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Abstract—Outlier detection is a subject of interest in data
mining. With the evolution of data acquisition methods such as
wireless sensor networks, there is a need to detect outliers in
data streams. However, dealing with data streams is challenging
due to the amount of data that grows infinitely and the non-
stationarity of the distribution. On top of that, the detection has
generally to be done in an unsupervised way. Some methods have
been proposed to tackle this problem but none of them can be
easily parameterized. This paper proposes a novel method based
on the Christoffel-Darboux kernel borrowed from the theory
of approximation and orthogonal polynomials. This method
perfectly applies to data streams while being deployable with
no tuning at all. It is compared to some state-of-the-art methods
for outlier detection in data streams and applied to the data from
an industrial luggage conveyor showing very convincing results.

Index Terms—Outlier detection, Anomaly detection, data
streams, Christoffel-Darboux kernel, Kernel density estimation,
Data mining

I. INTRODUCTION

Data mining is defined as the process of discovering and
extracting knowledge from usually very large datasets. The
purpose of this task is to identify unkwown patterns that can
prove to be useful in decision making such as groups of similar
points, dependencies or unusual observations.

The discovery and analysis of unusual observations, also
known as outlier, anomaly, out-of-distribution or novelty de-
tection, is particularly important in data mining. First, outliers
can carry a lot of information about the data and are thus
of special interest in applications such as network traffic [1],
medical diagnosis [2] or fraud detection [3], where it is crucial
to find any abnormal behaviour. Outliers also greatly disturb
most of machine learning methods used for tasks such as
prediction or decision making, so their removal is required
to assert the accuracy of obtained results.

Nowadays, many data sources such as wireless sensor net-
works, social networks, medical systems, web traffic or online
transactions generate data continuously. The resulting datasets
have the peculiarity of uncertainty and constant evolution.
Outlier detection is thus even more important in this context,
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but also more challenging. Indeed, methods for static datasets
usually look for a mapping function that gives an outlierness
score to instances based on the observation of a whole set of
historical instances. In some cases, only historical instances
can be assigned an outlierness score. In other cases, the method
allows for qualifying new instances as inliers or outliers but
the function does not evolve through time. Yet, to be able
to detect outliers in data streams, methods need to look for
a mapping function that adapts to new instances and to deal
with infinite lengths of datasets.

Most of the time, labels are not available for the task of
outlier detection, which means that one does not know if
instances in datasets are actually outlying. This makes most of
outlier detection methods unsupervised. For static cases, it is
possible to perform a preprocessing task to label data and thus
meet the supervised learning conditions. It is also possible to
get a trusted set of normal instances or to select some known
outlying instances to apply semi-supervised tasks. However,
in data streams, the evolution of the data distribution makes
labelling useless because quickly obsolete.

The contribution of this paper is the proposal of an entirely
new method for outlier detection in data streams that can be
easily applied with few parameters and no tuning. This method
responds to the previously mentioned challenges, being able
to deal with evolving distributions and with infinite datasets
by summarization. It is evaluated and compared with state-of-
the-art methods for outlier detection in data streams based on
a set of key characteristics.Its performance is also shown on
real industrial data coming from a luggage conveyor system.

The paper is organized as follows. Section II provides a
state of the art of outlier detection in data streams. Section III
introduces the two datasets that will be used throughout the
paper. Then, Section IV presents the Christoffel-Darboux Ker-
nel (CD-Kernel) and the outlier score it can compute in data
streams. Section V describes our contribution, explaining how
it aggregates multiple CD-Kernel methods to reduce the tuning
requirements. Some experiments are presented in Section VI to
evaluate the proposed method and compare it with few other
methods from the state-of-the-art. To conclude, Section VII
discusses its advantages, drawbacks and the improvement



points while Section VIII draws a conclusion to the paper.

II. STATE OF THE ART AND RELATED WORK

This section overviews the different categories of outlier
detection methods and highlights the issues related to outlier
detection for data streams. The analysis of several surveys
allows us to position the method that is proposed in this paper.

A. Outlier Detection

Outlier detection has been a research subject for a long
time in different communities, starting with statisticians and
the works of Edgeworth in the end of the 19th century [4]. For
this reason, different definitions have been given to describe
an outlier. The survey [5] notes that this is thus difficult to
find a reliable definition although retaining this one : “a data
point that is significantly dissimilar to other data points or a
point that does not imitate the expected typical behavior of the
other points”. This definition is very close to the most cited
one given by Hawkins [6] as “an observation which deviates
so much from the other observations as to arouse suspicions
that it was generated by a different mechanism”.

With more than a century of interest in outlier detection,
a lot of different methods have been proposed and different
surveys aim to tackle the task of listing, describing, categoriz-
ing and comparing these methods. Wang et al. [5] is one of
those but the most prominent is the one by Chandola et al. [7]
that discusses methods from their application and category
view points. The survey mentions seven application fields:
cyber-intrusion detection, fraud detection, medical anomaly
detection, industrial damage detection, image processing, tex-
tual anomaly detection and sensor networks. Interestingly, data
streams can be met in most of these fields. From the catego-
rization perspective, some categories are given in both surveys.
One can find clustering based methods, statistics methods
and nearest neighbor based methods (which are separated in
Distance based and Density based methods in [5]). Chandola
et al. also mention classification based methods, information
theoretic methods and spectral methods [7], whereas Wang
et al. report ensemble, learning, graph and network based
methods [5].

