approach on the Polynote2 data-processing engine. The choice

1https://github.com/adrianco/spigo
2https://polynote.org A Scala Notebook engine open sourced by Netflix



of the Scala programming language was further motivated by
its compatibility with the Java ecosystem that has a wide set
of libraries available. Data retrieval was implemented based
on the work published in the Jaeger Data Analytics Library3;
the capability of matching the various resources type has
been added in order to create resource vertices in the model.
Trace graph encoding and rewriting processes have been
implemented with the Gremlin [19] on Tinkerpop In-Memory
graphs. Finally, for the merging stage in the hierarchical
model, a Neo4J database was used. This graph database has
a clean and powerful syntax to create or reuse vertices from
the database without prior checks. Our graph merging stage
requires to identify resources vertices already present in the
model and took benefits of this feature.

This approach is then scalable and allows an online and par-
allel trace processing; indeed, all the heavy graph computation
and rewriting is done independently for each trace. Only the
results of these computations are stored on a graph stored in
a Neo4J database.

B. Simulation Overview for a Wider Picture

Whereas our preceding work was based on a sample ap-
plication hosted on a real-world cloud, our last experimenta-
tion suffered from its small size and lack of traffic. Indeed,
behaviours observed from a full size application running in
production are either considered as black swans or may be
considered as edge cases [20]. For modelling a complete multi-
zone AWS application, we used the tool spigo, a simulator
running on a single machine a full hierarchy of actors. These
actors represent service instances, although the model does
not provide a realistic implementation for managing network
delays, latency measurements obtained from traces cannot be
exploited to draw numerical conclusions.

In order to represent a real-world Cloud-IoT application,
we based our testing on a premade architecture from within
the simulator: the Riak scenario. Indeed, in this scenario is
based on Riak application which is a distributed and resilient
database targeted for IoT needs. It offers a way to replicate
parts of its architecture to multiple zones, it also implements a
model for both HTTP communications across actors but also
message queues. The use case of a the Riak application pro-
vides an implementation of a heavily hierarchical app, having
multiple endpoints scattered across zones and positioned close
to the users. The backend of the app is modelled in the scenario
by a multi-zone cassandra cluster.

VI. EXPERIMENTATION

The architecture of the Riak scenario is made of multiple
processing stages; detailing all of them in the paper would
be out of the scope of this contribution. Therefore we will
focus on critical services and make them scale up and down
to observe the effect on global graph centrality scores. When
building the graph of services, it appears that the service
designated ingestMQ hold an important role bridging the

3https://github.com/jaegertracing/jaeger-analytics-java

Cloud back-end of Riak to the zonal processing pipelines. In
the global architecture, ingestMQ is a three-replica message
queue deployed in each region to serve local users. By its role
and its design, this service is concerned by risk of resource
contention bottleneck. Figure 4 represents a fraction of the
graph of Riak services, it is made of 135 services scattered on
three regions, each subdivided into three zones. Vertices with
a storage icon and a label are ingestMQ instances.

Fig. 4. A sample of the graph of services with a focus in ingestMQ services

In our experiment we ran various centrality algorithms on
the model. The table I aggregates the results and provides a
per service range of the centrality scores obtained by each
services for multiple algorithms. Cb is the designation for the
betweenness centrality, Cd is the designation for the in-degree
centrality, it counts only incoming edges to the node.

TABLE I
CENTRALITY ALGORITHMS SCORE RANGE FOR EACH GROUP OF SERVICES

IN THE RIAK SCENARIO

Service Name Replicas Cb Cd
ingestMQ 9 [181, 193] [2, 2]
ingester 18 [97, 104] [18, 18]
enrichMQ 9 [87, 97] [2, 2]
enricher 18 [53, 57] [6, 6]
normalization 18 [13, 18] [1, 1]
stream 18 [3, 12] [1, 1]
analytics 18 [5, 9] [2, 2]
riakTS 18 [0, 0] [17, 17]
riakKV 9 [0, 0] [1, 1]

These results show how complementary are the two central-
ity algorithms: they do not exhibit the same service as being
important. The betweenness centrality score highlights with an
important score the ingestMQ service whereas the in-degree
centrality puts massive score on the cloud part of the system
where each component communicate with each other without
zone separation.

