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Improved Control Scheme for the Solo Quadruped
and Experimental Comparison of Model

Predictive Controllers
Pierre-Alexandre Léziart1, Thomas Corbères2, Thomas Flayols1,3

Steve Tonneau2, Nicolas Mansard1,3 and Philippe Souères1

Abstract—This paper presents significant improvements to
the nominal control architecture of the open-access Solo-12
quadruped that were done to implement and compare different
centroidal Model Predictive Controllers (MPC). This work was
motivated by our previous study in which various MPC schemes
of increasing complexity were tested in simulation. They range
from a simplified linearized model with contact points fixed by a
heuristic, to a nonlinear one that also optimizes the contact points
locations. We describe the developments that were necessary to
implement such control schemes on the real robot while doubling
its maximum velocity. Notably, to synthesize a stable whole-body
controller, the inverse dynamics resolution was replaced by a
mixed inverse kinematics and quadratic programming scheme.
These developments enabled the successful deployments of the
various centroidal MPCs on Solo-12. Experimental results show
that all MPCs lead to quite similar performances with the
proposed whole-body controller and, as a consequence, do not
confirm the result of previous simulation study that concluded
on the preeminence of the nonlinear centroidal MPC optimizing
both the center of mass trajectory and the foot placements.

Index Terms—Legged Robots, Motion Control, Optimization
and Optimal Control

I. INTRODUCTION

KEEPING balance while performing agile locomotion is
a long-standing research problem for legged robots [1],

[2]. As movements get more demanding, both the choices of
dynamical model and ground contact locations become critical.
On the one hand, dynamical effects that might be negligible
in quasi-static scenarios have a significant influence at higher
speeds [3]. On the other hand, challenging terrains require a
particular consideration for contacts, as they are for legged
robots the only way to apply forces on the environment to
stabilize themselves [4], [5]. Over the years various methods
have been developed to tackle these challenges. Contact loca-
tions can be carefully planned with optimal control approaches
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Fig. 1: Solo-12 quadruped powered with batteries. The whole
control architecture can run on an on-board Raspberry Pi 4.

that exploit information about the environment [6], [7]. Since
for such methods a well-chosen heuristic can play a crucial
role in the quality of the results, some planners explore
several of them concurrently so that they benefit from each
other [8], [9] and, as such, are less dependent on well-tuned
functions that can require considerable expertise. To address
this issue, studies have been conducted to refine heuristics
with training using genetic algorithms [10], or by manually
providing adequate footsteps at a few key frames to act as
a teacher the policy can learn from [11]. By considering
incoming contact locations and a model of the dynamics over
a prediction horizon, MPCs can take privileged decisions to
handle disturbances and perturbations to the system, compared
to instantaneous controllers. Whole-body dynamics allows a
complete exploitation of our knowledge about the robot model
[12], yet its high dimensionality and non-linearity remains
computationally demanding on a prediction horizon. The clas-
sical alternative is to combine a MPC using reduced dynamics
with a low-level controller that leverages a full model of
the robot [13], [14]. For quadrupeds, centroidal dynamics
stands as a sound reduction that neglects limb dynamics by
approximating the angular momentum to the rotation of the
trunk where most of its mass is located [15], [16].

This paper presents key improvements done on the control
architecture of the Solo-12 quadruped [17] to implement
and test on the real robot several MPC variants that were
previously studied in simulation only [18]. It is based on
extensive experimental efforts that build upon the previous
formulation and made possible their real-world deployment.
The objective is to evaluate whether experimental results
confirm the preeminence of the nonlinear centroidal MPC
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Fig. 2: Nominal reactive walking control architecture. We will explain how the new formulation partly removes the need for
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Fig. 3: Tasks and frames of the WBC.

scheme optimizing footholds over a modular scheme that relies
on heuristics for foot placement and on a simplified model,
as observed in simulation [18]. Depending on how well the
heuristic-free MPC can perform on the real robot compared
to variants that rely on hand-defined heuristics, it could be a
way to relieve the need for expert knowledge at the cost of
modularity by centralizing decisions in a single module.

