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Simulation aided co-design for robust robot optimization

Gabriele Fadini1, Thomas Flayols1, Andrea Del Prete2, Philippe Souères1

Abstract— This paper outlines a bi-level optimization method
to concurrently optimize robot hardware parameters and con-
trol trajectories that ensure robust performance. The outer loop
consists in a genetic algorithm that optimizes the hardware
according to its average performance when tracking a locally
optimal trajectory in perturbed simulations. The tracking
controller exploits the locally optimal feedback gains computed
in the inner loop with a Differential Dynamic Programming
algorithm, which also finds the optimal reference trajectories.
Our simulations feature a complete actuation model, including
friction compensation and bandwidth limits. Our method can
potentially account for arbitrary perturbations, and it discards
hardware designs that cannot robustly track the reference
trajectories. Our results show improved performance of the de-
signed platform in realistic application scenarios, autonomously
leading to the selection of lightweight and more transparent
hardware.

I. INTRODUCTION

The problem of designing complex robotic hardware using
numerical optimization has received considerable attention
in recent years [1]–[3]. However, robustness remains an
open challenge for co-design, while being crucial to en-
sure the practical applicability of the designed solutions.
This becomes even more challenging for inherently unsta-
ble systems, such as legged robots. Following a common
assumption in co-design, our previous work [4] was mainly
targeting the adequacy of the hardware for optimizing the
motion. However, optimal trajectories may be unfeasible on
a real system, e.g., because the system cannot reject external
perturbations due to unmodeled dynamics, noise, delays, sat-
uration or actuator dynamics. So, even if optimality remains
a fundamental criterion, robustness seems even more so to
bridge the gap between the optimization results and the real
system. To do so, the synthesis and evaluation of a tracking
controller to compensate for noise must be addressed.

The problem of robustness in co-design has been in-
vestigated in the literature. A common approach to deal
with the stability of perturbed systems is to optimize the
self-stability of the trajectory. This can be done in open-
loop [1] or with closed-loop sensitivity analysis [2], [5].
Both options rely on custom-made and differentiable cost
formulations that increase the complexity and nonlinearity
of the problem itself. Another possibility is stochastic pro-
gramming, in which the optimal trajectory is found for a set
of perturbed scenarios [3], [6], [7]. However, such methods
do not scale favourably as the dimension of the problem
increases significantly for each additional scenario. Another
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Fig. 1: Robust bi-level scheme with additional simulations

possibility is to include the controller in the optimization
problem, with additional decision variables. Especially in
the case of co-design, this becomes prohibitive in terms
of computational complexity, because of the large state
dimension [8], [9]. Controller optimization is performed with
some assumptions such as the use of reduced models [10],
sequential optimization [11] or constant gains along the
trajectory. In the realm of co-design, some heuristic ap-
proaches to generate controllers, such as PD gains tuning,
have also been used [12]. In addition, swarm exploration [13]
and multi-objective co-design with gain tuning have been
proposed in the past, but without specifically addressing
robustness [14]. Our approach has some similarities to the
technique of domain randomization used in reinforcement
learning (RL) [15], which aims to learn a control policy that
performs well with a variety of different (possibly perturbed)
robot models. Instead, we try to find hardware parameters
such that a locally optimal linear controller can perform well
under different perturbations.

Overview of the paper: A co-design algorithm to ensure
robustness is proposed by implementing a bi-level opti-
mization, with a parallelized version of CMA-ES [16]. To
ensure robustness we use as metric the average performance
of the controller over multiple simulations [17], each one
including noises and an actuator model. In simulation, the
system is stabilized around an optimal trajectory with the
Riccati gains [18], automatically computed by the Differ-
ential Dynamic Programming (DDP) algorithm, to avoid the
extra computational complexity of explicitly optimizing for a
control policy. Our algorithm scales much better than other
robust co-design approaches that explicitly optimize for a
robust controller, and it does not require an explicit model
of the perturbations, which simply need to be introduced in



Algorithm 1: Bi-level optimization

Input : 𝑁𝑔𝑒𝑛, 𝑁𝑝𝑜𝑝 , 𝑁𝑠𝑖𝑚, 𝑡𝑜𝑙, 𝑠𝑒𝑡𝑢𝑝
1 𝑁𝑝← 0
2 𝑝𝑜𝑝← random 𝑁𝑝𝑜𝑝 comb. of HW params
Outer loop:

