
HAL Id: hal-03590739
https://laas.hal.science/hal-03590739v1

Preprint submitted on 28 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Composing Complex and Hybrid AI Solutions
Peter Schüller, João Paulo Costeira, James L. Crowley, Jasmin Grosinger,

Félix Ingrand, Uwe Köckemann, Alessandro Saffiotti, Martin Welss

To cite this version:
Peter Schüller, João Paulo Costeira, James L. Crowley, Jasmin Grosinger, Félix Ingrand, et al.. Com-
posing Complex and Hybrid AI Solutions. 2022. �hal-03590739�

https://laas.hal.science/hal-03590739v1
https://hal.archives-ouvertes.fr

Composing Complex and Hybrid AI Solutions

Peter Schüller1, João Paulo Costeira2, James Crowley3, Jasmin Grosinger4,
Félix Ingrand5, Uwe Köckemann4, Alessandro Saffiotti4, and Martin Welss6

1 Knowledge-based Systems Group, Technische Universität Wien, Vienna, Austria
2 Institute for Systems and Robotics, Técnico Lisboa, Lisbon, Portugal

3 Univ. Grenoble Alpes, CNRS, Inria, Grenoble, France
4 Center for Applied Autonomous Sensor Systems, Örebro University, Sweden

5 LAAS-CNRS, University of Toulouse, France
6 Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS,

Germany

Abstract. Progress in several areas of computer science has been en-
abled by comfortable and efficient means of experimentation, clear in-
terfaces, and interchangable components, for example using OpenCV
for computer vision or ROS for robotics. We describe an extension of
the Acumos system towards enabling the above features for general
AI applications. Originally, Acumos was created for telecommunication
purposes, mainly for creating linear pipelines of machine learning com-
ponents. Our extensions include support for more generic components
with gRPC/Protobuf interfaces, automatic orchestration of graphically
assembled solutions including control loops, sub-component topologies,
and event-based communication, and provisions for assembling solutions
which contain user interfaces and shared storage areas. We provide ex-
amples of deployable solutions and their interfaces. The framework is
deployed at http://aiexp.ai4europe.eu/ and its source code is man-
aged as an open source Eclipse project.

1 Introduction

By the end of the 20th century the field of computer vision featured a vast
repertoire of methods and algorithms, but suffered from the lack of a common
framework that would allow practitioners to access these algorithms in a uniform
way, and to compose them into complex systems for their specific application.
In 2000, Intel released the OpenCV library [2] as an infrastructure to make
optimized vision code easily available and reusable via standardized interfaces.

A few years later the field of robotics was in a comparable situation: hundreds
of mature methods and algorithms were developed that could potentially be
used in different robotic hardware, but there was no easy way to share these
algorithms, to reuse them on different hardware, and to compose them to build
full robotic solutions. In 2007 the Robot Operating System (ROS) project was
started [7]. ROS provided a framework for robot software development where
algorithms could be wrapped in modular, reusable components, connected via
standardized interfaces.

ar
X

iv
:2

20
2.

12
56

6v
1

 [
cs

.A
I]

 2
5

Fe
b

20
22

http://aiexp.ai4europe.eu/

2 Peter Schüller et. al

Both OpenCV and ROS quickly became community standards, and they
are widely recognized for having produced a quantum leap in their respective
fields. The ability to share, reuse and combine components allowed researchers to
easily build on previous results and to compare competing techniques; it enabled
companies to incorporate existing solutions in their products; and it provided
students with a lowered entry barrier to experiment with advanced solutions.

Today, the field of Artificial Intelligence (AI) is in a similar situation as
computer vision and robotics were years ago. We have a large repertoire of ma-
ture methods and algorithms, but no standard way to share them in a reusable
format and no easy way to compose them into complex solutions. Some ef-
fective frameworks do exist that allow the modularization and composition of
machine learning components, including Keras [5], PyTorch [6], Tensorflow [1]
and Acumos [9]. These, however, are geared toward the use of data-driven, re-
active machine-learning components that are typically connected into simple,
linear pipelines.

What the field of AI needs today, in our opinion, is a more general framework
that can accommodate both data-driven and knowledge-based AI algorithms,
and that allows users to connect them in arbitrarily complex topologies.

In this paper, we propose such a framework that allows AI practitioners to:

• embed their algorithms into a standard, portable format (docker containers);
• interconnect these components using standard interfaces (Protobuf and

gRPC);
• connect components in unrestricted topologies, including linear or branching

pipelines, closed-loop systems or blackboard architectures;
• accommodate both machine learning models and knowledge based compo-

nents (such as logical reasoners, automated planners, constraint solvers, or
ontological knowledge bases), allowing one to create hybrid AI solutions;
• provide orchestration mechanisms to simplify the overall operation of a com-

plex or hybrid solution.

The framework proposed in this paper is built on top of Acumos. Acumos
is a state of the art system that already addresses the first two of the above
desired features: in this paper, we show how we have extended Acumos beyond
its initial scope in order to accommodate all the remaining ones. The resulting
system is publicly available as the AI4Experiments platform at http://aiexp.
ai4europe.eu/.

