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Improved Control Scheme for the Solo Quadruped
and Experimental Comparison of Model Predictive Controllers

Pierre-Alexandre Léziart a,*, Thomas Corbères b, Thomas Flayols a,c

Steve Tonneau b, Nicolas Mansard a,c and Philippe Souères a

Abstract— This paper presents significant improvements
to the nominal control scheme of the open-access Solo-12
quadruped and an experimental comparative study of different
Model Predictive Controllers (MPC) that were implemented
and tested on the robot. The modifications of the controller
formulation that improved the nominal behavior and reduced
tracking oscillations are first described. Thanks to them, the
maximum reachable velocity of the robot was doubled and the
foot placement was improved. On this basis three MPCs of
increasing complexity were compared to evaluate the validity
of different assumptions and heuristics. They range from a
simplified linear centroidal model with contact points fixed by
a heuristics, to a nonlinear one that also optimizes the contact
points locations. Experimental results show that, thanks to the
fast solver Crocoddyl and the proposed formulation, similar
performances can be obtained with a MPC that optimizes
both the center of mass trajectory and the foot placement,
while taking into accounts the nonlinearity of the centroidal
model, than with a modular scheme using a heuristic for foot
placement and considering a linearized model. This paves the
way for future work such as leveraging information about the
environment to improve footsteps placement and timings.

I. INTRODUCTION

Keeping balance while performing agile locomotion is a
long-standing research problem for legged robots [1], [2]. As
movements get more demanding, both the choices of dynam-
ical model and ground contact locations become critical. On
the one hand, dynamical effects that might be negligible in
quasi-static scenarios have a significant influence at higher
speeds [3]. On the other hand, challenging terrains require a
particular consideration for contacts, as they are for legged
robots the only way to apply forces on the environment to
stabilize themselves [4], [5]. Over the years various methods
have been developed to tackle these challenges.

Contact locations can be carefully planned with optimal
control approaches that exploit information about the en-
vironment [6], [7]. Since for such methods a well-chosen
heuristic can play a crucial role in the quality of the results,
some planners explore several of them concurrently so that
they benefit from each other [8], [9] and, as such, are less de-
pendent on well-tuned functions that can require considerable
expertise. To address this issue, studies have been conducted
to refine heuristics with training using genetic algorithms
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Fig. 1: Solo-12 quadruped powered with batteries. The whole
control architecture can run on an on-board Raspberry Pi 4.

[10], or by manually providing adequate footsteps at a few
key frames to act as a teacher the policy can learn from [11].

By considering incoming contact locations and a model
of the dynamics over a prediction horizon, MPCs can take
privileged decisions to handle disturbances and perturbations
to the system, compared to instantaneous controllers. Whole-
body dynamics allows a complete exploitation of our knowl-
edge about the robot model [12], yet its high dimensionality
and non-linearity remains computationally demanding on a
prediction horizon. The classical alternative is to combine a
MPC using reduced dynamics with a low-level controller
that leverages a full model of the robot [13], [14]. For
quadrupeds, centroidal dynamics stands as a sound reduction
that neglects limb dynamics by approximating the angular
momentum to the rotation of the trunk where most of its
mass is located [15], [16].

This paper aims to present key improvements of our pre-
vious control architecture [17] and to assess the relevance of
several MPC variants. It is based on extensive experimental
efforts that build upon our previous formulation and made
possible their real-world deployment. Experiments show that
a heuristic-free MPC can perform similarly than variants
that rely on hand-defined heuristics, thus relieving the need
for expert knowledge but losing modularity by centralizing
decisions in a single control module.

The paper is organized as follows. The control architecture
is presented in section II. Section III showcases the changes
that have been made to improve the nominal behavior. Then,
section IV highlights the differences between the compared
MPC variants. Finally, experimental results are described in
section V before concluding.
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Fig. 2: Nominal reactive walking control architecture. We will explain how the new formulation partly removes the need
for the footsteps planner. The PD controller is directly performed by the motor control board (MCB) of the robot.
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Fig. 3: Tasks and frames of the WBC.