The betweenness centrality score grants a risk indicator of
the impact of a failure from this service. As the number of
instances increases, the impact of a failure of these components
should decrease. To illustrate this idea we rerun the simulation
by setting the number of ingestMQ services of one per region



and of five per region. Table II shows the variation of the
betweenness centrality score based on the number of instances
of the service ingestMQ. In this table, column Cb1 give
centrality score for the whole graph when there is only one
instance of ingestMQ service per zone. Column Cb3 keeps the
previous values and Cb5 provides the score when there are five
instances of the service ingestMQ per regions.

TABLE II
BETWEENNESS CENTRALITY SCORE RANGE FOR EACH GROUP OF
SERVICES IN THE RIAK SCENARIO WITH A VARYING NUMBER OF

INGESTMQ INSTANCES

Service Name Cb1 Cb3 Cb5
ingestMQ [383, 422] [181, 193] [104, 151]
ingester [187, 219] [97, 104] [118, 123]
enrichMQ [74, 77] [87, 97] [92, 110]
enricher [43, 44] [53, 57] [57, 65]
normalization [14, 16] [13, 18] [13, 25]
stream [3, 7] [3, 12] [8, 12]
analytics [5, 10] [5, 9] [5, 9]
riakTS [0, 0] [0, 0] [0, 0]
riakKV [0, 0] [0, 0] [0, 0]

As a result, we can observe that the betweenness centrality
score drastically increases when the service ingestMQ is only
present once per regions whereas it confounds with other score
when there are fives instances per regions. In another hand,
we can also observe that other services preserve their order of
magnitude of betweenness centrality score when scaling only
one service.

CONCLUSION AND FUTURE WORKS

In our contribution we proposed a model capable of rep-
resenting a physically distributed application, its components
and their interactions as a property graph. It follows the pattern
of a multilayered network model that commonly describes
Edge computing and IoT resource location. The monitoring
data supporting this model creation is OpenTelemetry, a fast-
growing technology in the cloud ecosystem. This contribution
presents a model and how to derive it from actual real world
monitoring data. A processing pipeline capable of parallel
execution of this model is also presented and executed on
a simulation program. This simulation use case, based on
the spigo open source project, represents an AWS application
made of hundreds of services leveraging the zones and regions
placements to bring the service closer to their users.

Once the graph is built, we propose identifying bottle-
necks through the use of centrality algorithms. A particular
focus is made on resource contention bottlenecks, which
may not be detected by standalone component monitoring.
The betweenness centrality algorithm appears to be a good
candidate to spot services holding a crucial role within the
application composition. Further, the betweenness centrality
score is greatly influenced by the number of instances of a
given service. This makes this centrality algorithm a good
candidate for identifying critical services to scale and replicate
in a heavy loaded environment.

In [13] we ran the same model to spot inefficient commu-
nications within the context of Zonal Kubernetes Clusters by

identifying cycles within the graph. For future works, we plan
to take advantages of the quantity of metrics and data that
can be produced by a Service Mesh in a Kubernetes cluster.
Indeed Service Meshes have solid tracing implementations that
output latency but also the number of bytes exchanged, etc.
These new metrics could be used to better describe the network
communications observed between entities and, therefore,
running centrality algorithms on a weighted graph. Finally,
to conciliate these techniques and indicators, a monitoring
application is being designed to aggregate these results.

REFERENCES

[1] D. Ardelean, A. Diwan, and C. Erdman, Performance analysis of cloud
applications. USENIX Association, nov 2018.

[2] D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, and L. Xiao,
“Taiji : Managing Global User Traffic for Large-Scale Internet Services
at the Edge,” SOSP ’19, 2019.