The rest of this paper is organized as follows. The next section discusses some
existing frameworks and their limitations in view of the above desiderata. Sec-
tion 3 further elaborates those desiderata. Sections 4 and 5 describe our proposed
approach and the patterns that it enables, respectively, while Section 6 shows a
few case studies that illustrate those patterns. Finally, Section 7 concludes.

http://aiexp.ai4europe.eu/
http://aiexp.ai4europe.eu/

Composing Complex and Hybrid AI Solutions 3

Name Focus Designing
Solutions

Running &
Deploying

Component Interface &
Communication

Acumos ML GUI k8s Protobuf via REST,
no streaming

AI4EU Ex-
periments
Platform

AI GUI k8s Protobuf via gRPC,
streaming

ROS Robotics code local rosmsg via DDS

OpenCV CV code library C++ library

Kubeflow ML Python
DSL/GUI

k8s Cloud Storage, no interface

H2O.ai Parallel
ML

GUI or code various distributed key/value store

DL
frameworks

DL code library Python

commercial
platforms

ML code k8s Protobuf + gRPC (Google),
Smithy (Amazon)

Table 1. Overview of frameworks and platforms for modular assembly of AI appli-
cations. Abbreviations: ML = Machine Learning, AI = Artificial Intelligence, CV =
Computer Vision, DL = Deep Learning, k8s = Kubernetes, GUI = Graphical User
Interface, DL frameworks such as TensorFlow and Keras, commercial platforms such
as Google Vertex and Amazon Sagemaker.

2 Existing Frameworks and their Properties

We next give an overview of frameworks for modular assembly of AI applications.
We consider frameworks that provide an interface for component-component
communication on a higher level than simply providing network communication.
Table 2 provides an overview of frameworks that are discussed in detail in the
following sections. Finally we give a coarse overview of further frameworks.

2.1 Acumos

Acumos [9] is a software framework created by AT&T for the needs of big
telecommunication providers. It was initially conceived purely for linear machine
learning pipelines, i.e., sequences of components with an acyclic information flow
from one or more sources to one or more sinks.

Acumos contains a graphical web interface for assembling Solutions from
Components and a marketplace where components and solutions can be shared
with other users or made publicly available. A Component is a software artifact
that has an interface in terms of Google Protocol Buffer (Protobuf) [10] defi-
nition. Protobuf definitions permit to define message data types and services.
A Protobuf service contains RPC calls with exactly one input and one output
message data type. Acumos creates a Port for each input and for each output
of an RPC call, and ensures that only Ports with matching types are connected
in a solution.

https://www.acumos.org/
https://www.ros.org/
http://wiki.ros.org/rosmsg
https://www.omg.org/omg-dds-portal/
https://opencv.org/
https://www.kubeflow.org/
https://www.h2o.ai/
https://www.tensorflow.org/
https://keras.io/

4 Peter Schüller et. al

An important aspect of Acumos solutions is that each component is a passive
server and that the solution becomes executed by means of an orchestrator com-
ponent which passes messages between components in the correct order. Acumos
is a modular system and contains many APIs with possibilities for plugging in,
e.g., new component types or new orchestrators.

2.2 ROS

ROS [7] is a very popular software development framework in the robotic com-
munity. Programs written in ROS are nodes which communicate through an
asynchronous publish/subscribe mechanism over topics. One node can advertise
a topic (e.g. the position of the robot) to contain some data, whose format is
defined in a msg file (e.g. three floats: x, y, theta) , and then publish this data
at will. Other nodes can subscribe to this topic and specify a callback which will
be called when a new topic value (e.g. a new position of the robot) is published.
Another mechanism, service, is also provided to make a synchronous remote
process call (RPC) to a server advertising the services (with the type of data
passed as arguments and returned by the call defined in a srv file). This can be
used for example to have a server node to provide a locate service which given
the x, y (e.g. 10.3, 4.0) position of the robot, returns the name of the room in
which it is (e.g. ”kitchen”).

These two mechanisms and the definition in msg of commonly used data
structure in robotics (e.g. odometry, images, point cloud, etc) has led to a very
dynamic ecosystem of nodes using topics produced by others and providing top-
ics to others. As a result, most robotic equipment manufacturers provide ROS
nodes to control their robots, sensors, effectors, and most main stream robotic
algorithms (SLAM, navigation, etc) have a number of implementation available
in ROS. Just sharing some common data structure definition and providing a
versatile and simple data communication mechanism led the robotics community
to share data, results and algorithms like never before and enable newcomers to
get involved and active in complex robotic experiments with little initial pro-
gramming investment.

ROS is now in its second installment which addresses some of the shortcom-
ings of the first version: DDS is now used as middleware; no more ROS core
centralizing the book keeping of publishers and subscribers of topics, servers
and clients of services; multi/mono CPU deployment; etc). ROS is a clear and
successful example of what can be achieved with just sharing data structure
definition and a simple communication mechanism.

2.3 OpenCV

OpenCV [2] is an open source computer vision and machine learning software
library for computer vision applications that is cross-platform and free for use
under the open-source Apache 2 License, allowing easy use for commercial ap-
plications. OpenCV was originally developed in the late 1990’s by Gary Bradski

Composing Complex and Hybrid AI Solutions 5

as an Intel Research initiative to advance CPU-intensive applications. The first
alpha version of OpenCV was released to the public at the IEEE Conference on
Computer Vision and Pattern Recognition in 2000. Development and support
was taken over by Willow Garage in the early 2000s, and Version 1.0 was released
in 2006. A second major release in October 2009 included major changes to the
C++ interface, and other improvements, with support GPU acceleration added
in 2011. In August 2012, support for OpenCV was taken over by a non-profit
foundation OpenCV.org, which currently maintains a developer and user web
site. Development is provided by an independent Russian team supported by
commercial corporations, with Official releases approximately every six months.
The most recent version has more than 2500 optimized algorithms, including
both classic and state-of-the-art computer vision and machine learning algo-
rithms with more than 47,000 active users and estimated downloads exceeding
18 million. The library is used extensively by companies, universities, research
groups and governmental bodies.