II. ARCHITECTURE OVERVIEW

The nominal control scheme of the quadruped is shown in
Fig. 2. It is a refined version of our previous work deployed
on the Solo-12 quadruped [17], inspired by the pipeline
proposed in [18]. The goal of this control architecture is
to track a reference base velocity specified either by a user
or a higher level controller. In the nominal scheme, based
on this reference velocity and the estimated state of the
base, a planner outputs the base trajectory and the desired
locations of upcoming footsteps using heuristics. Polynomial
interpolation is then used to guide swinging feet to their
target positions on the ground. The MPC relies on a simpli-
fied centroidal model of the quadruped to find the contact
forces that should be applied by the feet in stance phase
for the base to follow as closely as possible the reference
velocity over a prediction horizon. The whole-body control
(WBC) translates desired contact forces and swinging feet
trajectories into joint trajectories and feedforward torques.
Finally, a proportional-derivative (PD) controller provides
feedback torques based on the difference between the desired
and current joint positions and velocities. Estimates of the
base height, orientation, linear and angular velocities come
from a cascade of two complementary filters that combine
forward kinematics and inertial measurement unit (IMU)
data [19]. While the general control architecture is kept
the same, efforts have been made to improve the nominal
behavior in terms of stability and robustness so that it
makes possible to pursue the work started in [20] where
several MPC variants were compared in simulation only.
Formerly, base oscillations during motion hampered real-
world deployments by impacting the consistency of desired
contact forces and footsteps locations over a gait period.
Reducing the amplitude of those oscillations was especially
helpful for the stability of results. The approach we followed
to this end is described in the next section.

III. REDUCING BASE OSCILLATIONS

A. Tasks for the whole-body control

Inverse kinematics (IK) with a full model of the
quadruped is used in the WBC to compute command ac-
celerations q̈IK . The IK scheme is defined by 4 tasks:

• Follow the reference horizontal base linear velocity
• Keep the base orientation horizontal and follow the

reference yaw angular velocity
• Follow the reference feet motion with respect to (w.r.t)

the base
• Keep the feet in contact immobile w.r.t the world

These tasks involve three frames, highlighted in Fig. 3. The
position of the robot in world frame o results from the
integration of its reference velocity over time. The horizontal
frame h has its origin located at the center of the base,
with only a rotation in yaw w.r.t the world frame o to point
in the forward direction of the robot. The base frame b is
completely aligned with the trunk, with a tilt in roll and
pitch w.r.t the horizontal frame. By stacking all tasks in the
previous description order, the Jacobian can be defined as:

ẋ30×1 = Jq̇ =



hRb 0 0 0 0 0
0 hRb 0 0 0 0
0 bT1 × hRb J1 0 0 0
0 bT2 × hRb 0 J2 0 0
0 bT3 × hRb 0 0 J3 0
0 bT4 × hRb 0 0 0 J4

hRb
bT1 × hRb J1 0 0 0

hRb
bT2 × hRb 0 J2 0 0

hRb
bT3 × hRb 0 0 J3 0

hRb
bT4 × hRb 0 0 0 J4


30×18


q̇lin
q̇ang
q̇1
q̇2
q̇3
q̇4


18×1

(1)
With hRb = R(roll, pitch, 0) and bTi the position of the
i-th foot in base frame. q̇ is the time derivative of the
configuration vector q (6D base + 12 joints) while ẋ is the
time derivative of the state vector in task space. In the last
12 rows of J , the lines corresponding to foot i are set to
0 if it is in swing phase. As these tasks overconstrain the
system, inverting the Jacobian J will thus make a trade-
off in the least squares sense to satisfy them at best. With
{.}† the pseudo-inverse, xdes, ẋdes, ẍdes the stacked desired
positions, velocities and accelerations of all tasks and Kp,
Kd their position and velocity feedback gains, the command
positions, velocities and accelerations can be computed as
follows:
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Fig. 4: The compensation of the contact forces reduces the oscillation in forward velocity, roll and pitch.

qcmd = qcmd
k−1 + J† (xdes−x

)
(2)

q̇cmd = J† ẋdes (3)

q̈IK = J†(ẍcmd − J̇ q̇) (4)

ẍcmd = Kp(x
des − x) +Kd(ẋ

des − ẋ) + ẍdes (5)