The paper is organized as follows. The control architecture
is presented in section II. Section III showcases the changes
that have been made to improve the nominal behavior. Then,
section IV highlights the differences between the compared
MPC variants. Finally, experimental results are described in
section V before concluding.

II. ARCHITECTURE OVERVIEW

The nominal control scheme of the quadruped is shown in
Fig. 2. It is a refined version of our previous work deployed on
the Solo-12 quadruped [17] shown in Fig. 1, inspired by the
pipeline proposed in [19]. The goal of this control architecture
is to track a reference base velocity specified either by a
user or a higher level controller. In the nominal scheme,
based on this reference velocity and the estimated state of
the base, a planner outputs the base trajectory and the desired
locations of upcoming footsteps using heuristics. Polynomial
interpolation is then used to guide swinging feet to their target
positions on the ground. The MPC relies on a simplified
centroidal model of the quadruped to find the contact forces
that should be applied by the feet in stance phase for the base
to follow as closely as possible the reference velocity over a
prediction horizon. The whole-body control (WBC) translates
desired contact forces and swinging feet trajectories into joint
trajectories and feedforward torques. Finally, a proportional-
derivative (PD) controller provides feedback torques based
on the difference between the desired and current joint posi-
tions and velocities. Estimates of the base height, orientation,

linear and angular velocities come from a cascade of two
complementary filters that combine forward kinematics and
inertial measurement unit (IMU) data [20]. While the general
control architecture is kept the same, efforts have been made
to improve the nominal behavior in terms of stability and
robustness to enable to pursue the work started in [18] where
several MPC variants were compared in simulation only.
Formerly, base oscillations during motion hampered real-world
deployments by impacting the consistency of desired contact
forces and footsteps locations over a gait period. Reducing the
amplitude of those oscillations was especially helpful for the
stability of results. The approach we followed to this end is
described in the next section.

III. REDUCING BASE OSCILLATIONS

A. Tasks for the whole-body control

Inverse kinematics (IK) with a full model of the quadruped
is used in the WBC to compute command accelerations q̈IK .
The IK scheme is defined by 3 tasks:

• Follow the reference horizontal base linear velocity
• Keep the base orientation horizontal and follow the

reference yaw angular velocity
• Follow the reference feet motion in the air and keep the

feet in contact immobile

These tasks involve three frames, highlighted in Fig. 3.
The position of the robot in world frame o results from the
integration of its reference velocity over time. The horizontal
frame h has its origin located at the center of the base, with
only a rotation in yaw w.r.t the world frame o to point in the
forward direction of the robot. The base frame b is completely
aligned with the trunk, with a tilt in roll and pitch w.r.t
the horizontal frame. By stacking all tasks in the previous
description order, a 18 × 18 Jacobian J can be defined such
that ẋ = Jq̇ then inverted outside singularities:


q̇lin
q̇ang
q̇1
q̇2
q̇3
q̇4

 = J -1ẋ =



bRh 0 0 0 0 0
0 bRh 0 0 0 0

-J -1
1 J -1

1 [bT1]× J -1
1 0 0 0

-J -1
2 J -1

2 [bT2]× 0 J -1
2 0 0

-J -1
3 J -1

3 [bT3]× 0 0 J -1
3 0

-J -1
4 J -1

4 [bT4]× 0 0 0 J -1
4

 ẋ (1)

with bRh = R(roll, pitch, 0)T and bTi the position of the i-th
foot in base frame. q̇ is the time derivative of the configuration
vector q (6D base + 12 joints) while ẋ is the time derivative
of the state vector in task space. With xdes, ẋdes, ẍdes the
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Fig. 4: The compensation of the contact forces reduces the oscillation in forward velocity, roll and pitch.