OpenCV has C++, Python, Java and MATLAB interfaces and supports
Windows, Linux, Android and Mac OS. It is optimized for real-time vision ap-
plications and takes advantage of MMX and SSE instructions when available.
Full-featured CUDA and OpenCL interfaces are under development. There are
over 500 algorithms with about 10 times as many functions that compose or sup-
port the algorithms. OpenCV is written in C++ and has a template interfaces
that work seamlessly with STL containers.

Public availability of OpenCV and its rich collection of functionalities avail-
able in a uniform programming framework available for several platforms has
been an important factor in the rapid growth of commercial and industrial use
of Computer vision over the last decade.

2.4 Kubeflow

KubeFlow is an open source machine learning platform originally created by
Google to simplify the management of deep learning workflows by leveraging the
features of Kubernetes. The workflows can be designed using a Python based
DSL or a Web-GUI. The nodes of a workflow are Kuberentes pods that com-
municate only by input and output files. The nodes have no services defined
and do not communicate directly. The files are exchanged via cloud storage that
is provided outside the workflow definition. The workflow basically defines the
dependencies on other nodes (or tasks), very much like in a makefile. It is then
up to the orchestrator (workflow engine) to find the best order for execution and
level of parallelism. If all preconditions for a node are met, the pod is started
and the task ends when the pods has written its output files and terminates.
Then the pods for the tasks depending on it are started.

Here is a small example: task A is data cleaning, task B is model training
and depends on task A.

The workflow engine reads the dependencies and concludes that task A must
be run before task B.

6 Peter Schüller et. al

The pod of task A is started, it reads the data files from cloud storage,
cleans the data and writes new files with cleaned data to the cloud storage and
terminates.

Then the pod of task B is started, it reads the files with cleaned data form
cloud storage and stores the trained model somewhere.

2.5 H2O.ai

H2O.ai1 is an open source framework for ML with a focus on parallelization and
scaling up ML in practice. It can be deployed in Map/Reduce cloud infrastruc-
tures of all popular providers, on Hadoop, Spark, and locally. Several popular
ML and Data Science algorithms are provided as Map/Reduce implementations.
Custom algorithms can be implemented as well in Python, R, Scala, or Java.
These languages or the H2O Flow GUI is used to design H2O ML applications.
H2O has AutoML capabilities to discover the best algorithm for a given task.

2.6 Deep Learning Frameworks

Tensorflow [1] is a library for developing ML applications and algorithms, sup-
ported by dedicated hardware, if present (e.g., GPUs). It offers a low-level and
a high-level API in several languages (e.g., Python) and is not specific to neural
network applications. Keras [5] and pytorch [6] are libaries for more high-level
development of ML applications, where Keras (based on Tensorflow) is focused
on neural networks. Common to these and other frameworks is, that they offer
a Python API to assemble by means of writing a Python program a ML ap-
plication in a comfortable way. Below that Python API are efficient low-level
implementations of ML algorithms that can operate on GPUs and on large-scale
compute clusters. Communication between the algorithm parts is managed by
the library.

2.7 Commercial Platforms

Google Vertex AI 2 describes itself as being a unified AI platform that facili-
tates building, deploying and scaling of ML models. That means that it brings
together Google cloud services for building ML under one UI and API. It inte-
grates ML frameworks such as TensorFlow, PyTorch and scikit-learn as well as
frameworks via custom containers. Vertex can do data preparation (ingest, ana-
lyze, transform) and then be used to train, model, evaluate, deploy, and predict.
Google Vertex AI is cloud-based, so to work with it, one logs in to the Google
Cloud Platform, where a new project can be created. In the Google Cloud Shell
(or locally, if preferred) a storage bucket is created for storing saved model assets
for a training job. Next Docker files and containers are to be created. Training
code can be written in Python, for example, using TensorFlow, but other open

1 https://www.h2o.ai/
2 https://cloud.google.com/vertex-ai

https://www.h2o.ai/
https://cloud.google.com/vertex-ai

Composing Complex and Hybrid AI Solutions 7

source frameworks or custom frameworks are possible, as mentioned above. The
Docker container can now be built and tested locally and finally pushed to the
Google Container Registry. There are two options for training models in Ver-
tex: AutoML or Custom training. In the Google Cloud web-interface one can
create the training job together with entering the parameters and the deployed
model, as well as selecting the Docker container built in the previous step. Fi-
nally an endpoint of the trained model can be created which can be used to get
predictions on the model.

Amazon Sagemaker 3 is infrastructure, tools and managed workflows for
building, training and deploying ML models. Business analysts can use the vi-
sual interface Sagemaker Canvas and can prepare data, train models and create
predictions without having to write code. For data scientists, Amazon Sage-
maker offers an IDE for the ML life cycle. The so-called Studio Notebooks can
access data from both structured and unstructured data sources which is then
prepared. Next ML models are built. Built-in ML algorithms can be used or own
algorithms. Frameworks such as TensorFlow and PyTorch are supported. Then
the ML model is trained. When deploying the ML model, it can be continuously
monitored — model and concept drifts can be detected and alerted, and key
metrics can be collected and viewed. MLOps Engineers can streamline the ML
lifecycle. They can build CI/CD pipelines to reduce management overhead, au-
tomate ML workflows, that is, accelerate data preparation and model building,
training and experiments. Amazon Sagemaker Pipelines are a feature to help au-
tomate and orchestrate different steps of the ML workflow such as data loading
and transformation, model building, training and tuning. Such pipelines support
processing a large amount of training data, run large-scale experiments, build
and re-train models at various scales. Workflows can be re-used and shared.