The pseudo-inverse is damped to avoid near-zero singular
values that would lead to numerical instabilities when legs
are near singularities [21]. It is important to note that this
set of tasks is distinct from the one we deployed in [17]
in the sense that position estimates of the robot base are
no longer involved in the scheme. Tasks are now either
expressed in base frame or in world frame in which the
robot moves at the reference velocity. With current sensors
(IMU + joint encoders), the absolute position in the world is
not an observable quantity. Thus, by not using unobservable
position estimates that come from a fusion of velocity
estimates and forward geometry, we avoid injecting a slow
unavoidable drift and noise into the control. Thanks to this
new formulation, the maximum velocity the robot could
reach during experiments increased from less than 0.5 m/s up
to 0.8 m/s. However, at high velocity, significant oscillations
of the base both in orientation and linear velocity occurred
and prevented from getting consistent results with the MPC
variant that optimizes foot placements. A compensation term
will be added to this end as described in the next section.

B. Compensation term

As described in [17], for the computation of feedforward
torques, a quadratic programming solver, which relies on
relaxation variables δq̈ and δf , is used to find contact forces
f = fMPC + δf and accelerations q̈ = q̈IK + δq̈ , that are as
close as possible to the force references provided by the MPC
and the command accelerations computed by the IK, while
taking into account the underactuated part of the dynamics.

min
δq̈,δf

δTq̈ Q1δq̈ + δTf Q2δf (6)

s.t. fMPC + δf ∈ K (7)

S(M(

[
q̈IK,u

q̈IKa

]
+

[
δq̈
0

]
) + g + C) = SJT

c (fMPC + δf ) (8)

with subscripts u and a refering to the underactuated and

actuated parts respectively, M =

[
Y Mu

MT
u Ma

]
the general-

ized mass matrix, g the gravitational force, C the nonlinear

forces, S the matrix selecting the underactuated dynamics,
Jc the augmented contact Jacobian and K the friction cone
linearized to the first order. As the MPC works with a
centroidal model of the robot, it does not take into account
the inertia effects that result from leg movements nor the
nonlinear effects. Hence the contact forces computed by the
MPC will not compensate or benefit from the forces related
to these effects to stabilize the base and follow the reference
velocity. As a result, while the left side of (8) includes the
inertia of the base, the inertia of the joints, the nonlinear
effects and the gravitational force, the MPC forces on the
right side only take into account the inertia of the base and
the gravitational force. If the inertia of the joints and the
nonlinear effects are non-negligible, as it seems to be the
case when the upper-leg joints are in motion at high speed,
the QP will not work around an equilibrium point because the
left and right sides of (8) may be widely different (requiring
substantial δq̈ or δf to respect the constraint). To limit this
effect, a compensating term fcomp is added to the contact
forces of the MPC to diminish the offset between both side
of the equation, so that the QP starts working closer to the
equilibrium and (δq̈, δf ) are lower. Instead of considering
fMPC + δf , we consider fMPC + fcomp + δf with:

fcomp = (JT
c )† (C +Muq̈IK,a) (9)

where Muq̈IK,a accounts for the effect of joints inertia on the
base dynamics. As seen in Fig. 4, adding this compensation
term resulted in a reduction of the oscillation of the linear
velocity by a factor of roughly 2.

IV. MPC VARIANTS

As locomotion decisions must be taken by considering the
future evolution of the system [2], a wide range of quadruped
controllers leverages a MPC to generate the motion in real
time by predicting the behavior of the robot over a prediction
horizon. Then, a WBC converts those decisions into actuator
commands to follow the movement. MPCs usually exploit a
reduced model of the dynamics to limit the computational
complexity. The choice of reduced model is often ad-hoc
or guided by intuition. Since quadruped robots tend to have
lightweight limbs, most of their mass is localized in their
trunk and, as such, centroidal dynamics [22] can provide an
appropriate approximation of their whole-body dynamics. It
describes the dynamics of the center of mass of the robot



(a) Linear (b) Nonlinear (c) Footsteps optimization

Fig. 5: Summary of the differences between MPC variants. The front-left and hind-right feet are first in contact, with a
switch to the front-right and hind-left feet later in the prediction horizon. Both linear (a) and nonlinear (b) variants use
footsteps locations defined by heuristics (green dots) while the one optimizing footsteps locations (c) works around the
reference projections of shoulders on the ground (orange dotted circles). (a) relies on the reference trajectory of the CoM
(red dotted line) while the two others use instead the predicted one (blue line) that results from the application of (10a).

due to its interactions with the environment and corresponds
to the under-actuated dynamics [23]:

mp̈ =

nc∑
i=1

fi +mg (10a)

Iω̇ + ω × (Iω) =
nc∑
i=1

(ri − p)× fi (10b)

with p the position of the CoM, ω the angular velocity of
the body, m the total mass of the robot, I its inertia matrix,
and g the gravity vector. nc is the number of 3D forces fi
applied at the contact points ri.