3 while 𝑁𝑝 < 𝑁𝑔𝑒𝑛 or stop condition ≤ 𝑡𝑜𝑙 do
Inner loop:

4 L𝜉 ← []
5 for 𝑝𝑎𝑟𝑎𝑚𝑠 ∈ 𝑝𝑜𝑝 do
6 x★,u★,𝐾← solveDDP(𝑝𝑎𝑟𝑎𝑚𝑠)
7 L𝜉 .append(simu(𝑝𝑎𝑟𝑎𝑚𝑠,x★,u★,𝐾, 𝑁𝑠𝑖𝑚))
8 𝑝𝑜𝑝← evolveCMEAS(𝑝𝑜𝑝,L𝜉 )
9 𝑁𝑝← 𝑁𝑝 +1

simulation. This comes at the price of the blindness of the
inner loop (DDP) to perturbations, which theoretically limits
the quality of the design outcome. However, our tests show
extremely promising results for the design of an energy-
efficient robot manipulator and a jumping monoped, which
proved to perform much better under perturbations than their
counterparts designed with our previous framework [4].

II. METHODOLOGY

Robust bi-level co-design optimization scheme

Our approach is to introduce robustness information in the
bi-level optimization structure introduced in [4], by adding a
simulation step with perturbations and a controller as shown
in Fig. 1 and in Algorithm 1 line 7. This algorithm is
briefly outlined. In an outer loop the hardware parameters
are optimized with CMA-ES. Initially a population 𝑝𝑜𝑝 of
𝑁𝑝𝑜𝑝 possible robot hardware configurations is randomly
initialized. Then, for each individual set of parameters
𝑝𝑎𝑟𝑎𝑚𝑠 ∈ 𝑝𝑜𝑝, a model of the robot is generated and the
corresponding OCP solved. This inner loop is just optimizing
the reference trajectories. Each optimized trajectory x★,u★ is
then tracked in 𝑁𝑠𝑖𝑚 simulations with a controller using the
Riccati gains K computed by DDP. Each simulation includes
a set of perturbation sources 𝜉 acting at the joint torques.
Moreover, the robot model corresponding to 𝑝𝑎𝑟𝑎𝑚𝑠 is
tested in simulations that include a model of friction and
actuator dynamics. The problem cost function L is then
averaged on the ensemble of 𝑁𝑠𝑖𝑚 simulation trajectories
x𝜉 ,u𝜉 with a Monte-Carlo approach to obtain the robust
metric under perturbations L𝜉 as in (7). Then, the outer-
loop gets the values of the robust cost evaluated on the
reference trajectories. With the evaluated cost information
a new population can be selected by the genetic optimizer
as the next one to explore. The outer loop keeps iterating
until a termination condition 𝑠𝑡𝑜𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 < 𝑡𝑜𝑙 or the
maximum number of generations 𝑁𝑔𝑒𝑛 is attained. In the
implementation of the algorithm, for each generation, the
evaluation of the cost L𝜉 is parallelized asynchronously in
order to speed up the algorithm. Unlike stochastic optimiza-
tion, the number of these perturbed scenarios can be rather
high (in the order of 103), at a reduced computational cost of

multiple simulation runs (linear in the number of time-steps
and simulations 𝑂 (𝑁𝑠𝑖𝑚)). In this way the genetic algorithm
selects the hardware associated to the most robust trajectories
and feedback controllers.

Local state feedback controller

Many approaches can be applied to perform feedback
control of unstable and underactuated robotic systems. A
promising one is to locally re-plan online the ideal trajec-
tory on a receding horizon using model predictive control
(MPC) [19], [20]. Another method is to learn offline a
global control policy using techniques such as reinforce-
ment learning. These methods often require problem spe-
cific tuning and thus cannot be easily automatized for co-
design. Furthermore, as the goal is just to treat relatively
small deviations from the reference trajectory, it may be
unnecessarily too complex. Close to optimality, the dynamics
can be linearized. The MPC controller is then equivalent
to a local linear controller. This guarantees to follow the
planned trajectory while counteracting small disturbances
[18]. This consideration is used in our approach to make
the problem tractable. Moreover, using Riccati gains proves
to be a natural way to synthesize a local controller around the
optimal trajectory. For the unconstrained LQR problem, such
gains are known to be optimal, as detailed in [21], however
an extension may be possible also with equality or inequality
constraints. In order to follow the state trajectory x★ from a
state x ≈ x★, the control u should include a feedback term
linear in the state error:

u = u★+K(x−x★) (1)