2.8 Coarse Overview of Other Frameworks

Containerization and Virtualization Several of the frameworks described
above are based on generic virtualization and containerization technology such as
Docker, VMware, and Kubernetes. This technology allows for creating images of
operating systems with prepackaged software. These images are ready to run on
computers with the respective host software without the need for specific setup
operations and sometimes even without the need to run on the correct hard-
ware architecture. Furthermore containerization and virtualisation permits easy
restarting from a known state of an image and comfortable switching between
versions of images in a running deployed application.

While these technologies are often an important part of the infrastructure
for modular AI applications, we do not consider them separately in the following
discussion because containerization and virtualization does not provide two es-
sential ingredients of modular AI applications: (a) a high-level interface language
for describing communication formats between components, and (b) a possibil-
ity to compose components into applications without changing the components.

3 https://aws.amazon.com/sagemaker/

https://kubernetes.io
https://aws.amazon.com/sagemaker/

8 Peter Schüller et. al

These two ingredients are provided by containerization and virtualization tech-
nology only on the low level network layer.

Machine Learning Scikit-learn 4 is an open source machine learning library
for Python. It supports both supervised and unsupervised learning and provides
tools for model fitting, data preprocessing, model selection and evaluation. It
provides built-in ML algorithms and models, called estimators. It is possible to
chain pre-processor and estimators in a pipeline. This term, pipeline, is under-
stood as a sequential application of transforms and a final estimator.

Weka 5 too is open source and ML but is a collection of ML algorithms in
Java that can be used for classification, regression, clustering, visualization and
more. It supports DL too.

Specific Kubernetes-based Frameworks AWS Proton 6 is a tool from Ama-
zon for automating the management of containers and do serverless deployments
based on OpenAPI interfaces. Lightbend Akka Serverless 7 is based on first cre-
ating data artifacts using a Protobuf API and then writing code which operates
on these artifacts. Durable storage of these artifacts is handled automatically
with the goal of low latency “real-time” performance and without the need to
have any knowledge about databases.

Both AWS Proton and Lightbend Akka Serverless require components to
know in advance which other services they will access. Therefore, composing
arbitrary solutions from existing components without modification of the com-
ponents is difficult.

Natural Language Processing (NLP) Several popular NLP frameworks ex-
ist. The Natural Language Toolkit, nltk 8, is an open source platform for build-
ing NLP programs with Python. Nltk provides interfaces to over 50 corpora and
lexical resources as well as text processing libraries for classification, tagging,
parsing, semantic reasoning and more. The General Architecture for Text Engi-
neering, Gate 9, is an open software toolkit for solving text processing problems.
It contains a graphical user interface and an integrated development environment
for language processing components. Apache UIMA 10 (Unstructured Informa-
tion Management Applications) is a software system for analyzing large volumes
of text to discover knowledge that can be of relevance. UIMA wraps components
in network services and includes scalability provisions by replicating modular
processing pipelines over a cluster of networked nodes.

4 https://scikit-learn.org
5 https://www.cs.waikato.ac.nz/ml/weka/
6 https://aws.amazon.com/proton/
7 https://www.lightbend.com/akka-serverless
8 https://www.nltk.org/
9 https://gate.ac.uk/

10 https://uima.apache.org/

https://scikit-learn.org
https://www.cs.waikato.ac.nz/ml/weka/
https://aws.amazon.com/proton/
https://www.lightbend.com/akka-serverless
https://www.nltk.org/
https://gate.ac.uk/
https://uima.apache.org/

Composing Complex and Hybrid AI Solutions 9

Catalogs and Package Managers Further important frameworks are related
to this work but excluded from the overview because they have a different focus.
OpenML is a catalog/documentation platform for ML datasets, algorithms, and
evaluation results. Anaconda is a repository of (pre-built) AI software packages
with a focus on enabling replicable installations of lists of packages in mutually
compatible versions.

3 Requirements for a Modular Hybrid AI Framework

There is a need for a broad component-based reusable approach for Artificial
Intelligence.

We consider as AI everything that

• has a ”model” of reality (learned, manually written, or combinations), and
• performs ”reasoning” on that model (computation such as prediction, infer-

ence, learning, verification, search).

3.1 Requirements on types of models

Models can be static or they can be updated during reasoning. They might
take into account uncertainty and probability. The framework shall provide the
possibility for using pretrained models as well as training and predicting with
models within one application.

Moreover, models can be modularly constructed from other models. This
possibility is not limited to typical ensemble predictors but also applies to, e.g.,
methods for explaining or verifying the predictions of other (black-box or white-
box) models.

Reasoning with models can be deterministic or randomized, online or offline,
batched or single-shot.

3.2 Requirements on communication between models

Models are not used in isolation, they can be connected to other models. More-
over, models can interact with components that connect with the real world
(with humans or with other AI agents).

Connections among models can lead to multiple cycles across components.
This is especially common in robotic applications where multiple hierarchically
nested control cycles are frequently used.

Another aspect on communication between models is the data volume: com-
munication can be low-volume (e.g., location information for a robot) or high-
volume (e.g., a whole dataset of images with labels for learning).

https://openml.org/
https://www.anaconda.com

10 Peter Schüller et. al

Feature Requirement Advantage or Pattern

Container Specification - lower entrance barrier, broad
reusability of components

Easy Deployment -

Model Initializer Component - more generic components

Shared Filesystem Component - bringing data to components
more efficiently

Generic Orchestrator cyclic topologies control loops, user interfaces

Streaming RPC non-batch dataflow user interfaces, sub-
components

Table 2. Novel features of the AI4EU Experiments Platform and their interaction
with requirements and resulting advantages/enabled patterns.