stacked desired positions, velocities and accelerations of all
tasks and Kp, Kd their position and velocity feedback gains,
the command positions, velocities and accelerations can be
computed as follows:

qcmd = qcmd
k−1 + J -1 (xdes−x

)
(2)

q̇cmd = J -1 ẋdes (3)

q̈IK = J -1(ẍcmd − J̇ q̇) (4)

ẍcmd = Kp(x
des − x) +Kd(ẋ

des − ẋ) + ẍdes (5)

In practice a damped pseudo-inverse is used to avoid near-
zero singular values that would lead to numerical instabilities
when legs are near singularities [21]. It is important to note
that this set of tasks is distinct from the one we deployed
in [17] in the sense that position estimates of the robot base
are no longer involved in the scheme. Tasks are now either
expressed in base frame or in world frame in which the robot
moves at the reference velocity. With current sensors (IMU +
joint encoders), the absolute position in the world is not an
observable quantity. Thus, by not using unobservable position
estimates that come from a fusion of velocity estimates and
forward geometry, we avoid injecting a slow unavoidable drift
and noise into the control.

Thanks to this new formulation, the maximum velocity the
robot could reach during experiments increased from less than
0.5 m/s up to 1.0 m/s. However, at high velocity, significant
oscillations of the base both in orientation and linear velocity
occurred and prevented from getting consistent results with the
MPC variant that optimizes foot placements. A compensation
term will be added to this end as described in the next section.

B. Compensation term
As described in [17], for the computation of feedforward

torques, a quadratic programming solver, which relies on
relaxation variables δq̈ and δf , is used to find contact forces
f = fMPC + δf and accelerations q̈ = q̈IK + δq̈ , that are as
close as possible to the force references provided by the MPC
and the command accelerations computed by the IK, while
taking into account the underactuated part of the dynamics.

min
δq̈,δf

δTq̈ Q1δq̈ + δTf Q2δf (6)

s.t. fMPC + δf ∈ K (7)

S(M(

[
q̈IK,u

q̈IKa

]
+

[
δq̈
0

]
) + g + C) = SJT

c (fMPC + δf ) (8)

with subscripts u and a refering to the underactuated and

actuated parts respectively, M =

[
Y Mu

MT
u Ma

]
the generalized

mass matrix, g the gravitational force, C the nonlinear forces,
S the matrix selecting the underactuated dynamics, Jc the
augmented contact Jacobian and K the friction cone linearized
to the first order. As the MPC works with a centroidal model of
the robot, it does not take into account the inertia effects that
result from leg movements nor the nonlinear effects. Hence
the contact forces computed by the MPC will not compensate
or benefit from the forces related to these effects to stabilize
the base and follow the reference velocity. As a result, while
the left side of (8) includes the inertia of the base, the inertia
of the joints, the nonlinear effects and the gravitational force,
the MPC forces on the right side only take into account the
inertia of the base and the gravitational force. If the inertia
of the joints and the nonlinear effects are non-negligible, as it
seems to be the case when the upper-leg joints are in motion at
high speed, the QP will not work around an equilibrium point
because the left and right sides of (8) may be widely different
(requiring substantial δq̈ or δf to respect the constraint). To
limit this effect, a compensating term fcomp is added to the
contact forces of the MPC to diminish the offset between both
side of the equation, so that the QP starts working closer to
the equilibrium and (δq̈, δf ) are lower. Instead of considering
fMPC + δf , we consider fMPC + fcomp + δf with:

fcomp = (JT
c )† (C +Muq̈IK,a) (9)

where Muq̈IK,a accounts for the effect of joints inertia on the
base dynamics. As seen in Fig. 4, adding this compensation
term resulted in a reduction of the oscillation of the linear
velocity by a factor of roughly 2.