The need of labels during the learning process can also be
used to distinguish the methods [7]. Labels are information
associated to each data point qualifying it as normal or
outlying. Supervised methods learn a predictive model from
a training set containing labelled points to determine if new
points are inliers or outliers. At the other end, unsupervised
methods do not assume the availability of such labels and learn
a model while making hypothesis on outlier rate in the dataset
or their distance to inliers. Semi-supervised methods make a
trade-off, using a set of inliers to learn a model representing
normal behaviour and then checking if new points fall in the
learned model (inliers) or outside (outliers). Referring to the
output of the methods, it takes typically two forms: 1) a label,
each point is classified as inlier or outlier, or 2) a score, an
anomaly score is given to each point, a label can then be
assigned using a threshold on the score.

B. Outlier Detection for Data Streams

The definition of an outlier given in the context of data
streams is the same as in its static counterpart. Hawkins
definition is found in [8] and [9], while [10] defines an outlier
as “an object that does not conform to the expected behavior”,
such an object corresponding to “either noise or anomaly”.
However, there are some peculiarities to data streams [8], [9]:

1) Continuous arrival rate. Points arrive continuously, forc-
ing methods to process arriving points before new points
arrive. Points are transient and lose importance after a
certain amount of time. In addition, the arrival rate may
be variable.

2) Unbounded datasets. Datasets have theoretical infinite
length. Thus, all points cannot be stored and methods
must deal with limited resource, storing for instance a
summary of the data.

3) Non stationary distributions. The distribution of data can
change over time so the learned models also need to be
able to evolve, which is known as concept drift.

Methods can be categorized in four categories:
1) Statistical methods. These methods, divided into para-

metric and non-parametric, aim to find a statistical
distribution likely to have generated the data. Most
methods are not well suited to data streams because
the assumed distribution is fixed in time [9]. Nonethe-
less, some non-parametric methods based on histogram
construction or kernel density estimation can be used
for data streams [11]. Histogram construction can be
made online in a supervised or semi-supervised way, in
which case new points that do not fall into a bin of the
histogram are considered as outlying and the other points
are used to update the histogram. The histogram can
also be constructed in an unsupervised way, then outliers
are those instances falling in empty or low density bins
[12], [13]. However, these methods work fine for a single
variable but need to be aggregated in multivariate cases,
which which is quite limiting. Methods based on kernel
density estimation are more flexible from this point of
view [14], [15]. The CD-Kernel method proposed in this
paper falls in this category.

2) Distance based methods. Most of these methods are
based on the nearest neighbors approach.To adapted
to the data stream context, windowing techniques that
capture a subset of recent and thus meaningful points in
the dataset are used [8], [10]. The main idea is to study
the neighborhood of the points in the current window
and to evaluate outlierness based on this neighbor-
hood. Several methods, like Exact-Storm and Approx-
Storm [16], Abstract-C [17], DUE and MCOD [18] or
Thresh LEAP [19], propose specific indexed structure to
easily access the closest neighbours of each new point
and to discard old points. According to [10], MCOD is
the most effective because of the use of micro-clusters
to describe the neighborhoods. Besides, HalfSpaceTrees
(HST) [20] is a Distance based method which gener-



alizes the well-known IsolationForest algorithm [21] to
data streams.

3) Density based methods. These methods, especially In-
cremental LOF (iLOF) [22], generalize the well-known
LocalOutlierFactor (LOF) approach [23]. The metric
to quantify outlierness is the density around a point
compared to that of its neighbors. I-IncLOF [24] and
MiLOF [25] are two improvements of iLOF that aim
to distinguish between new behaviours and true outliers
and to reduce the memory usage respectively. More
recently, TADILOF [26] improves the previous methods
by considering the arrival order of data points and
forgetting the oldest ones.

4) Dynamic clustering based methods. The main goal
of these methods, exemplified by BIRCH [27], CluS-
tream [28], DenStream [29], DStream [30], SD-
stream [31], STING [32], STREAM [33], and DB-
STREAM [34], is to cluster data points in place of
detecting outliers, which is why they are subject to some
criticism [9]. The main idea is that outliers either fall in
low density clusters or in no clusters at all or are far from
the cluster centroı̈ds. Most methods advantageously use
a summarized representation of the points, the type of
representation being where their difference lies. BIRCH
and CluStream use cluster features (CFs) that are tuples
containing the number of points in a cluster and the sum
and squared sum of these points. DenStream, DStream
and SDstream are improvements of CluStream. Another
difference between these methods is how the space is
divided. Micro-clusters are often used as a first division,
then macro-clusters are constructed by grouping micro-
clusters. Among those, Dyclee [35] can reject outlying
micro-clusters.

Table I recaps all the methods cited in this section and their
Python implementations in the River Project1 or the Scikit-
learn library. However, clustering methods implemented in
those libraries have not been designed and optimized for
outlier detection.

III. DATASETS

In this section, two datasets that will be used throughout the
paper are presented. The first one is a synthetic dataset while
the second one is an industrial dataset.

A. Synthetic Dataset: Two Moons

Two Moons is a well-known dataset for clustering contain-
ing two moon-shaped clusters to which outliers are added,
uniformly distributed in the window around the moons. To
adapt this dataset for data streams, the clusters are sorted to
first get the points from a first moon and then get the ones from
the other moon. Thus, the second moon can be considered as a
new normal behaviour. Regarding outliers, they are uniformly
spread in the dataset. The whole dataset is given in Figure 1.
It has been generated using the make moons method from

1The River project [36] is a library for machine learning on data streams.