The gain matrix K maps state deviations to corrections of
the control input. This controller requires no tuning once the
OCP is solved with DDP, contrary to other techniques such
as PD control with gain scheduling. A drawback is that this
feedback is guaranteed to work only close to the optimal
trajectory. If the perturbations on x are too large, or if the
dynamics is highly nonlinear, these considerations may not
hold anymore and other strategies must be used instead.

a) Joint dynamics: In a realistic application, to imple-
ment a control law such as (1) on the robot, an actuator model
has to be considered. In order to deal with joint dynamics,
the same methodology as in [4] is used: the OCP solution
provides the joint trajectories that minimize the electrical
energy consumption, without modeling friction in the robot
dynamics, but considering it only in the cost function. Then
the reference control 𝝉 is computed so to compensate for
friction:

𝝉 = u+𝝉𝜇,0 sign(v𝑎) +bv𝑎 (2)

To overcome joint friction, the torque u is changed with an
additional feedforward compensation for joint static friction
𝝉𝜇,0 [Nm] and joint damping b [Nms]. The correction
compensates friction from the real state x = [q𝑢,q𝑎,v𝑢,v𝑎]⊤,
where the subscripts (𝑎) and (𝑢) respectively denote the
actuated and underactuated parts of positions q and velocities
v.



Fig. 2: Actuator module, showing the belt-drive transmission
and the BLDC motor placement, courtesy of ODRI [22].

b) Actuator bandwidth and torque limits: In addition
to friction compensation, the actuator dynamics is modeled
as a first-order low-pass filter (3):

u𝑘 = 𝛼𝝉𝑘 + (1−𝛼)𝝉𝑘−1, for 𝑘 ∈ 0, ..𝑁 −1 (3)

where the initial torque is u(0) = u★(0) and 𝛼 is a parameter
depending on the cut-off frequency that was fixed to 20
Hz based on testing. This filtering is introduced to simulate
controls that can be reasonably applied at the robot joints
within the bandwidth limitations of the actuator. Finally, a
saturation is introduced to enforce the torque limits: u < u𝑘 <

u.

Parametric actuation model

The actuator technology is shown in Fig. 2: each joint is
controlled by a BLDC motor with a low gear-ratio belt trans-
mission. For this hardware, a parametric model is introduced
to obtain the values of the friction parameters (damping b and
Coulomb friction 𝝉𝜇,0) and motor properties (rotor inertia,
winding resistance and torque constant). Such parametriza-
tion is just dependent on the motor mass and the gear ratio of
the transmission [4], following an approach already used in
co-design [23], [24]. With the values obtained, the dynamics
of the system will be modified by:

1) modifying the joint inertia of the robot to include also
the additional motor inertia

2) adding the motor mass to the links.

Power components

The values of the electro-mechanical characteristics are
used to compute the power components used as costs:

𝑃𝑚 = u★⊤v𝑎 [𝑊] (4)

𝑃 𝑓 =
(
𝝉𝜇,0 sign(v𝑎) +b v𝑎

)⊤ v𝑎 [𝑊] (5)

𝑃𝑡 = u⊤K̃u [𝑊] (6)

Mechanical power 𝑃𝑚 is shown in (4) where u★ is the ideal
torque at the joint and v𝑎 is the actuated joint velocities.
Joint friction power loss 𝑃 𝑓 as in (5) corresponding to the
joint friction, reconstructed from v𝑎 multiplied by the friction
compensation torque (2).
Joule dissipation power loss 𝑃𝑡 is obtained as in (6) from
the value of the torque on the joint u, including friction
compensation as in (2). K̃ is a diagonal matrix mapping
joint torques to power. Each K̃𝑖,𝑖 entry depends on: the 𝑖𝑡ℎ

motor torque constant, its winding resistance and on the

actuated joint reduction. The power components (4), (5) and
(6) are summed to get the total electrical power, considering
perfect regeneration and efficiency of the electronic inverter.
In the OCP, from a friction-less dynamics the value of
the friction compensation (2) is reconstructed and then the
overall associated energy minimized.