A. Reduced dynamics models

A common choice is to use a centroidal model of the
quadruped, with various levels of reduction. In our previous
work [17], [20], pitch and roll velocities were supposed small
so that Iω̇ + ω × (Iω) ≈ Iω̇. The trajectory of the center
of mass p was assumed to perfectly follow its reference p⋆.
Foot placements ri were not part of the optimization problem
but obtained beforehand based on Raibert heuristics [1], with
terms similar to the ones used in [18] and noted r⋆i :

r⋆i = rsh +
Tswing

2
q̇lin + k (q̇lin − q̇⋆lin) +

√
qz
g
q̇lin × q̇⋆ang (11)

with rsh the projection of shoulders on the ground, Tswing the
duration of swing phases, k a feedback coefficient and qz the
height of the trunk. With those assumptions, (10b) becomes:

Iω̇ =

nc∑
i=1

(r⋆i − p⋆)× fi (12)

To study the relevance of these reductions and understand
their influence on the controller capabilities, they were pro-
gressively lifted and evaluated in simulation [20].

A first simplyfing assumption can be lifted by considering
the predicted trajectory p instead of the reference one p⋆,
which makes the problem no more linear due to the cross
product between optimization variables p and fi:

Iω̇ =

nc∑
i=1

(r⋆i − p)× fi (13)

Then, another assumption can be lifted by considering the
location of footsteps ri as optimization variables of the
optimal control problem instead of obtaining their reference
r⋆i from heuristics:

Iω̇ =

nc∑
i=1

(ri − p)× fi (14)

The 3 considered variants are described in Fig. 5 and Tab. I.

TABLE I: Differences between MPC variants

MPC
Variant

Footsteps
Locations CoM Traj. Iω̇ =

Linear Heuristics Reference
∑nc

i=1(r
⋆
i − p⋆)× fi

Nonlinear Heuristics Predicted
∑nc

i=1(r
⋆
i − p)× fi

Footsteps Optimized Predicted
∑nc

i=1(ri − p)× fi

B. Optimal control problem

The optimal control problem can be written as follows:

min
{x},{f},{r}

T∑
t=0

ℓt(xt, ft|rt) + ℓT (xT )

s.t. ∀t xt+1 = H(xt, ft|rt) (15a)
∀t xt ∈ X (15b)
∀t ft ∈ K (15c)

where ℓt and ℓT are respectively the running and terminal
cost. {x}, {f} and {r} are the decision variables discretized
at the optimization nodes indexed by t. The state vector
{x} includes the position, orientation, linear and angular
velocities of the base. {x} has to remain in the feasibility
manifold X to ensure that a valid whole-body movement
that can achieve x exists. The control vector f contains
the 3D forces at each contact point, constrained by the
friction cone K. {r} stores the position of footsteps which
are optimization variables only for the last MPC variant.
H enforces the system dynamics, that is (10a) and either
(12), (13) or (14) depending on the variant. For the last
one, the dynamics can be written as follows, with I6 the
identity matrix of size 6, ∆t the time step between nodes
and [ri − p]× a skew-symmetric 3 by 3 matrix representing
the cross product in (10b) as a matrix multiplication:

H(xt, ft|rt) = Axt +B(xt, rt)ft (16a)

A =

[
I6 ∆tI6
06 I6

]
(16b)
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Fig. 6: Factor graph displaying the correlations between
the decision variables of the MPC variants. Example with
a prediction horizon of 3 time steps and a contact switch
occurring at the 2nd time step.

B =


. . . ∆t2

m I3 . . .

. . . ∆t2I-1[ri − p]× . . .

. . . ∆t
m I3 . . .

. . . ∆tI-1[ri − p]× . . .

 (16c)

ri is replaced by r⋆i in (16c) for the variants (12) and (13)
that do not optimize footsteps location and p is replaced by
p⋆ for the first variant (12). The i-th column of B is disabled
when the i-th foot is not in contact phase.