[3] S. Alarifi and S. Wolthusen, “Anomaly detection for ephemeral cloud
IaaS virtual machines,” Lect. Notes Comput. Sci., vol. 7873 LNCS, 2013.

[4] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare,
C. Pahl, S. Schulte, and J. Wettinger, “Performance Engineering for
Microservices,” ICPE ’17, 2017.

[5] R. Heinrich, “Architectural Run-time Models for Performance and
Privacy Analysis in Dynamic Cloud Applications Categories and Subject
Descriptors,” Perform. Eval. Rev., vol. 43, no. 4, pp. 13–22, 2016.

[6] G. Da Cunha Rodrigues, R. Calheiros, V. Guimaraes, G. Dos Santos,
M. De Carvalho, L. Granville, L. Tarouco, and R. Buyya, “Monitoring of
cloud computing environments: Concepts, solutions, trends, and future
directions,” Proc. ACM Symp. Appl. Comput., vol. 04-08-Apri, 2016.

[7] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance Monitoring and
Root Cause Analysis for Cloud-hosted Web Applications,” Proc. 26th
Int. Conf. World Wide Web - WWW ’17, pp. 469–478, 2017.

[8] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W.
Ong, B. Schaller, P. Shan, B. Viscomi, V. Venkataraman, K. Veeraragha-
van, and Y. J. Song, “Canopy: An End-to-End Performance Tracing And
Analysis System,” SOSP 2017, 2017.

[9] B. H. Sigelman, L. Andr, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper , a Large-Scale
Distributed Systems Tracing Infrastructure,” Google Res., no. April,
p. 14, 2010.

[10] Y. Shkuro, “Evolving Distributed Tracing at Uber Engineering,” 2017.
[Online]. Available: https://eng.uber.com/distributed-tracing/

[11] Twitter, “Distributed Systems Tracing with Zipkin,” 2012. [Online].
Available: https://blog.twitter.com/engineering/en us/a/2012/distributed-
systems-tracing-with-zipkin.html

[12] W. Li, “Anomaly Detection in Zipkin Trace Data,” 2018. [On-
line]. Available: https://engineering.salesforce.com/anomaly-detection-
in-zipkin-trace-data-87c8a2ded8a1

[13] C. Cassé, P. Berthou, P. Owezarski, and S. Josset, “Using Distributed
Tracing to Identify Inefficient Resources Composition in Cloud Appli-
cations,” in IEEE 10th Int. Conf. Cloud Netw., Virtual, 2021.

[14] “OpenTelemetry Specification Overview.” [Online].
Available: https://github.com/open-telemetry/opentelemetry-
specification/blob/v1.0.1/specification/overview.md

[15] J. Luo and C. L. Magee, “Detecting evolving patterns of self-organizing
networks by flow hierarchy measurement,” Complexity, vol. 16, 2011.

[16] J. Mace, R. Roelke, and R. Fonseca, “Pivot Tracing,” ACM Trans.
Comput. Syst., vol. 35, no. 4, pp. 1–28, 2018.

[17] P. Las-Casas, J. Mace, D. Guedes, and R. Fonseca, “Weighted Sampling
of Execution Traces,” in Proc. ACM Symp. Cloud Comput. - SoCC ’18,
2018, pp. 326–332.

[18] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, “Performance
Anomaly Detection and Bottleneck Identification,” ACM Comput. Surv.,
2015.

[19] M. A. Rodriguez, “The gremlin graph traversal machine and language
(Invited Talk),” DBPL 2015 - Proc. 15th Symp. Database Program.
Lang., pp. 1–10, 2015.

[20] M. Marvasti, A. Poghosyan, A. Harutyunyan, and N. Grigoryan, “Identi-
fying Root Causes, Bottlenecks, and Black Swans in IT Environments,”
VMWARE Tech. J., vol. 2, no. 1, pp. 35–45, 2013.