IV. MPC VARIANTS

As locomotion decisions must be taken by considering the
future evolution of the system [2], a wide range of quadruped
controllers leverages a MPC to generate the motion in real
time by predicting the behavior of the robot over a prediction
horizon. Then, a WBC converts those decisions into actuator
commands to follow the movement. MPCs usually exploit a
reduced model of the dynamics to limit the computational
complexity. The choice of reduced model is often ad-hoc
or guided by intuition. Since quadruped robots tend to have
lightweight limbs, most of their mass is localized in their
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(a) Linear (b) Nonlinear (c) Footsteps optimization

Fig. 5: Summary of the differences between MPC variants. The front-left and hind-right feet are first in contact, with a switch to
the front-right and hind-left feet later in the prediction horizon. Both linear (a) and nonlinear (b) variants use footsteps locations
defined by heuristics (green dots) while the one optimizing footsteps locations (c) works around the predicted projections of
shoulders on the ground (orange dotted circles). (a) relies on the reference trajectory of the CoM (red dotted line) while the
two others use instead the predicted one (blue line) that results from the application of (10a).

trunk and, as such, centroidal dynamics [22] can provide an
appropriate approximation of their whole-body dynamics. It
describes the dynamics of the center of mass of the robot due
to its interactions with the environment and corresponds to the
under-actuated dynamics [23]:

mp̈ =

nc∑
i=1

fi +mg (10a)

Iω̇ + ω × (Iω) =
nc∑
i=1

(ri − p)× fi (10b)

with p the position of the CoM, ω the angular velocity of the
body, m the total mass of the robot, I its inertia matrix, and
g the gravity vector. nc is the number of 3D forces fi applied
at the contact points ri.

A. Reduced dynamics models

A common choice is to use a centroidal model of the
quadruped, with various levels of reduction. In our previous
work [17], [18], pitch and roll velocities were supposed small
so that Iω̇ + ω × (Iω) ≈ Iω̇. The trajectory of the center
of mass p was assumed to perfectly follow its reference p⋆.
Foot placements ri were not part of the optimization problem
but obtained beforehand based on Raibert heuristics [1], with
terms similar to the ones used in [19] and noted r⋆i :

r⋆i = rsh +
Tswing

2
q̇lin + k (q̇lin − q̇⋆lin) +

1

2

√
qz
g
q̇lin × q̇⋆ang (11)

with rsh the projection of shoulders on the ground, Tswing the
duration of swing phases, k a feedback coefficient and qz the
height of the trunk. With those assumptions, (10b) becomes:

Iω̇ =

nc∑
i=1

(r⋆i − p⋆)× fi (12)

To study the relevance of these reductions and understand
their influence on the controller capabilities, they were pro-
gressively lifted and evaluated in simulation [18].

A first simplyfing assumption can be lifted by considering
the predicted trajectory p instead of the reference one p⋆,
which makes the problem no more linear due to the cross
product between optimization variables p and fi:

Iω̇ =

nc∑
i=1

(r⋆i − p)× fi (13)

Then, another assumption can be lifted by considering the
location of footsteps ri as optimization variables of the optimal

control problem instead of obtaining their reference r⋆i from
heuristics:

Iω̇ =

nc∑
i=1

(ri − p)× fi (14)

The 3 considered variants are described in Fig. 5 and Tab. I.

TABLE I: Differences between MPC variants

MPC
Variant

Footsteps
Locations CoM Traj. Iω̇ =

Linear Heuristics Reference
∑nc

i=1(r
⋆
i − p⋆)× fi

Nonlinear Heuristics Predicted
∑nc

i=1(r
⋆
i − p)× fi

Footsteps Optimized Predicted
∑nc

i=1(ri − p)× fi

B. Optimal control problem

The optimal control problem can be written as follows:

min
{x},{f},{r}

T∑
t=0

ℓt(xt, ft|rt) + ℓT (xT )

s.t. ∀t xt+1 = H(xt, ft|rt) (15a)
∀t xt ∈ X (15b)
∀t ft ∈ K (15c)