4 The AI4EU Experiments Platform

To address the needs we described previously, we propose the AI4EU Experi-
ments Platform which extends the Acumos system in several ways. We chose
Acumos as a basis because it is open source under a permissive license, uses
a modular microservice architecture, provides a catalog and private sharing of
components, and because it provides a graphical editor for building solutions.

We next describe how we propose to transform Acumos into a platform for
Hybrid AI applications in general. Table 2 gives a structured overview.

4.1 Container Specification

We define a simplified format for components: all components are Docker
containers that must have a gRPC server listening on port 8061 and can have a
webserver listening on port 8062. The webserver can provide information about
the component or it can be the main aspect of a component, i.e., if the component
is a graphical user interface (GUI).

The rationale for that is to make authoring of components easier, to enable
uniform deployment of all components, and to have cleary defined interfaces for
all components.

This improves component re-use and interoperability between components of
different authors.

4.2 Easy Deployment

We simplify deployment of solutions: we provide a button for downloading a
ZIP file which contains (i) a script for deploying all components and an orches-
trator component in a kubernetes environment, and (ii) a script for interacting
with the orchestrator component for executing the solution.

The deployment script requires as input just the namespace where the whole
solution shall be deployed. The orchestrator client script can start and stop
orchestration and it makes orchestration event logs accessible.

Composing Complex and Hybrid AI Solutions 11

The goal of this extension is to make obtaining, deploying, and running a
solution as easy as possible. Event logs are helpful for seeing how a solution is
orchestrated and diagnosing potential problems.

4.3 Model Initializer Component

We provide a new component type for initializing other components, e.g.,
with machine learning models or knowledge bases.

This component is not a deployed Docker container but it represents a
changes of the deployment of all components that are connected to the Model
Initializer component.

This makes component initialization explicit. It also facilitates more generic
components, because the (learned or manually curated) AI model inside a com-
ponent does not need to be fixed—it can be initialized by an initializer compo-
nent.

4.4 Shared Filesystem Component

We provide a new component type which represents shared file systems.
Each component can obtain access to such a shared file system by means of an
explicit link in the solution.

Like the Model Initializer, this component is not a deployed Docker container
but an explicit representation of a change to the solution deployment.

Shared filesystems permit data-intense applications to access the same data
without passing it over gRPC messages. Moreover, it permits to execute a so-
lution where the data is by providing existing shared volumes in kubernetes to
components of a solution for processing.

4.5 Generic Orchestrator

We relax many constraints on the allowed topologies of solutions by means of
a new orchestrator software that is able to run applications with topologies
that contain cycles.

The orchestrator is very general and based on using multiple threads instead
of computing an execution order. Therefore, it can deal with any topology as
long as connections between components respect interfaces.

An important rationale for the new orchestrator is the need for feedback
cycles in many AI applications, in particular control loops, e.g., in robotics ap-
plications.

4.6 Streaming RPC

We permit streaming RPC both for input and output of RPC calls. Streaming
RPC starts a call and then permits to stream in (or out) a variable number of
messages. Streaming is the gRPC word for event-based interaction. Importantly,

12 Peter Schüller et. al

there can be arbitrary delays between messages. An RPC immediately receives
each input message as soon as it is sent by the previous component, and an RPC
can decide when to send output messages on a stream, and how many messages
before the RPC is closed.

This enables asynchronous communication, components using other compo-
nents as sub-components, and cyclic information flow. In particular, user inter-
faces can trigger computations based on user actions (events) and display results
from computations of other components.

5 Enabled Patterns

These extensions enable the following patterns for composing applications. These
patterns are not possible using the original Acumos software.

5.1 Graphical User Interfaces that interact with components

This pattern permits a component to act as a graphical user interface (GUI)
which sends events to a solution and displays the results of that solution. Events
are emitted via streaming output, results are ingested via streaming input. For
each type of result to be visualized, the GUI component can have a separate
RPC. Multiple types of results can be visualized at different rates this way. The
solution and the components of the solution that receive events from the GUI
and send results to the GUI do not need to be aware that they will be connected
to a GUI.

An implemented example of a GUI is the Sudoku Design Assistant GUI11

which has the following interface.

service SudokuGUI {

rpc requestSudokuEvaluation(Empty)

returns(stream SudokuDesignEvaluationJob);

rpc processEvaluationResult(stream SudokuDesignEvaluationResult)

returns(Empty);

}

The first RPC emits a job for each user event that requires a new evaluation. The
second RPC displays results. The Sudoku topology is described in Section 6.1.
Another example that uses the GUI pattern is the maze planner, described in
Section 6.2.

5.2 Sub-components

This pattern permits a component to use the functionality of another compo-
nent for computing a result, illustrated in Figure 1. Calling a sub-component is
achieved by emitting requests on a stream output RPC, ingesting results using

11 https://github.com/peschue/ai4eu-sudoku/tree/streaming/gui

https://github.com/peschue/ai4eu-sudoku/tree/streaming/gui

Composing Complex and Hybrid AI Solutions 13

Fig. 1. Subcomponent pattern. The arrows on the left indicate an arbitrary interaction
of the caller with other components.

a stream input RPC, and connecting caller and callee in a cyclic topology. The
caller can call the callee once or multiple times. The sub-component does not
need to provide a specific interface to be ‘callable’ in that way. The caller may
call one component and ingest results from another component, so the ‘sub-
component’ may actually be a ‘sub-solution‘.