Ensembled final cost

The main feature of the introduced method is to consider
perturbation sources for each simulation 𝝃 ∈ R𝑁𝑠𝑖𝑚×𝑛𝑢×𝑁 ,
where 𝑛𝑢 is the number of actuated joints and 𝑁 the
number of timesteps. The single joint torque noise realization
𝝃𝑖 with 𝑖 ∈ {0, ..., 𝑁𝑠𝑖𝑚−1} acts on the ideal joint torque of
the robot u★, proportionally to its value: 𝝃𝑖 ∼ N(0,𝜎2) u★.
Given 𝝃𝑖 , the trajectories x𝜉𝑖 ,u𝜉𝑖 obtained in simulation
with the controller are used to re-evaluate the optimal cost
function of the problem L(x𝜉𝑖 ,u𝜉𝑖 ), using a cost function
that includes both task fulfillment and energy minimization
terms. This will have similar information with respect to the
minimum cost obtained by the DDP solver L(x★,u★), but
will enrich it with that from simulations with the control
correction. Since each L𝜉𝑖 is a random variable, depending
on the realizations of the noise 𝜉𝑖 , its expected value L𝜉

is obtained using a Monte-Carlo approach. CMA-ES finally
minimizes this last metric L𝜉 .

L𝜉 = E(L𝜉𝑖 ) ≈
1

𝑁𝑠𝑖𝑚

∑︁𝑁𝑠𝑖𝑚−1

𝑖=0
L(x𝜉𝑖 ,u𝜉𝑖 ) (7)

III. RESULTS

In this section, after having validated that the local con-
troller based on the Riccati gains stabilizes the system despite
a wide set of perturbations, we use it for co-design. To solve
the OCP and obtain the Riccati gains, we use crocoddyl
[25]. A custom URDF is shared between the OCP and the
simulator PyBullet [17]. It is generated parametrically
with the ROS module xacro [26]. Two types of robot are
optimized for robust task tracking, as shown in Fig. 3. Each
one is made up with variants of the same actuator module
(see Fig. 2) developed in the framework of ODRI [22]:
- Serial manipulator (Fig. 3a) With a fixed base (red), it
includes 4 links actuated by 4 motors (𝑅𝑍 − 3× 𝑅𝑋). Only
the sizes of the last 3 links are optimized, while the shape
of the base and the Z-axis link (orange) are fixed.
- Monoped (Fig. 3b) With a non-actuated base (blue) that
can move freely along a vertical prismatic link (2 bars),
it includes two optimized links and two actuated revolute
joints [4], [22], [27].

Co-design parameters: The hardware optimization con-
cerns the following parameters:

- Motor mass 𝑚𝑚 ∈ [0.05,1] kg
- Gear ratio 𝑛 ∈ [3,20]
- Link scaling 𝜆𝑙 ∈ [0.8,1.2] (𝜆 = 1 is the nominal case)

The joint friction parameters and the actuator electro-
mechanical properties can be estimated from the first two
parameters. The scaling represents the ratio between the link
length and its nominal value. A single scaling parameters
is used because, to keep the relative deflection of the link



(a) Manipulator (b) Monoped

Fig. 3: Robot models used in our tests.

TABLE I: Manipulator cost function weights

Weight Type Value

Mechanical power Running 1e−2
Power losses ” 1e−2
Final frame position Terminal 1e4
Final frame velocity ” 1e6
Penalty on the max torque Penalty 1e4
Intermediate frame position ” 1e6
Intermediate frame velocity ” 1e6

constant once a given length is chosen, the section needs to
scale with a predefined law as detailed in [4].

MANIPULATOR BACK AND FORTH TASK

Task: The task is to displace a fixed mass payload of
0.1 kg from an initial position 𝑝0 (from a initial configuration
𝑞0) up to a given point 𝑝 = 𝑝0 + [−0.1,−0.1,0.1]⊤ m, and
then bring it back to 𝑝0. At the intermediate and final
positions the joint velocities must be null.