TABLE I
OUTLIER DETECTION METHODS FOR DATA STREAMS AND THEIR PYTHON

IMPLEMENTATIONS

Category Method River Scikit-learn Home-made
Statistical Histograms

Our Method ✔
Distance Exact-Storm

Approx-Storm
Abstract-C

DUE
MCOD

HST ✔
Density iLOF

I-IncLOF
MiLOF

TADILOF
CLustering BIRCH ✔

CluStream ✔
DenStream ✔
DStream
SDstream
STING

STREAM ✔
DBSTREAM ✔

DyClee ✔

Scikit-learn with 5000 samples, setting the noise parameter at
0.05. 20 points have been added as outliers.

Fig. 1. Representation of the Two Moons dataset. Blue triangles represent the
first cluster. Green circles represent the second cluster. Red crosses represent
outliers.

B. Industrial Dataset: Luggage Conveyor

The second dataset is generated by sensors on a luggage
conveyor. Those sensors measure two physical quantities:
speed of the conveyor belt and intensity of the engine. This
dataset is quite specific as it is composed of three normal
operating modes with non-linear transitions in between. The
stop operating mode is predominant and matches the con-
veyor stopped with speed and intensity at zero. The standard
operating mode matches the operation of the conveyor with
nominal speed and intensity. A less frequent heavy load
operating mode with lower speed and higher intensity can be



distinguished for heavy luggages. Finally, there are transitions
between the different modes. When the conveyor starts, there
is an intensity peak followed by a raise in speed. When it stops,
intensity reduces faster than speed. The complete dataset and
the different modes can be seen in Figure 2 and is composed
of 166926 observations.

Fig. 2. Representation of the Luggage Conveyor dataset. Operating modes
and transitions are explained.

IV. CD-KERNEL BASED OUTLIER SCORE

The CD-Kernel and the associated Christoffel Function (CF)
is a well-known tool from the theory of approximation and
orthogonal polynomials. The CD-kernel and the CF depend on
a parameter d (the “degree”) and are associated with a measure
µ with support Ω ⊂ Rp (usually compact with nonempty
interior). One of the main and salient features of the CF
(denoted Λµ

d ) is its ability to encode the support Ω in the
sense that for every x outside Ω, the function x 7→ Λµ

d (x)
converges exponentially fast to zero with d, and not for x ∈ Ω.
In particular, for dimension p = 2, 3 one observes that the level
sets Ωγ := {x : Λµ

d (x) ≥ γ} nicely capture the geometric
shape of Ω quite accurately, even for a low degree d. Relatively
recently, Lasserre and Pauwels [37] and Lasserre et al. [38]
have promoted the CD-kernel and the CF as a powerful tool for
data analysis. They have shown how some of its key properties
can be helpful to address important problems like density
approximation, support inference, and outlier detection, where
the measure µ of interest is now a discrete measure whose
support is the set (or “cloud”) of data points.

A. Brief outline

Let X = (X1, X2, ..., Xp) ∈ Rp, and let α = (αi)i=1...p ∈
Np be the vector of degrees associated to each variable for the
monomial Xα := Xα1

1 Xα2
2 ...X

αp
p of total degree

∑p
i=1 αi.

Let vd(X) be the vector of all monomials of degree less than
or equal to d in the graded lexicographic order (which means:
1) ordered according to ascending monomial degree and then
2) using lexicographic order on variables considering X1 = a,

X2 = b, ...). The size of the vector vd(X), that is noted s(d),
depends on p and d and is equal to

(
p+d
d

)
.

Interestingly, given a finite Borel probability measure µ on
a compact set Ω ⊂ Rp with nonempty interior, its moment
matrix Md(µ) is a matrix indexed by the monomials of vd(X).
Let

yα(µ) =

∫
Rp

xαdµ(x) (1)

be the moment α of µ, this means that the element of the
matrix at row indexed by α = (αi)i=1...p and column indexed
by β = (βi)i=1...p is yα+β(µ) =

∫
Rp x

α+βdµ(x) with the
notation (α+ β) = (αi + βi)i=1...p. For instance, in the case
of p = 2 and d = 2 and denoting yα = yα(µ) for clarity:

M2(µ) :

1 X1 X2 X2
1 X1X2 X2

2

1 1 y1,0 y0,1 y2,0 y1,1 y0,2
X1 y1,0 y2,0 y1,1 y3,0 y2,1 y1,2
X2 y0,1 y1,1 y0,2 y2,1 y1,2 y0,3
X2

1 y2,0 y3,0 y2,1 y4,0 y3,1 y2,2
X1X2 y1,1 y2,1 y1,2 y3,1 y2,2 y1,3
X2

2 y0,2 y1,2 y0,3 y2,2 y1,3 y0,4

It can also be written as

Md(µ) =

∫
Rp

vd(x)
Tvd(x)dµ(x) (2)

where the integral is understood elementwise. Note that Md(µ)
is positive definite for any d, i.e., pTMd(µ)p > 0 for every
0 ̸= p ∈ Rp, and therefore Md(µ) is non singular.