where ℓt and ℓT are respectively the running and terminal
cost. {x}, {f} and {r} are the decision variables discretized
at the optimization nodes indexed by t. The state vector {x}
includes the position, orientation, linear and angular velocities
of the base. {x} has to remain in the feasibility manifold X
to ensure that a valid whole-body movement that can achieve
x exists. The control vector f contains the 3D forces at each
contact point, constrained by the friction cone K. {r} stores
the position of footsteps which are optimization variables only
for the last MPC variant. H enforces the system dynamics, that
is (10a) and either (12), (13) or (14) depending on the variant.
For the last one, the dynamics can be written as follows, with
I6 the identity matrix of size 6, ∆t the time step between nodes
and [ri − p]× a skew-symmetric 3 by 3 matrix representing
the cross product in (10b) as a matrix multiplication:

H(xt, ft|rt) = Axt +B(xt, rt)ft (16a)

A =

[
I6 ∆tI6
06 I6

]
(16b)
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Fig. 6: Factor graph displaying the correlations between the
decision variables of the MPC variants. Example with a pre-
diction horizon of 3 time steps and a contact switch occurring
at the 2nd time step.

B =


. . . ∆t2

m I3 . . .

. . . ∆t2I-1[ri − p]× . . .

. . . ∆t
m I3 . . .

. . . ∆tI-1[ri − p]× . . .

 (16c)

ri is replaced by r⋆i in (16c) for the variants (12) and (13)
that do not optimize footsteps location and p is replaced by
p⋆ for the first variant (12). The i-th column of B is disabled
when the i-th foot is not in contact phase.

The footsteps positions are not optimization variables for
the first two variants, so the state and control vectors remain
the same over the whole prediction horizon ({x} and {f}
respectively). As a result the OCP scheme is straightforward
with a series of similar nodes connected to each other to
enforce the dynamics H(xt, ft|rt) at each time step with a
terminal node at the end, as depicted in Fig (6a).

The last variant is a parametric OCP that we have to
reorganize to cast it under a form that our Differential Dy-
namic Programming (DDP) solver can handle. The footsteps
are added as plain state variables whose values can only
be changed at impact time, as shown in Fig (6b). This is
implemented as a specific dynamic function inserted in the
time line at the beginning of each contact phase:

rt+1 = G(∆rt|xt, ft) = rt +∆rt (17)

where ∆rt is the step length taken by the corresponding foot
during the previous flying phase. The size of ∆rt depends on
the number of contacts that are modified.

C. Running and terminal costs

Four running costs are shared by all variants:
• quadratic cost ℓx on the error between predicted and

desired state vectors to track the desired state trajectory

ℓx = ∥x⋆ − x∥2 (18)

• quadratic cost ℓf on the norm of ground reaction forces
to minimize them if possible (regularization)

ℓf,i = ∥fz,i −
mg

nc
∥2 (19)

• barrier cost ℓK to avoid slipping by enforcing friction
cone constraint ∀t, ft ∈ K

ℓK,i = ∥(fx,i − µfz,i)
+∥2+∥(−fx,i − µfz,i)

+∥2
+∥(fy,i − µfz,i)

+∥2+∥(−fy,i − µfz,i)
+∥2

+∥(−fz,i)
+∥2+∥(fz,i − fz,max )

+∥2
(20)

• barrier cost ℓkin to enforce kinematic limits on the distance
between shoulders and their associated foot. That way,
contact forces do not lead to an unfeasible motion for
the whole-body control (∀t, xt ∈ X )

ℓkin,i = ∥
(
∥shi − ri∥2−d2lim

)+ ∥2 (21)

with {·}+ = max({·}, 0), µ the friction coefficient, shi the
position of the i-th shoulder, dlim a limit distance (80% of the
leg limit). Since constraints are enforced through a quadratic
penalization using {·}+, there is no guarantee that they will
be respected. In practice, with a small margin for µ, this
approximation works well and no slipping occurs. For the last
variant, contrary to [18] which applied a quadratic cost on
the distance between ri and r⋆i , so that the optimization was
done around the heuristic locations, here only the distance
between the foot location and the shoulder is penalized to be
completely heuristic-free. This cost ℓr,i can be seen as a form
of regularization so that, on average, contacts are centered on
the shoulders projection, as they are using Raibert’s heuristic.