Hyper-parameters: The parameters related to CMA-ES
are the number of generations 𝑁𝑔𝑒𝑛 = 10, and the number
of problems per generation 𝑁𝑝𝑜𝑝 = 10000. Parallelization
is used to speed up computation. On a standard desktop
computer, ≈102 hours were necessary for solving 105 prob-
lems, with a mean time per problem of 3.7 s, including the
simulation phase. The OCP has 1000 nodes and 𝑑𝑡 = 1 ms;
the cost weights are reported in Table I. For the realization
𝜉 the value of 𝜎𝜉 = 0.2 was selected and 𝑁𝑠𝑖𝑚 = 100.

Discussion: The values obtained with the classic
method and its robust counterpart are compared. Fig. 6b
shows that the classical method applies very high torques
when the joint velocities are null (initial, intermediate and
final configurations) to minimize the mechanical power (4).
However, this solution is hardly applicable to the real system
due to bandwidth limitations. Tracking is better in the robust
case as illustrated qualitatively in Fig. 6a and quantitatively

by the lower RMSE =

√︃
Σ
𝑁𝑠𝑖𝑚

𝑖=0 | |x𝜉i −x★ | |22/𝑁𝑠𝑖𝑚 in Table II.
The hardware parameters in Table II show that, to provide a
high impulsive torque, the standard method selects bulkier
motors, dissipating less energy by Joule effect and more
energy by Coulomb friction Fig. 7b. On the other hand,
the robust method induces higher Joule losses, and selects
smaller motors, but overall requiring less torque and adding
less mass to the system Fig. 7a. Reasonably, both methods
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Fig. 4: Robust cost metric L𝜉 evolution trend during CMA-
ES (orange curve). L𝜉 diminishes for each iteration of
Alg. 1, while the standard cost L increases (blue curve).
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Fig. 5: Monte Carlo evaluation of L𝜉 for different number
of simulations. Each curve represents the value of L𝜉

obtained by progressively increasing the number of perturbed
simulations with a different random seed.

select the link size to reduce the moving masses and system
inertia. Fig. 4 shows the cost metric profiles along the
successive iterations of CMA-ES for the standard and the
robust approach. In Fig. 4 we notice that the improvement
of the robust metric is accompanied with a degradation of
the standard metric. The robust version penalizes a lot the
designs and controls that are not able to fulfill closely the
task (given the high weight on the final position, this results
in a cost orders of magnitude greater than the standard
one). Despite this (expected) trade-off, the optimization of
L𝜉 produces designs that are able to follow more closely
the task under perturbations. In Fig. 5 the convergence of
L𝜉 to the empirical expected value is shown, for different
histories of 𝜉 and different random seeds. From the trend it
is noticeable that after around 100 simulations the deviation
is two standard deviations from the empirical expected value,
while for 1000 simulations we can consider L𝜉 completely
converged. The plot also shows that the computational cost
is roughly linear with the number of simulations.
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Fig. 6: Manipulator back-and-forth tracking. Solid lines rep-
resent reference trajectories, dashed lines represent the mean
of simulated trajectories; shaded regions show the deviation
±3𝜎 around the mean.
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Fig. 7: Power components required by the back and forth
task. Colored areas are proportional to the energetic expense.
The upper bound of the curve is the sum of all the power
components.

TABLE II: Results for the manipulator back and forth task.

Quantity Robust Standard

Cost L 9.58e−3 3.5e−3
Cost L𝜉 33.42 2e3
𝜆𝑙 [0.83, 1.02, 0.86] [0.80, 0.80, 1.08]
𝑚𝑚 [0.05, 0.05, 0.05, 0.06] [0.2, 0.76, 0.49, 0.4]
𝑛 [16.7, 11.6, 11.8, 15.2] [17.1, 11.8, 11.4, 15.3]
RMSE 0.287 1.836∑

𝑖 𝑃𝑚,𝑖dt [J] -0.9 -1.7∑
𝑖 𝑃𝑡,𝑖dt [J] 6.5 1.8∑
𝑖 𝑃 𝑓 ,𝑖dt [J] 1.3 3.2

TABLE III: Non-weighted cost residuals after perturbation
for the manipulator case.