The CD-Kernel based outlier score can then be computed
for any x ∈ Rp as Qµ,d(x) = vd(x)

TMd(µ)
−1vd(x). Qµ,d

is a sum of squares polynomial whose degree is equal to
2d and its inverse function x 7→ Qµ,d(x)

−1 is known as
the Christoffel Function (CF), i.e Λµ

d = Qµ,d(x)
−1. Qµ,d(x)

can be used as a tool, for kernel density estimation and
outlier detection. Indeed outside the support of µ, the function
x 7→ Qµ,d(x) (the reciprocal of the CF) takes high values and
increases exponentially fast with d, and so provides a great
outlier scoring function 2.

For the outlier detection application in data analysis, only
an empirical moment matrix is available, associated with a
discrete measure µn whose support is a set of n observations
X = x1,x2, ...,xn sampled from the distribution of µ. In this
case, the empirical version of Equations (1) and (2) read

yα(µn) =
1

n

∑
x∈X

xα (3)

and
Md(µn) =

1

n

∑
x∈X

vd(x)
Tvd(x) (4)

Note that, considering X as a dataset, Md(µn) can be seen as
a summary (or an encoding) of this dataset that avoids keeping

2The choice of Qµ,d instead of its inverse, i.e the CF Qµ,d(x)
−1 = Λµ

d ,
comes from the fact that outliers are generally assigned higher scores than
normal points and not the inverse.



in memory all the points, as required for methods dealing with
data streams. It is also important to note that the invertibility
of Md(µn) is not guaranteed for low values of n. Figures 3
and 4 show level sets for Qµ,d obtained using the presented
datasets as supports. The ability to capture the geometric shape
of the support is quite visible.

Fig. 3. Levelsets obtained from the Two Moons dataset for d = 6. Note that
outliers between the moons are considered as inliers with the levelset labelled
as 1 which yet rejects some inliers.

Fig. 4. Levelsets obtained from the Luggage Conveyor dataset for d = 6. The
levelset labelled as 858 captures the two main operating modes, the transitions
and most of the points from the dragged mode.

B. Interesting Properties

The CD-Kernel based outlier score has several interesting
properties.

1) Incremental Update: Using Equations (3) and (4), one
can easily update the support with new points or in a sliding
window. For instance, let X ′ = {x3,x4, ...,xn+2} be the
sample obtained at time indexed by n + 2 by sliding a fixed

length window. Let denote as µn+2 the measure supported by
X ′. Then, the associated moment matrix is given by

Md(µn+2) =
1

n
(nMd(µn)− vd(x1)

Tvd(x1)

− vd(x2)
Tvd(x2)

+ vd(xn+1)
Tvd(xn+1)

+ vd(xn+2)
Tvd(xn+2)).

(5)

Inverting the moment matrix can be expensive. So updating
directly the inverse of the moment matrix is a better choice.
This can be done using the Sherman-Morrison formula that
states that, for an invertible square matrix A and any vectors
u, v,

(A+ vTu)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (6)

Figure 5 shows the evolution of levelsets with incremental
update of the inverse of the moment matrix for the synthetic
dataset. The moment matrix first fits the first half of the dataset
with the first moon. Then, the rest of the points of the dataset
are splitted in three batches of sizes 836, 836 and 838, and
the matrix is updated three times. Here, windowing methods
are not used to remove the oldest points, only new ones are
added.

Fig. 5. Levelsets obtained from the Two Moons dataset for d = 6 with
incremental updates. Note that the first update (top right) is enough to capture
the shape of the second moon.

2) Forgetting capability: In spite of using fixed length
sliding windows, which requires keeping in memory all the
points in the current window to be able to remove them, it is
possible to assign a weight to each point in order to reduce
the effect of older points in the support. For instance, let
0 < γ < 1 be the forgetting coefficient, with γ close to 1
for persistent points, Equation (4) for the moment matrix can
be written as

Md(µ) =
1− γ

1− γn

n∑
i=1

γn−ivd(xi)
Tvd(xi) (7)



Thus, the weight γn−1 given to the first point in the dataset X
tends to 0 when the length of the dataset n tends to infinity.

On Figure 6, one can observe the impact of a forgetting
factor γ = 0.998 on the levelsets with the same incrementation
as the one presented in Figure 5. The more new points are
added from the second moon and the less the first moon affects
the support. However, the results are sensitive to the value of
γ; with γ = 0.995, the first moon is already out of the support
on the second graph, while it is still in the support on the last
graph for γ = 0.999.

Fig. 6. Levelsets obtained from the Two Moons dataset for d = 6 with
incremental updates. Note that the first moon is pushed out of the captured
support as soon as the second update (bottom left).

3) Characteristic score evolution: It has already been said
that the score, obtained with Qµ,d, is greater for points outside
the support of µ than for points inside of µ. More precisely, it
grows exponentially when the points go away from the center
of the support. This can be seen by looking at the levelset
values of Figures 3 and 4.

Moreover, for a given point x ∈ Rp, the growth of Qµ,d(x)
when d increases depends on whether x is in the support of µ
or not. The growth is polynomial for points inside the support
and exponential for points outside the support, as shown in the
score evolution of points in Figure 7, where the point of the
top graph is between the two moons, the point of the middle
graph is an inlier and the point of the bottom one is an outlier
(watch the e7 coefficient for the scale). This property proves
to be helpful to discriminate between inliers and outliers and
it is leveraged in the method that is proposed in section V.