Example 1. An implemented example of a subcomponent is the Answer Set
Solver of the Sudoku Solution12,13 which is a generic component with the gRPC
interface

service OneShotAnswerSetSolver {

rpc solve(SolverJob) returns (SolveResultAnswersets);

}

where the input SolverJob indicates how many answers are of interest and
SolveResultAnswersets contains all answers. The Sudoku Design Evaluator,14

which is using the ASP Solver as a subcomponent, has the gRPC interface

service SudokuDesignEvaluator {

rpc evaluateSudokuDesign(SudokuDesignEvaluationJob)

returns (SudokuDesignEvaluationResult);

rpc callAnswersetSolver(Empty) returns(stream SolverJob);

rpc receiveAnswersetSolverResult(stream SolveResultAnswersets)

returns(Empty);

}

where evaluateSudokuDesign is the way the GUI uses the Design Evaluator,
the RPC callAnswersetSolver emits requests to the ASP Solver, and the RPC
receiveAnswersetSolverResult ingests the results.

If a large number of answers is of interest, the solver can stream out solutions
using the following interface.

service OneShotAnswerSetSolver {

rpc solve(SolverJob) returns (stream SolveResultAnswerset);

}

Here, each output in the stream contains a single result. ut
12 https://tinyurl.com/368c3t6w
13 https://github.com/peschue/ai4eu-sudoku/tree/streaming
14 https://github.com/peschue/ai4eu-sudoku/tree/streaming/evaluator

https://tinyurl.com/368c3t6w
https://github.com/peschue/ai4eu-sudoku/tree/streaming
https://github.com/peschue/ai4eu-sudoku/tree/streaming/evaluator

14 Peter Schüller et. al

5.3 Control Loops

Topologies can contain cycles: the output of a component is passed to a com-
ponent that directly or indirectly feeds back a result into the same component.
Different from the previous two patterns, in this pattern there is no notion
of a singular computation ‘event’ in the solution. Instead, the cycle periodically
passes messages around in order to realize a control loop, where a controller com-
ponent receives sensor input from the environment and emits output to influence
the environment. Importantly, sensor input can be transferred at a different rate
than controller output, if desired. Additionally, the goal of the controller can
be updated asynchronously using another stream. Moreover, multiple cycles can
exist, e.g., a slow high-level controller that uses reasoning to set low-level goals,
which are fed into a fast low-level controller that receives sensor information and
sends actuator signals to a robot in the environment.

A control loop topology is used by the Maze planner example, see Section 6.2:
multiple cycles exist: the executor performs actions in the simulator and needs
to trigger re-planning if an action fails, leading to further actions and potentially
re-plannings.

6 Example Applications / Case Studies

6.1 Sudoku Tutorial

GUI Interface:
rpc requestSudokuEvaluation(Empty) returning (stream SudokuEvaluationJob);
rpc processEvaluationResult(stream SudokuEvaluationResult) returning Empty);

Design Evaluator Interface:
rpc evaluateSudokuDesign(SudokuEvaluationJob) returning (SudokuEvaluationResult);
rpc callAnswersetSolver(Empty) returning (stream SolverJob);

rpc receiveAnswersetSolverResult(stream SolveResultAnswersets) returning (Empty);

ASP Solver Interface:
rpc solve(SolverJob) returning (SolveResultAnswerset);

Fig. 2. Sudoku Tutorial connections (above) and Protobuf interfaces (below).
Ports with white (resp., black) background are input (resp., output) ports. The
sudoku-design-evaluator-stream component is a single component which is depicted
twice for presentation reasons.

Composing Complex and Hybrid AI Solutions 15

The Sudoku Tutorial is a solution comprising fully open-sourced compo-
nents15 with the purpose of helping others to create assets and solutions. It
consists of a web interface (GUI) where one can configure a partial Sudoku
grid, and with each change the Design Evaluator component computes up to
two solutions to the Sudoku and returns the common digits in the grid to the
GUI. If there is no solution, a minimal repair for the fixed digits is computed
and returned to the GUI. The Design Evaluator performs these computations
using a generic third component, the Clingo [3] Answer Set Solver. Figure 2
shows the components as they are displayed in the graphical user interface of
the AI4EU Experiments Platform, including their connections and Protobuf in-
terfaces. This Tutorial contains streaming for the purpose of sending user events
to the Design Evaluator and for sending display updates to the user interface,
moreover streaming is used for integrating the Answer Set Solver component as
a subcomponent to the Design Evaluator. Hence the tutorial uses the GUI and
Sub-component patterns, see Sections 5.1 and 5.2, respectively.

For a quick start into developing suitable components, the repository con-
tains a script helper.py which provides the following functionalities: (i) running
each of the three components outside of docker; (ii) orchestrating locally run-
ning components with a hardcoded (very short) orchestrator script; (iii) building
docker images for each of the three components; (iv) running, stopping, and fol-
lowing these docker images in a local docker installation; and (v) pushing docker
images to a docker repository.

The complete Sudoku example16 can be deployed using the “Deploy to Local”
functionality and executing kubernetes-client-script.py -n NAMESPACE in
a kubernetes environment where NAMESPACE is an empty namespace for deploy-
ment. This script waits for all containers to run in the kubernetes namespace
and then starts the orchestration and displays orchestration events.