ℓr,i = (shx,i − rx,i)
2 + (shy,i − ry,i)

2 (22)

The last node of the OCP has no command so the terminal
costs in the current formulation are only ℓx, ℓkin,i and ℓr,i. The
nodes responsible for footsteps optimization have no running
costs but they still act on the global cost value through the
running costs ℓkin,i and ℓr,i of the other nodes.

V. EXPERIMENTAL EVALUATION

Experiments were conducted to compare the performances
of the three MPC variants based on the improved control
architecture which made possible their real-world deployment.

A. Experimental setup

Experiments were first performed indoors on a flat carpet-
like material. Ground truth was retrieved thanks to a motion
capture system comprising 20 infrared cameras spread around
the workspace that track 13 reflective markers, installed on top
of the robot base, at 200 Hz. During the experiments the robot
was powered via an external power supply. Communications
with the robot (sensors data retrieval and command sending)
were done using an Ethernet link to the control desktop
computer. Out of the prototyping phase, all control blocks were
converted from Python to C++ for computational efficiency,
except for the main loop which calls them, which allowed
it to go from 500 Hz to 1 kHz. MPCs were implemented
using Crocoddyl [24] as in [18]. For real-time purpose, they
all run in a parallel process called at 50 Hz. Desired contact
forces are retrieved after a delay due to the solving time
(≈ 2 ms for the linear and nonlinear MPCs, ≈ 6 ms for the
footsteps MPC). The QP problem in the WBC is solved with
OSQP [25]. The MPC weights chosen for position, orientation,
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(b) Second scenario

Fig. 7: Forward, lateral and angular velocity profiles for the two scenarios of Fig. 8.

3.9m

First scenario

3.63m
0.57m

Second scenario

Fig. 8: Top view of the robot trajectory in the two considered
scenarios obtained by integration of the reference velocity.

linear velocity and angular velocity errors are respectively
[2.0, 2.0, 10, 0.25, 0.25, 10, 0.2, 0.2, 0.2, 0, 0, 0.3]. The weights
for contact force regularization were set to 5 × 10-5 for all
components. To perform inverse kinematics we used Kp = 10,
Kd = 2

√
Kp = 6.3 and a weight of 1 for all tasks. For the

QP problem (6) we used Q1 = 0.1I6 and Q2 = 10I12 for
the weights of the acceleration and contact force relaxation
variables. For the on-board impedance controller, all joints
shared the same proportional and derivative feedback control
gains of 3 Nm/rad and 0.3 Nm/(rad/s) respectively. The
performed gait was a trot with a period of 0.48s as it proved
to be a good trade-off for evaluating the MPC performances.
A faster gait would be naturally more stable due to the faster
switching between diagonally opposed pairs of contacts, thus
making the MPC role less crucial. A slower gait proved to be
harder to stabilize because the base can tilt too much during a
single swing phase, which can harldy be corrected (with two
contact points we can only act along an axis). Deployment
of the last MPC variant on the robot was made possible by
the reduction of velocity oscillations due to the compensating
contact forces described in Section III-B: they improved the
consistency of the footsteps optimization which was previously
diverging. As the estimated velocity of the base influences
footsteps positions over the prediction horizon, the smaller

the oscillations, the less these positions are modified over the
span of a gait period.