4) Easy-to-tune parameters: In applications treated in [37],
the levelset defined by Ωγ := {x ∈ Rp | Qµ,d(x) ≤(
p+d
d

)
} captured most of the points in the support of µ.

However, changing the threshold value γ :=
(
p+d
d

)
may have

a great impact on the resulting levelset Ωγ . Noticeably, this
particular levelset does not always capture all the points repre-
senting normal behaviours. It is possible to add a regularization
term r to the threshold value and get steadier results, i.e. the
levelset Ωγ := {x ∈ Rp | Qµ,d(x) ≤ rd

(
p+d
d

)
} may be

Fig. 7. Evolution of the score for different degrees and for three different
points of given coordinates. The used model is the one described by Fig. 3
for the synthetic dataset, it can be used to position the points. The top graph
is for a point between the two moons, at the center of the graph. The middle
graph is for a point inside the first moon. The bottom graph is for a point
outside the support (watch the e7 coefficient for the scale).

considered, with 0 < r ≤ 1 being a parameter to tune to
capture a tighter or looser approximation of the support.

If γ :=
(
p+d
d

)
is used as threshold, an outlier detection

approach based on Qµ,d requires to set only one parameter,
i.e. d, which is an integer usually in the interval [2, 8]. This
makes the CD-Kernel based scoring function an easy-to-tune
tool. With rd

(
p+d
d

)
as threshold γ, the parameter r ∈]0, 1]

has also to be tuned. Note that r = 0.5 is adequate in most
simple cases. In more complex cases, the usual way to set a
threshold for outlier detection is to base it on top k outliers
or on an expected outlier ratio in the dataset. However, this is
not convenient in the case of data streams where the threshold
and the outlier ratio can evolve.

5) Low computational complexity: Finally, it is important
to notice that the computation of the score for a point does not
depend on the length n of the dataset X but solely on p and d.
This is a significant advantage for the purpose of computing
the score in a data stream context.



V. MCD-KERNEL METHOD: A NON-TUNING ONLINE
METHOD BASED ON THE EVOLUTION OF THE CD-KERNEL

SCORE

Using the CD-Kernel based outlier score as a basis, an
outlier detection method for data streams that can be deployed
without tuning is proposed. Note that parameter tuning is a
difficult task in unsupervised learning because the search for
optimal parameters is usually done with labelled data. On top
of that, for data streams, parameters that work well at a time
can become obsolete later. Thus, a non-tuning solution is much
better for this problem. This can be achieved leveraging the
property of the score evolution presented in section IV-B3.

A. The MCD-Kernel method

The proposed method, named Multiple CD-Kernel outlier
detection method (MCD-Kernel method for short), extends
the outlier scoring described in Section IV to a complete
non-tuning method for outlier detection. The idea is to use
the property stating how the score grows depending on the
outlierness of points when the degree d increases. For this
purpose, a multi-degree model that maintains multiple moment
matrices is proposed as explained below.

Let us denote X = (xj)j∈N∗ the theoretical full stream
dataset, where n indicates the rank in the sequence, which
corresponds to a date. Xn is defined as the sequence extracted
from X ending for xn, n ∈ N∗. Note that Xn can either be
defined as the sequence of all the points ending with xn in
the seqence uX or as a sliding window of fixed size with xn

as end point.
Define ∆ = (di)1≤i≤k as a sequence of k degrees in as-

cending order and consider some n. Using Xn as support, build
the k associated empirical moment matrices (Mdi(µn))1≤i≤k

which leads to k functions (Qµn,di
)1≤i≤k. Note that the

number of points in the batch ending at n must be chosen
great enough to ensure invertibility of the matrices.

Define a normalized scoring function3 for every n and d as

Sµn,d =
Qµn,d

rd
(
p+d
d

) . (8)

While the non-normalized score Qµn,d would have a poly-
nomial growth for inliers, it is now decreasing with the
normalized score. This can be illustrated by comparing the
score evolution on Figure 7 obtained with Qµn,d and the one
on Figure 8 obtained with Sµn,d.

Summarizing, the growth of most of inliers decreases while
the evolution stays increasing for outliers because of the
exponential growth of (Qµn,di

(xj))1≤i≤k, so a satisfying
decision criteria is the average growth of the score. This is
assessed as follows for every point xj ∈ Xn0 :

1) Compute the scores (Sµn,di(xn))1≤i≤k,
2) Compute the difference

S′
µn,di

(xj) =
Sµn,di

(xj)− Sµn,di−1
(xj)

di − di−1

3This is the score used for the levelsets in Figures 3, 4, 5 and 6.

Fig. 8. Same as Fig. 7 but using Sµn,d as scoring function in place of Qµn,d.

for i ∈ [2, k],
3) Qualify xj as outlier if the following condition is satis-

fied

1

k − 1

k∑
i=2

S′
µn,di

(xj) > 0. (9)

Considering the data in the stream X , for every new point
xn+1, update the moment matrices (Mdi(µn))1≤i≤k from the
support Xn to fit the new support Xn+1 using Equations (5)
and (6) and repeat the above process.

To compute Sµn,d the sequence of degrees ∆ and the
parameter r must be set. The latter being a constant, it does
not impact the score growth and the decision. It is generally
set to r = 0.5 as mentioned above. The sequence of degrees
determines the method but it is easy to decide. Indeed, d
usually takes values in [2, 8] so the set ∆ = 2, 3, 4, 5, 6, 7, 8
is chosen. Interestingly, the experiments show that the results
do not vary much over the choice of ∆, making of the MCD-
Kernel a non-tuning method.