For more details see the detailed walk-through Sudoku tutorial on YouTube.17

6.2 Planning framework and control circuit

The maze-planner example18 illustrates how planning, execution, simulation,
and a user interface can be connected and orchestrated in AI4EU Experiments
Platform. It contains several loops for task request and achievement, action
execution and, state updates. The topology is illustrated in Figure 3.

The Graphical User Interface (GUI) is used to assemble planning problems,
interact with a simulator and request tasks from an executor. The Simulator sim-
ulates action execution and provides state updates to the GUI and the executor.
A Planner receives planning problems and returns solution plans or failure. The
Executor connects these three components and has several internal loops. If it

15 https://github.com/peschue/ai4eu-sudoku/
16 https://tinyurl.com/26wvv4j4
17 https://youtu.be/gM-HRMNOi4w
18 Available open source under https://github.com/uwe-koeckemann/

ai4eu-maze-planner/

https://github.com/peschue/ai4eu-sudoku/
https://tinyurl.com/26wvv4j4
https://youtu.be/gM-HRMNOi4w
https://github.com/uwe-koeckemann/ai4eu-maze-planner/
https://github.com/uwe-koeckemann/ai4eu-maze-planner/

16 Peter Schüller et. al

receives a goal, it will take the last state provided by the simulator and its op-
erator model to assemble a planning problem. It then requests a plan from the
planner. If no plan is found, failure is reported to the GUI. Otherwise, the ac-
tions in the plan are placed in a queue to be sent to the simulator. If the action
queue is not empty and currently no action is running, the executor will send
the next action. If an action is successfully executed (by the simulator) the next
action will be started. If an action fails (e.g., the simulator cannot apply it or it
does not have a model), the rest of the queue is discarded and failure is reported
to the user. If all actions in a queue are successfully executed, success is reported
to the user (via the GUI).

GUI Interface:
G1 rpc requestTask(Empty) returns(Goal);
G2 rpc processTaskResult(Result) returns(Empty);
G3 rpc getState(Empty) returns(State);
G4 rpc visualizeState(State) returns(Empty);

Simulator Interface:
S1 rpc doAction(Action) returns (Result);
S2 rpc getState(Empty) returns (State);
S3 rpc setState(State) returns (Empty);

Planner Interface:
P rpc plan(Problem) returns (Solution);

Executor Interface:
E1 rpc assembleProblem(Goal) returns (Problem);
E2 rpc doNextAction(Empty) returns (Action);
E3 rpc processPlanningResult(Solution) returns (Result);
E4 rpc processActionResult(Result) returns (Empty);
E5 rpc processState(State) returns (Empty);

Fig. 3. Maze planner connections (above) and Protobuf interfaces (below). Connec-
tion arrows are annotated with references to the interfaces below. Symbols at the
origin/destination of an arrow indicate the output/input of the corresponding RPC is
used.

Composing Complex and Hybrid AI Solutions 17

Realizing this solution through AI4EU Experiments Platform decouples all
components and allows to replace them by compatible alternatives. In the so-
lution, for instance, the simulator and executor use the same action model, but
can easily be replaced by more realistic versions. Simulation, e.g., could use a
more precise model or simulate random action failures or external events. A
ROS integration for AI4EU Experiments Platform is planned, which enables to
exchange the simulator for a real ROS-based robotics environment. A more so-
phisticated executor could maintain a time-line representation to decide when
to start actions, how long to wait for them to finish, and to allow parallel ex-
ecution via scheduling (see, e.g., [4, Ch. 4]). In this case, a scheduler could be
placed between planning and execution in Figure 3. Execution could start with
an empty action set and learn preconditions and effects from trial and error. To
realize this, we just need to replace/extend the executor with one that collects
data and can use a learner to extract operators from data.

6.3 Real time object detection in networked cameras

Developing a system for Urban Analytics in 10 minutes using the AI4EU Ex-
periments Platform.

This example describes a computer vision application that uses algorithms for
object detection in images to develop and deploy a system capable of providing
”urban data analytics” in a complex scenario.

We show how to use the popular CNN-based [8] algorithm to survey and
monitor a street intersection in a typical urban setting. The enormous potential
of AI4EU Experiments Platform will be further exploited, extending the pipeline
with one simple component that transforms the scope and aim of the original
task, showing that its flexibility and modular design can increase, dramatically,
software productivity.

Fig. 4. Object detection in urban settings. Each bounding box has a label that identi-
fies the type of object and the confidence score of the detection. The annotated images
are streamed by a webserver.

18 Peter Schüller et. al

As Figure 4 illustrates, the goal is to acquire images from an IP camera,
process it and display the image together with the information of the identi-
fied objects. The recognition task is accomplished by the CNN-based detector
YOLOv519 that labels each detected object and regresses a bounding box for
object location. The annotated image should be accessed through the internet
with a browser.

The AI4EU Experiments Platform solution Such a system can be easily
assembled using the tools available in the AI4EU Experiments Platform, in this
case the DesignStudio. Figure 6.3 shows the image processing solution where the
main components deliver the following tasks:

Components

yolo-camera rpc Get(Empty) returns (Image);

message Image {
bytes data = 1;}

yolo-yolo rpc detect(Image) returns (DetectedObjects);

message DetectedObjects {
repeated DetectedObject objects = 1;}

message DetectedObject {
string class name = 1;

uint32 class idx = 2;

Point p1 = 3;

Point p2 = 4;

double conf = 5;}
message Point {

double x = 1;

double y = 2;}
yolo-visualizer rpc Visualize(ImageWithObjects) returns (Empty);

message ImageWithObjects {
Image image = 1;

DetectedObjects objects = 2;}

Fig. 5. Pipeline and protobuf definitions for image processing tasks

yolo-camera Acquires images from an internet camera. The IP and security
data (user, pass) are passed as environment variables during deployment
and upon request it returns an Image retrieved from the IP camera.

