Tractable semidefinite bounds of positive maximal singular values - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Pré-Publication, Document De Travail Année : 2022

Tractable semidefinite bounds of positive maximal singular values

Résumé

We focus on computing certified upper bounds for the positive maximal singular value (PMSV) of a given matrix. The PMSV problem boils down to maximizing a quadratic polynomial on the intersection of the unit sphere and the nonnegative orthant. We provide a hierarchy of tractable semidefinite relaxations to approximate the value of the latter polynomial optimization problem as closely as desired. This hierarchy is based on an extension of P\'olya's representation theorem. Doing so, positive polynomials can be decomposed as weighted sums of squares of $s$-nomials, where $s$ can be a priori fixed ($s=1$ corresponds to monomials, $s=2$ corresponds to binomials, etc.). This in turn allows us to control the size of the resulting semidefinite relaxations.

Dates et versions

hal-03580048 , version 1 (18-02-2022)

Identifiants

Citer

Victor Magron, Ngoc Hoang Anh Mai, Yoshio Ebihara, Hayato Waki. Tractable semidefinite bounds of positive maximal singular values. 2022. ⟨hal-03580048⟩
56 Consultations
0 Téléchargements

Altmetric

Partager

More