B. Possible Variations

In this subsection, some variations that can be introduced
to the MCD-Kernel method are presented.



1) Processing batches of points: The MCD-Kernel method
can be adapted to points that arrive in batches. For every
new batch, all the points included in the batch are evaluated
and the moment matrices are then updated using the new
support containing the whole batch. However, this means that
new points are not evaluated using the most recent support,
particularly for the last points in large batches.

2) Reducing computation time of the evaluation process: To
avoid evaluating all the incoming points, an evaluation based
on a reference model can be proposed. Let us choose dref ∈ ∆
with its associated moment matrix Mdref

(µn) and function
Qµn,dref

. Then, check the following condition on the reference
score Sµn,dref

(xn) ≤ 1. If the inequality holds, then the point
is considered an inlier, else it is a possible outlier and it should
be evaluated with the complete process.

3) Selective support: The most outlying points should not
be added to the support. If all outliers are rejected, the
model will not adapt to new behaviour. However, including
all outliers can lead to fail to detect outliers that appear in the
same region in space. One can want to reject outliers that have
the greatest scores.

VI. EVALUATION AND COMPARISON

A. How to Evaluate?

It is commonly accepted that evaluating unsupervised outlier
detection is a difficult task. Wang et al. [5] show that when
an evaluation is done, it is based on supervised metrics using
labelled datasets, which involves selecting these datasets and
limiting the scope of the results. Some works have been fo-
cused on creating metrics to evaluate methods using unlabelled
datasets [39], [40] but the results are not always in accordance
with supervised metrics when compared on labelled datasets.
In addition, evaluation is done at a given time and is not
applicable to evolving models. On top of that, [39] bases its
evaluation on the outlier score, which is not available for all
methods. In the case of data streams, memory usage and CPU
time seem among the relevant metrics [10].

There is obviously a need for a benchmark to evaluate
and compare effectively outlier detection algorithms for data
streams taking their peculiarities into account [5]. The only
existing one is the Numenta Anomaly Benchmark (NAB)
framework [41] but it relies on labelled datasets.

The evaluation metrics that are proposed to assess Some
specific properties are important to be evaluated for online
outlier detection methods. These are listed below with the pro-
cedure that is used in the experiments reported in section VI-B
to evaluate them :

1) Consistency. Evaluating this property is based on the
CC-Eval method proposed in [40] and aims to evaluate
how consistent the decisions are in the sense explained
below. To do so, a supervised classifier is trained using
the labels generated as decisions by the outlier detec-
tion method. The supervised classifier is then asked to
classify new unseen instances. Those unseen instances
are also evaluated with the outlier detection model.
The results of both models are then compared and the

precision is used as consistency metric. As so, this
method is not suited to online methods but it can be
easily extended by considering the model at consecutive
times and performing a series of consistency evaluations.

2) Learning Speed. Online outlier detection methods ought
to quickly recognise new persistent behaviour as normal.
It is hence interesting to measure how fast outlier
detection methods are able to learn novel behaviors.
The experiment that is proposed for this is based on the
synthetic Two Moons dataset. All outliers are removed
from the dataset. Training is performed on the first moon
data. Then the data from the second moon is given as
input. The graph of the number of detected outliers as
a function of the number of evaluated instances is used
as metric.

3) Processing Time. Processing time is obtained by mea-
suring how long it takes to train the models, to evaluate
new points and to update the models.

4) Memory Usage. Memory usage is simply measured
through the process.

B. Experimental Results

In this section, the different evaluation metrics used and
the results obtained for the proposed method are presented.
These results are divided according to the dataset used for the
tests, synthetic or industrial. Consistency is evaluated on both
datasets, learning speed is only measured for the Two Moons
dataset and computing time and memory usage are measured
on the Luggage Conveyor dataset.

The implemented methods applicable to outlier detection
in a data stream context are very few. Experiments and
comparative analysis have been performed with HST relying
on the implementation in the River project [36] and with
DyClee (cf. Table I).

1) Experiments based on the Two Moons dataset:
a) Consistency: For these tests, the method CC-Eval

[40] has been applied as presented in section VI.A.1 with
kNeigborsClassifier from Scikit-learn as supervised classifier.
kNeigborsClassifier has been chosen because it implements a
methods to immediately compute the mean accuracy of the
prediction and to estimate the probability that a point belongs
to a class.

Four timesteps are evaluated, which correspond to the ones
used in Figure 5. Figure 9 shows decisions from both models.
The drawn points correspond to the set of data on which
the metric is computed, and their colour depends on the
decision of the MCD-Kernel model, while the colours in the
background describe the probability of a point to belong to
a class according to the kNeigborsClassifier. Table II gives
the accuracy metric at each step. Note that accuracy decreases
through steps, which means that a classification based on the
decision becomes harder.

In order to estimate the model quality, the same process has
been applied on DyClee and HST for this dataset. Figure 10
shows the result for DyClee with 0.01 as micro-cluster size.



Fig. 9. Results for consistency evaluation of MCD-Kernel on the Two
Moons dataset. Blue colour identifies normal points while red colour identifies
outliers. (1) Top-left: at this point, only one moon has been processed. (2)
Top-right: from this point on, observations from the second moon have been
processed by the MCD-Kernel model. (4) Bottom-right: one can observe that,
with the multiplication of processed points, the decision takes more points as
inliers than on (1), meaning the the model learns novel normal behavior.