19 http://ultralytics.com

Composing Complex and Hybrid AI Solutions 19

yolo-yolo 20 The CNN-based object detector accepts one image as input and
outputs a message with the list of detected objects, its location and label
confidence score.

yolo-visualizer 21 The visualization component deploys a Flask-based web
server, and serves a web page that displays the annotated image. The in-
put of this service has two messages: one image and a list of objects.

Besides the processing components, this pipeline requires a special node, the
“custom collator”, tasked to merging messages coming from different nodes. As
described in the table of Figure 6.3, the input to the yolo-visualizer service is a
message composed of one image and a list of detected objects (ImageWithObjects),
that are originated in different nodes. Thus, the “custom collator” collects
the image from the camera (message Image), the output from Yolo (message
DetectedObjects) and composes a message of type ImageWithObjects which
will be sent to the Visualizer.

This application is available in http://aiexp.ai4europe.eu.

Geo Location and Scaling Up to a Network The data collected from
street cameras can easily be geo-referenced, anchoring the extracted ”analytics”
to global coordinates. Also, by anchoring the detections to global references, we
can escalate/fuse this data to a network of similar devices with non overlapping
viewpoints. The above system could be deployed seamlessly to any available
camera and the the network’s output data works as one single ”data source”.

Fig. 6. Green dots are used to compute the transformation between cameras. Red dots
represent the predicted location of the midpoint of the bounding box low segment

Assuming the ground is well approximated locally by a plane, there is a
projective transformation that maps corresponding points in two images - an
homography- which can be estimated from a minimum of 4 pairs of non colinear
points.

Leveraging services like Google Maps or OpenStreetMaps, we can map the
camera image to geo-referenced satellite images of the same area. To estimate the
homography. In the case illustrated in Figure 6, the selected pairs of calibration

20 https://www.ai4europe.eu/research/ai-catalog/yolo-v5-object-detection
21 Source for all components: https://github.com/DuarteMRAlves/yolov5-grpc/

http://aiexp.ai4europe.eu

20 Peter Schüller et. al

points are identified by the green dots. Of course, the “flat world” assumption
does not hold for vehicles (or pedestrians), particularly if they are close to the
camera. However, as we show in the figure (red dots), the midpoint of the bottom
line segment of the bounding box is often close to the ground and its mapping
is precise enough for the task at hand.

In an extension of the above pipeline, we would have a second branch that
handles the geo-referenced information. A fully flexible and general structure
is easily setup if we introduce a special “camera” node that simply crawls a
website for the adequate satellite image and feeds the “custom collator” with
the corresponding image. Most of the methodologies in computer vision are
intuitive to a non-specialist, particularly those involving 3D space, however the
maths is often inaccessible to “lay users/programmers”. With this example we
show the transformational role that platforms like AI4EU Experiments Platform
can play, empowering unskilled users with AI technologies that play a key role
in their specific domain.

7 Conclusion and Outlook

We described how we create the AI4EU Experiments Platform which enables the
composition of a broad range of AI applications based on several extensions of
the Acumos framework. This is the beginning of a long-term effort to create an
ecosystem where modular AI components and visually composed solutions are
used for experimentation, prototyping, and educational purposes by researchers,
industry stakeholders, students, and further interested groups. In particular the
visual composition and a mechanism for finding matching components for some
output port of a component is intended to lower the barriers for using the system.
Over time, more and more components and useful generic interfaces will be
onboarded in the platform and we foresee that with each addition the system
will become more useful for a broader audience.

This work started as a part of the AI4EU H2020 project and will be continued
under the governance of the Eclipse foundation as “Eclipse Graphene”.22 A range
of video tutorials is available on YouTube.23

Acknowledgements

This work has been supported by the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 825619 (AI4EU).

References

1. Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

22 https://projects.eclipse.org/projects/technology.graphene
23 https://www.youtube.com/playlist?list=PLL80pOdPsmF6s6P6i2vZNoJ2G0cccwTPa

https://projects.eclipse.org/projects/technology.graphene
https://www.youtube.com/playlist?list=PLL80pOdPsmF6s6P6i2vZNoJ2G0cccwTPa

Composing Complex and Hybrid AI Solutions 21

Tensorflow: A system for large-scale machine learning. In USENIX symposium on
operating systems design and implementation (OSDI), pages 265–283, 2016.

2. G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
3. Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten

Schaub, and Marius Schneider. Potassco: The potsdam answer set solving collec-
tion. AI Communications, 24(2):107–124, 2011.

4. Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and Acting.
Cambridge University Press, 2016.

5. Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd,
2017.

6. Nikhil Ketkar. Introduction to pytorch. In Deep learning with python, pages 195–
208. Springer, 2017.

7. Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Y Ng. ROS: an open-source Robot Oper-
ating System. In ICRA Workshop on Open Source Software, 2009.

8. Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

9. Shuai Zhao, Manoop Talasila, Guy Jacobson, Cristian Borcea, Syed Anwar Aftab,
and John F Murray. Packaging and sharing machine learning models via the
acumos ai open platform. In 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pages 841–846, 2018.

10. Google protocol buffers. https://developers.google.com/protocol-buffers/

(accessed 2021-08-21).

https://developers.google.com/protocol-buffers/

	Composing Complex and Hybrid AI Solutions
	...