B. Results

Indoor tests: Performances are compared for the two
scenarios shown in Fig. 8. During the first scenario the
quadruped goes straight forwards. The velocity command is
slowly increased during 4 seconds, stays at 0.8 m/s during 2
seconds, then goes back down to 0 m/s in 4 seconds. During
the second scenario the quadruped performs several turns in a
row. The velocity command goes up to 0.5 m/s forwards with
±0.8 rad/s along the vertical axis to get a S-shaped trajectory.
Polynomial interpolation generates command profiles that are
continuous both in velocity and acceleration. Motion capture
data is reported in Fig. 7. Linear and non-linear variants
lead to very close behaviours over the whole movement in
both scenarios. Differences with the variant that optimizes
footsteps location are noticeable but the values and amplitudes
of errors and oscillations with respect to the references are
roughly the same. The oscillations of the forward velocity
around its reference have a maximum amplitude of around
0.15 m/s during the high-velocity phase of the first scenario.
Lateral velocity tracking seems stable during both tests with an
amplitude of roughly 0.1 m/s, even when turning in scenario
2, and with a shift of the average value toward the outside
of the turns. For the considered angular velocities (up to
±0.8 rad/s), turning does not impact forward velocity tracking
in a noticeable way. Joint torques estimated through current
measurements peak at 2.1 Nm during the high-velocity phase.
Actuators can deliver up to 2.5 Nm at 12 A, so hardware
capabilities are not fully exploited yet [26]. There is still way
to improve the control architecture and reach higher velocities.
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Fig. 9: Forward, lateral and yaw velocities during the outdoor
tests. Due to a lack of motion capture system outdoors,
represented quantities are the estimated ones.

Outdoor test: In complement to indoor locomotion, the
different controllers were tested on wet grass (Fig. 10). The
quadruped was powered by 2 on-board batteries, one at the
front, one at the back, that were not included in the model.
Their weight of 100 g acted as an additional perturbation. The
robot managed to follow the velocity profile up to 0.8 m/s
without falling with each MPC variant. The lack of contact
detection on this wet and bumpy surface resulted in numerous
foot slipping when the robot tried to apply forces with a foot
that had not properly landed. The most notable slipping occurs
at 6.6 s for the linear MPC (Fig. 9), with peak lateral and
angular velocities of -0.5 m/s and 1.3 rad/s respectively. Yet it
is not a sign that this MPC tends to slip more than the others,
but is rather due the slight differences in foot placements
across experiments. The terrain also leads to larger oscillations
around the references compared to indoors, especially during
the high-velocity phase. Currently, neither the footsteps heuris-
tics of the first two variants nor the footsteps optimization
of the last one can handle a non-flat ground (slope, stairs).
They could be extended either by using privileged information
about the environment or by implementing some sort of online
slope detection. Friction cone constraints would have to be
refactored as well to match non-horizontal surfaces, hence why
performances were only compared on a flat ground. Moreover,
applying a repeatable disturbance to a walking quadruped is
not trivial in practice, contrary to simulation. Slight differences
in direction, strength or duration of the push can lead to widely
different behaviours, especially depending on the gait status.
If it happens at the beginning of a swing phase, the controller
can directly react and adjust footsteps positions accordingly.
However, if it occurs near touchdown, then it is too late to
widely modify contact location. For these reasons, robustness
to disturbances was not compared during our experiments.
Videos of both indoor and outdoor tests can be found online1.

Discussion: Our first attempt in designing the whole-body
control block of this architecture was to implement an inverse
dynamics (ID) that could directly handle both position and

1https://gepettoweb.laas.fr/articles/leziart2022.html

Fig. 10: Trotting gait on wet grass. Connection with the robot
was done by Wifi with the same computer than we used
indoors. Previous experiments showed that packet loss did not
hamper the behavior for distance under 25 m.