TABLE II
MEAN ACCURACY OBTAINED WITH MCD-KERNEL FOR THE DIFFERENT

STEPS ON THE TWO MOON DATASET

Step 1 Step 2 Step 3 Step 4
Mean Accuracy 0.981 0.968 0.9645 0.9635

The results quality is slightly worse than the one with MCD-
Kernel with more inliers considered as outliers but less outliers
considered as inliers. However, HST performs poorly on this
dataset as shown in Figure 11 with 50 trees of height 8 and
a window size fixed at 1024. Note HST would probably give
better results with a better parameterization, but its parameters
are difficult to tune and raise significantly the memory usage.

b) Learning Speed: Here, the goal is to measure how
fast a novel normal behaviour is integrated to the model. To
be able to do so, the number of detected outliers throughout
the incrementation of new points is studied. This test is done
on the Two Moons dataset because it is easier to split in two
normal clusters. A fast growth can be observed for the first
observations but it quickly lessens. However, there is still a
more-or-less linear growth after this point. This linear growth
means that the model still declares normal points as outliers,
possibly at the normal cluster borders. The same experiment
has been done for HST, with 50 trees of heights 8 and a
window size fixed at 5000. The results are shown in Figure 12
and one can see that MCD-Kernel is faster to learn but detects
slightly more outliers than HST after stabilisation, which can

Fig. 10. Results for consistency evaluation of DyClee on the Two Moons
dataset. Blue colour identifies normal points while red colour identifies
outliers. The denser parts of the moons are considered normal, but the
peripheral points are rejected.

Fig. 11. Results for consistency evaluation of HST on the Two Moons dataset.
Blue colour identifies normal points while red colour identifies outliers.



be explained by the large size of normal clusters on Figure 11.
Note that far less outliers are detected by MCD-Kernel in the
end.

Fig. 12. Number of detected outliers through observations with the MCD-
Kernel and HST methods. A good curve would quickly reach its maximum
value and this value would be low. A method that would not learn would show
linear growth. For both methods, the growth lessens on first observations but
then follows linear growth until the end. The growth is nonetheless far more
important at the beginning for HST, with a total of more than 500 outliers
detected while MCD-Kernel stops at 80 for those 2500 observations.

2) Experiments based on the industrial conveyor dataset:
a) Consistency: The consistency evaluation applied to

the synthetic dataset has also been applied to the industrial
dataset. Once more, four different timesteps are chosen; the
first step follows a training phase on the 100000 first obser-
vations, then the rest of the dataset is divided in three parts
of approximately equal sizes. Figure 13 shows decisions from
the MCD-Kernel model and the supervised classifier while
Table III gives the mean accuracy obtained at each step. The
results are worse on this dataset, which can be retrieved in
the accuracy table. Indeed, points considered as normal are
spread in area of space where most of the points are considered
outlying.

TABLE III
MEAN ACCURACY OBTAINED WITH MCD-KERNEL FOR THE DIFFERENT

STEPS ON THE LUGGAGE CONVEYOR DATASET

Step 1 Step 2 Step 3 Step 4
Mean Accuracy 0.9485 0.9480 0.9455 0.9555

However, the differences in densities between the different
operating modes make learning the normal behaviour a diffi-
cult task. To better understand this point, the plots for DyClee
and HST have been displayed on Figure 14 and Figure 15
respectively. DyClee partially captures the normal behaviour
but miss a lot while HST only captures the main normal
modes, stop and standard.

b) Duration and Memory Usage: The last evaluation
criterion refers to processing time and memory usage. This
metrics were measured on the execution of the MCD-Kernel
method on the industrial conveyor dataset because of its large

Fig. 13. Results of consistency evaluation of MCD-Kernel on the Luggage
Conveyor dataset. Blue colour identifies normal points while red colour
identifies outliers. Stop and standard operating mode are captured, as well
as a part of starting and stopping transitions. Even some points from the
heavy load condition are declared normal.

Fig. 14. Results of consistency evaluation of DyClee on the Luggage
Conveyor dataset. Blue colour identifies normal points while red colour
identifies outliers. Points that are close to each other in areas of uniform
densities are captured because of how DyClee works, but a lot of the normal
behaviour is missed. A better parameters tuning could give slightly better
results.



Fig. 15. Results of consistency evaluation of HST on the Luggage Conveyor
dataset. Blue colour identifies normal points while red colour identifies
outliers. Points from the two main modes are captured on the first step but the
standard behaviour then disappear. It can be explained by the ratio of points
from this second mode in the window on which the model is based for the
three other steps.

size. The training and updating phases were separated for
processing time estimation. 100000 points were taken for the
training process and the rest of the dataset was used for the
updating process. To get a fair estimation, durations were
aggregated over 100 executions. Measuring the memory usage
during execution was done on Python with the tracemalloc
library. The results can be found in Table IV.

TABLE IV
PERFORMANCE METRICS MEASURED FOR THE CC-EVAL BASED METHOD

Min(time) Mean(time) Max(time) Memory
Training 22.6875s 24.0166s 27.8125s 631Mib
Updating 198.4844s 210.4723s 236.250s

VII. DISCUSSIONS AND FUTURE WORKS

In this section, two main issues are discussed. The first one
refers to the related problems of model persistence and novelty
detection, i.e. model adaptation. The second deals with the
difficulty to evaluate and compare different methods.