The footsteps positions are not optimization variables for
the first two variants, so the state and control vectors remain
the same over the whole prediction horizon ({x} and {f}
respectively). As a result the OCP scheme is straightforward
with a series of similar nodes connected to each other to
enforce the dynamics H(xt, ft|rt) at each time step with a
terminal node at the end, as depicted in Fig (6a). The last
variant is a parametric OCP that we have to reorganize to cast
it under a form that our Differential Dynamic Programming
(DDP) solver can handle. The footsteps are added as plain
state variables whose values can only be changed at impact
time, as shown in Fig (6b). This is implemented as a specific
dynamic function inserted in the time line at the beginning
of each contact phase:

rt+1 = G(∆rt|xt, ft) = rt +∆rt (17)

where ∆rt is the step length taken by the corresponding foot
during the previous flying phase. The size of ∆rt depends
on the number of contacts that are modified.

C. Running and terminal costs

Four running costs are shared by all variants:
• quadratic cost ℓx on the error between predicted and

desired state vectors to track the desired state trajectory

ℓx = ∥x⋆ − x∥2 (18)

• quadratic cost ℓf on the norm of ground reaction forces
to minimize them if possible (regularization)

ℓf,i = ∥fz,i −
mg

nc
∥2 (19)

• barrier cost ℓK to avoid slipping by enforcing friction
cone constraint ∀t, ft ∈ K

ℓK,i = ∥(fx,i − µfz,i)
+∥2+∥(−fx,i − µfz,i)

+∥2
+∥(fy,i − µfz,i)

+∥2+∥(−fy,i − µfz,i)
+∥2 (20)

• barrier cost ℓkin to enforce kinematic limits on the
distance between shoulders and their associated foot.
That way, contact forces do not lead to an unfeasible
motion for the whole-body control (∀t, xt ∈ X )

ℓkin,i = ∥
(
∥shi − ri∥2−d2lim

)+ ∥2 (21)

with {·}+ = max({·}, 0), µ the friction coefficient, shi the
position of the i-th shoulder, dlim a limit distance (80% of the
leg limit). Since constraints are enforced through a quadratic
penalization using {·}+, there is no guarantee that they will
be respected. In practice, with a small margin for µ, this
approximation works well and no slipping occurs. For the last
variant, contrary to [20] which applied a quadratic cost on
the distance between ri and r⋆i , so that the optimization was
done around the heuristic locations, here only the distance
between the foot location and the shoulder is penalized to be
completely heuristic-free. This cost ℓr,i can be seen as a form
of regularization so that, on average, contacts are centered
on the shoulders projection, as it is done using Raibert’s
heuristic.

ℓr,i = (shx,i − rx,i)
2 + (shy,i − ry,i)

2 (22)

The last node of the optimal control problem has no
command so the terminal costs in the current formulation are
only ℓx, ℓkin,i and ℓr,i. The nodes responsible for footsteps
optimization have no running costs but they still act on the
global cost value through the running costs ℓkin,i and ℓr,i of
the other nodes.

V. EXPERIMENTAL EVALUATION

Experiments were conducted to compare the performances
of the three considered MPC variants based on the improved
control architecture which made possible their real-world
deployment.

A. Experimental setup

Experiments were first performed indoors on a flat carpet-
like material. Ground truth was retrieved thanks to a mo-
tion capture system comprising 20 infrared cameras spread
around the workspace that track 13 reflective markers, in-
stalled on top of the robot base, at 200 Hz. During the
experiments the robot was powered via an external power
supply. Communications with the robot (sensors data re-
trieval and command sending) were done using an Ethernet
link to the control desktop computer. Out of the prototyping
phase, all control blocks were converted from Python to C++
for computational efficiency, except for the main loop which
calls them. MPCs were implemented using Crocoddyl [24]
as in [20]. The QP problem was solved with OSQP [25].
This modification allowed the main loop to go from 500 Hz
to 1 kHz.
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Fig. 7: Forward, lateral and angular velocity profiles for the two scenarios of Fig. 8.
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First scenario
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Second scenario

Fig. 8: Top view of the robot trajectory in the two considered
scenarios obtained by integration of the reference velocity.