velocity for the base and the feet, as well as ground reaction
forces, as in simulation [18]. However, using this approach we
did not achieve a stable behavior on the real robot. This could
be due to the sensitivity of ID to mismatches between model
and hardware. Moreover, Solo-12 is a lightweight quadrupedal
robot with almost direct-drive actuators. As studied in [27],
coupling among links is more significant with the fast dy-
namics of such actuators. So as we did not manage to run
the ID faster than 500 Hz, it might have been insufficient to
avoid instability. For this reason, we decided to use instead the
approach proposed in [19], that includes an IK to compute the
joint accelerations to perform the position and velocity tasks
(1-5), based on which a QP problem is solved to find a com-
promise between tracking these joint accelerations and taking
into account MPC decisions and the equation of dynamics
(6-8). This QP problem has to balance decisions that might
be conflicting since the instantaneous decisions of the IK are
done without knowing what has been decided by the MPC that
works on a prediction horizon. Finding the right balance is not
trivial, as mainly relying on IK (Q1 ≫ Q2) would remove the
predictive aspect of the architecture, whereas mainly relying
on the MPC (Q2 ≫ Q1) would instead hamper the feet
tracking tasks. Both simulations and experimental tests show
that the implementation of the three MPC variants leads to
quite similar behaviours. This result does not seem to confirm
the one of our previous simulation study [18]. We suppose
that, with the prior architecture, the footstep optimization was
really beneficial to the controller and allowed the quadruped
to go faster in simulation. Now that the whole architecture
has been refined and the ID replaced by an IK+QP scheme,
the margin for behavioural improvement has been reduced,
so the gains of using nonlineary and footsteps optimization
has been somehow smoothed out, at least for the considered
velocities. The quadruped falls at higher velocities due to the
legs reaching singularity during motion. Our controller does
not handle flight phases yet (no feet in contact) so the velocity
the robot can reach is limited by the gait frequency and the
dimensions of the legs. A key result is to have shown that
a centroidal MPC which optimizes footsteps location online
can be successfully deployed on our quadruped robot, which

https://gepettoweb.laas.fr/articles/leziart2022.html
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was an important objective following [18]. The question of
optimizing all the variables in the same MPC or treating them
in separate blocks arises. On the one hand, modularity can
be preferred with footsteps decisions that are independent
from the computation of contact forces by the MPC. With the
first and second variants, the planner with simple heuristics
could be replaced by another control system to explore new
paradigms. It could go from a neural network that implicitly
learns adaptive heuristics during its training [28] to more path-
planning oriented approaches that leverage information about
the environment to place the feet at the best locations [29].
Gait type and period could be tuned as well since the MPC
does not have any notion of gait per se. On the other hand,
all-in-one optimization with the third variant avoids the need
to formulate heuristics and let the possibility to tackle more
extensive and difficult challenges, such as an optimization of
footsteps timings as well [18].

VI. CONCLUSION
We presented key improvements to the nominal control

architecture of Solo-12 [17], based on which three variants
of a centroidal MPC previously tested in simulation were
implemented and compared on the real robot. Efforts were
made to refine our previous control architecture and reduce
oscillations of the base, which were disrupting the consistency
of foot placement decisions. These modifications allowed real-
world deployment and increased the maximum velocity up to
1 m/s. The central result is to have shown that comparable
performances can now be obtained both in simulation and
on real hardware with all MPC variants. However, this does
not confirm the preeminence of the nonlinear centroidal MPC
scheme optimizing footholds over a modular scheme that uses
a heuristic for foot placement and relies on a simplified model,
that was previously observed in simulation [18]. In view of the
modifications that were made to implement these controllers
on the real robot, the reasons for this difference have been
thoroughly discussed. We also discussed the interest of using
a modular architecture versus a more global optimization
scheme. Going further, we plan to extend our approach towards
a whole-body MPC in order to exploit the complete dynamical
model on the prediction horizon while being aware of its
kinematic limits for footstep placements. We also plan to work
on feet contact detection to handle contact timing mismatches,
increase the robustness on rough terrain and include flight
phases into the gait.
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