A. Model adaptation

All the outlier detection methods for data streams face the
problem of deciding whether the model learned at some point
in time should be considered persistent and how new arriving
points should update this model. This is a tedious problem
that is often tackled with a forgetting factor.

This has been tested with the MCD-Kernel method as
explained in IV-B2. During these tests, instabilities in the
levelsets were faced. Those were due to negative values
of the score, which is theoretically impossible because of
the positiveness of Md(µ). The cause was identified to be
computational approximations in Python that would result in
slight negative singular values in the spectral decomposition
of the matrix. Even if those values are small, they highly
impact the score computation because the score is based on
the moment matrix inverse. Different solutions were tested to
tackle this issue:

1) Standardizing data. Slight negative singular values only
seem to appear when data are not standardized. How-
ever, this leads to another issue; how to keep data
standardized throughout the stream? Methods exist to
keep a data stream standardized, however the model has
to follow the transformations, which is pretty difficult.
In the end, it seems easier to rebuild the whole model
each time negative singular values are detected.

2) Matrix disturbance. Disturbing the matrix by adding
ρIs(d), Is(d) being the identity matrix of the same
size s(d) × s(d) as the moment matrix, can lead to
positiveness depending on the chosen value of ρ. This
can also be achieved by changing the sign of negative
singular values in the singular value decomposition of
Md(µ). However, those methods cause the support to
also capture the origin of the coordinate system which
is not desired if points are far from the origin.

3) Precise computation. The last solution that has been
tested was to force more precise computations. Using
the mpmath Python library, it is possible to force a 128
bit precision on floating numbers. With this precision,
the previously mentioned issue disappeared, but at the
cost of processing time because of the use of non-built-
in types. Combining the Numpy optimization for vectors
and matrices computations would reduce time but it
stays very long in comparison with the processing time
for built-in floating numbers.

Forgetting old behaviour is a crucial aspect since it greatly
affects the results. It can be chosen to give as much importance
to any point or to reduce the importance of oldest points. In
the case all the points are considered equally, old behaviour is
not forgotten and, if it appears again, then the model is able
to instantly consider it as normal. The other advantage is that
it does not require a new parameter to play with the forgetting
speed. The second option is to forget oldest points or to assign
a weight to these points. In this case, the method is faster to
learn new behaviours because each point has more importance
in the ensemble of points composing the support. Nevertheless,
in most cases it requires fixing a forgetting parameter. For
instance, if one wants to have the support defined by a fixed
length window, then the size of the window has to be given.
In the weighted sum presented in Section IV, a forgetting
coefficient γ has to be set. On top of that, this parameter may
have a great impact on results.



Conversely, the impact of already seen points must be
considered. If a point is taken outside of the support, its score
is great and the evolution of this score depending on d is
exponential. However, if the same point is seen a second time,
then the score is reduced and the evolution is not exponential
anymore. This effect is reduced is there is a sufficient number
of observations constituting the support, but it stays important.

Another approach to deal with this issue would be to
not integrate outliers to the support for further processing.
However, in this case, new behaviours that are first considered
as outliers would never be included inside the support.

As a matter of fact, this issue really calls for knowledge
about the process generating the data. “How persistent the
different behavior modes are?” and “Should some novelty be
expected?” are the questions to be answered.

B. Evaluation

As discussed in Section II, there is a lack of frameworks
to evaluate and compare online outlier methods. For a proper
evaluation, a framework must fulfil the following criteria:

1) Be independent of a specific use case so that the results
can be generalized to other use cases.

2) Provide the means to compare abilities that are common
to any anomaly detection problem on data streams such
as memory usage, time complexity or ability to detect
new behaviours.

3) Take into account the tuning requirements and be able
to get a fair assumption on the quality of results with
different parameterizations.

4) Be applicable to any kind of method whether it returns
a score or a binary decision.

This paper makes a step forward in the direction of such a
framework (cf. section VI-A). Nevertheless, comparison with
other methods stay challenging primarily because there is a
lack of implementations available. To get a better comparison
of the MCD-Kernel method with the state-of-the-art, it would
at least be necessary to adapt the implementations of clustering
methods for outlier detection. To go further on the last point,
future work will consider to implement the MCD-Kernel
method in the River project.

VIII. CONCLUSION

This paper proposes a novel method for outlier detection
in data streams based on the CD-kernel borrowed from the
theory of approximation and orthogonal polynomials. Unlike
existing methods which require a significant tuning effort, this
method is deployable with no tuning at all and can hence
be applied to different datasets very conveniently. The paper
presents the CD-Kernel and the associated Christoffel function
framework and how it leads to the definition of an outlier score
when considering a discrete measure whose support is a set (or
“cloud”) of data points. The key properties of the Christoffel
function are given and leveraged to obtain the MCD-Kernel
method that advantageously does not require tuning. The
performance of the MCD-Kernel method are presented with
two data sets, the Two Moons synthetic data set and an

industrial conveyor dataset. The results are very promising as
the method shows to be able to deal with highly non linear
distributions and it can be easily framed in an incremental
way suitable to data streams. Some comparisons have been
performed with two state-of-the art methods, namely, HST
and DyClee. They show that the MCD-Kernel method obtains
better results with much less parameterization effort. One of
the limitations of the MCD-Kernel method may be to deal with
dimesional datasets. Future work will consider to benchmark
the scalability of the method.
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