The MPC weights chosen for position, orientation,
linear velocity and angular velocity errors are respec-
tively [2.0, 2.0, 10, 0.25, 0.25, 10, 0.2, 0.2, 0.2, 0, 0, 0.3]. The
weights for contact force regularization were set to 5× 10-5

for all components. To perform inverse kinematics we used
Kp = 10, Kd = 2

√
Kp = 6.3 and a weight of 1 for all

tasks. For the QP problem (6) we used Q1 = 0.1I6 and
Q2 = 10I12 for the weights of the acceleration and contact
force relaxation variables. For the on-board impedance con-
troller, all joints shared the same proportional and derivative
feedback control gains of 3 Nm/rad and 0.3 Nm/(rad/s)
respectively. The performed gait was a trot with a period
of 0.48s as it proved to be a good trade-off for evaluating
the MPC performances. A faster gait would be naturally
more stable due to the faster switching between diagonally
opposed pairs of contacts, thus making the MPC role less
crucial. A slower gait proved to be harder to stabilize because
the base can tilt too much during a single swing phase, which
can harldy be corrected (with two contact points we can
only act along an axis). Deployment of the last MPC variant
on the robot was made possible thanks to the reduction
of velocity oscillations due to the compensating contact
forces described in Section III-B. Indeed, they improved
the consistency of the footsteps optimization which was

previously diverging. As the estimated velocity of the base
influences footsteps positions over the prediction horizon, the
smaller the oscillations, the less these positions are modified
over the span of a gait period.

B. Results

Indoor tests: Performances are compared for the two
scenarios shown in Fig. 8. During the first scenario the
quadruped goes straight forwards. The velocity command is
slowly increased during 4 seconds, stays at 0.8 m/s during
2 seconds, then goes back down to 0 m/s in 4 seconds.
During the second scenario the quadruped performs several
turns in a row. The velocity command goes up to 0.5 m/s
forwards with ±0.8 rad/s along the vertical axis to get
a S-shaped trajectory. Polynomial interpolation generates
command profiles that are continuous both in velocity and
acceleration. Motion capture data is reported in Fig. 7. Linear
and non-linear variants lead to very close behaviours over
the whole movement in both scenarios. Differences with
the variant that optimizes footsteps location are noticeable
but the values and amplitudes of errors and oscillations
with respect to the references are roughly the same. The
oscillations of the forward velocity around its reference have
a maximum amplitude of around 0.15 m/s during the high-
velocity phase of the first scenario. Lateral velocity tracking
seems stable during both tests with an amplitude of roughly
0.1 m/s, even when turning in scenario 2, and with a shift
of the average value toward the outside of the turns. For the
considered angular velocities (up to ±0.8 rad/s), turning does
not impact forward velocity tracking in a noticeable way.
Joint torques estimated through current measurements peak
at 2.1 Nm during the high-velocity phase (Fig. 9). Actuators
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Fig. 9: Joint torques of the hind-left leg during the high-
velocity phase of the first scenario with the linear MPC.
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Fig. 10: Forward, lateral and yaw velocities during the
outdoor tests. Due to a lack of motion capture system
outdoors, represented quantities are the estimated ones.

can deliver up to 2.5 Nm at 12 A, so hardware capabilities
are not fully exploited yet [26]. There is still way to improve
the control architecture and reach higher velocities.

Outdoor test: In complement to indoor locomotion, the
different controllers were tested on wet grass (Fig. 11). The
quadruped was powered by 2 on-board batteries, one at the
front, one at the back, that were not included in the model.
Their weight of 100g acted as an additional perturbation. The
robot managed to follow the velocity profile up to 0.8 m/s
without falling with each MPC variant. The lack of contact
detection on this wet and bumpy surface resulted in numer-
ous foot slipping when the robot tried to apply forces with a
foot that had not properly landed. The most notable slipping
occurs at 6.6s for the linear MPC (Fig. 10), with peak lateral
and angular velocities of -0.5 m/s and 1.3 rad/s respectively.
The terrain also leads to larger oscillations around the
references compared to indoors, especially during the high-
velocity phase. Currently, neither the footsteps heuristics of
the first two variants nor the footsteps optimization of the last

Fig. 11: Trotting gait on wet grass. Connection with the robot
was done by Wifi with the same computer than we used
indoors. Previous experiments showed that packet loss did
not hamper the behavior for distance under 25 m.

one can handle a non-flat ground (slope, stairs). They could
be extended either by using privileged information about
the environment or by implementing some sort of online
slope detection. Friction cone constraints would have to be
refactored as well to match non-horizontal surfaces, hence
why performances were only compared on a flat ground.
Moreover, applying a repeatable disturbance to a walking
quadruped is not trivial in practice, contrary to simulation.
Slight differences in direction, strength or duration of the
push can lead to widely different behaviours, especially
depending on the gait status. If it happens at the beginning
of a swing phase, the controller can directly react and adjust
footsteps positions accordingly. However, if it occurs near
touchdown, then it is too late to widely modify contact
location. For these reasons, robustness to disturbances was
not compared during our experiments. Videos of both indoor
and outdoor tests can be found online1.

Discussion: Our first attempt in designing the whole-
body control block of this architecture was to implement
an inverse dynamics that could directly handle both position
and velocity for the base and the feet, as well as ground
reaction forces. However, using this approach it was not
possible to achieve a stable robot behavior. For this reason,
we decided to use instead the better-tried approach proposed
in [18], that includes an IK to compute the joint accelerations
to perform the position and velocity tasks (1-5), followed
by a QP problem resolution to find a compromise between
tracking these joint accelerations and taking into account
MPC decisions and the equation of dynamics (6-8). This QP
problem has to balance decisions that might be conflicting
since the instantaneous decisions of the IK are done without
knowing what has been decided by the MPC that works
on a prediction horizon. Finding the right balance is not
trivial, as mainly relying on IK (Q1 ≫ Q2) would remove
the predictive aspect of the architecture, whereas mainly
relying on the MPC (Q2 ≫ Q1) would instead hamper the

1https://peertube.laas.fr/videos/watch/
a31d09c7-0101-45a1-814a-9dbb7e4b41b7

https://peertube.laas.fr/videos/watch/a31d09c7-0101-45a1-814a-9dbb7e4b41b7
https://peertube.laas.fr/videos/watch/a31d09c7-0101-45a1-814a-9dbb7e4b41b7


feet tracking tasks. Though this compromise turns out to
be necessary to achieve a stable robot behavior, it has the
effect of smoothing out the influence of the MPC. Indeed,
the experimental tests show that the implementation of the
different MPC variants leads to quite similar behaviours.
The central result of these experiments is to have shown
that a centroidal MPC which optimizes footsteps location
online can be successfully deployed on our quadruped robot,
which was one of our goals following [20]. The question of
optimizing all the variables in the same MPC or treating them
in separate blocks arises. On the one hand, modularity can be
preferred with footsteps decisions that are independent from
the computation of contact forces by the MPC. With the
first and second variants, the planner with simple heuristics
could easily be replaced by another control system to explore
new paradigms. It could go from a neural network structure
that implicitly learns adaptive heuristics during its training
[27] to more path-planning oriented approaches that leverage
information about the environment to place the feet at the
best locations [28]. Gait type and period could be tuned as
well since the MPC does not have any notion of gait per
se. On the other hand, all-in-one optimization with the third
variant avoids the need to formulate heuristics and let the
possibility to tackle more extensive and difficult challenges,
such as an optimization of footsteps timings as well [20].
Ideally, the solution would be to solve the problem as a
whole-body MPC in order to directly take into account the
whole robot dynamics along the predictive horizon. This
constitutes our next objective, which requires finding the
way to face the computational complexity and a proper
generalization of the local optimization formulation.

VI. CONCLUSION
We presented key improvements to the nominal control

architecture of Solo-12 [17], based on which three variants of
a centroidal MPC were implemented and compared. Efforts
were made to refine our previous control architecture and
reduce oscillations of the base, which were disrupting the
consistency of foot placement decisions. The central result
is to have demonstrated that similar performances can be
reached with a single MPC, which optimizes both contact
forces and footsteps locations, than with a more modular
scheme that relies on heuristics for contact placement. Based
on these results, the interest of a modular architecture versus
a more global optimization scheme was discussed. Going
further, we plan to extend our approach towards a whole-
body MPC in order to exploit the complete dynamical
model along the prediction horizon while being aware of
its kinematic limits for footstep placements. We also plan to
work on feet contact detection to handle force-contact timing
mismatches and increase the robustness on rough terrain.
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