Robust Standard

Quantity 𝜇 (∑𝑟) 𝜎 (∑𝑟) 𝜇 (∑𝑟) 𝜎 (∑𝑟)

Actuation penalty 0.00 0.00 0.00 0.00
Mechanical power -0.44 1.54 64.54 10.2
Joule losses 8445.60 32.3 2408.0 143.6
Joint friction 1983.59 49.6 8343.0 223.5
Placing position 4.7e-5 2.19e-6 1e-6 2.8e-10
Placing zero velocity 0.531 0.173 6.44 4.74
Final position 0.193 0.136 21.41 13.2



TABLE IV: Costs for the monoped with associated weights

Quantity Robust Standard Weights

Cost
Mechanical power -16.67 -111.24 10
Joule power 49.02 76.03 10
Joint friction 16.00 48.21 10
Penalty
Base penalty 0 0 103

Foot penalty 0 0 104

Knee penalty 0 0 104

Actuation penalty 0.0035 0.012 104

Regularization
Friction cone 1.52 1.054 10−1

Jump threshold 2.53 0.00 105

Contact at zero 0.046 0.021 103

Terminal state 1.27 0.028 103

MONOPED JUMP

To test our method in a more complex scenario involving
contact switches, we used it to design a jumping monoped.

Task: The robot has to perform a jump with the base
in a given time, and stabilize the system after touch-down.
In the OCP this task is enforced weakly as a penalty on the
prismatic joint 𝑧 position.

𝑙 𝑗𝑢𝑚𝑝 (𝑧) =
{

0 if 𝑧 ≥ 𝑧𝑟𝑒 𝑓
| |𝑧− 𝑧𝑟𝑒 𝑓 | |22 if 𝑧 < 𝑧𝑟𝑒 𝑓

(8)

This task encourages motions that are jumping above the
reference height threshold (𝑧𝑟𝑒 𝑓 = 0.4 m), but still allows
smaller structures that under-perform the task. At the same
time, letting the maximum height unspecified is beneficial to
find solutions that satisfy the task timing sequence and the
dynamics. In the OCP there are four predefined phases for
the jumping motion:

- Contact phase: the foot contact with the ground is
enforced in the dynamics for a fixed number of nodes

- Flying phase: the contact with the ground is broken
and the monoped is jumping. At the intermediate node
the cost (8) is applied.

- Impact phase: the foot velocity at the new contact point
is set to zero and a small regularization is added to
penalize landing of the foot far from the origin.

- (Post-impact) contact phase: the leg, while in contact
with the ground, can decelerate the base motion and
stop the system.

Hyper-parameters: For CMA-ES the following parame-
ters were chosen: 𝑁𝑔𝑒𝑛 = 5, 𝑁𝑝𝑜𝑝 = 1000. The OCP has 1000
nodes and 𝑑𝑡 = 1 ms; the cost weights are reported in Table I.
For the realization 𝜉 the value of 𝜎𝜉 = 0.2 was selected and
𝑁𝑠𝑖𝑚 = 100.

Cost comparison: Fig. 8 shows the reference joint
velocities for robust and standard methods. Qualitatively the
simulated trajectories are similar to the ideal trajectories.
A jump of the base is performed even if perturbations and
actuator bandwidth limitations make the monoped perform
worse, anticipating the contact phase with the ground. This
means that the optimized motion needs high accelerations
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Fig. 8: Monoped jump: solid lines represent reference trajec-
tories, dashed lines the mean of the simulated trajectories,
while shaded regions show the deviation ±3𝜎 around the
mean.
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contact forces, and friction cone bounds ±𝜇.

TABLE V: CMA-ES results for the monoped.

Quantity Robust Standard

Cost L 50.91 13.67
Cost L𝜉 631.08 1.09e4
Scaling [1.2, 0.973] [0.87, 0.8]
Motor mass [0.125, 0.282] [0.812, 0.05]
Gear ratio [5.43, 7.83] [5.19, 7.00]
RMSE on 𝑥★ 1.893 4.675

that are not feasible with the more accurate hardware model-
ing introduced in the simulation. The reference trajectories of
the standard case are minimizing the cost, but such optimality
does not translate to the real system, as these trajectories
are also more brittle and not easy to follow in perturbed
scenarios. A property of the robustly optimized trajectory can
be seen in Fig. 9, which shows the ratio between lateral and
vertical contact forces. The forces obtained with the robust
method are further away from the friction cone bounds,
whereas the standard method stays closer to them, and even
slightly violates the limits (friction cones are modeled as
penalties in DDP). Having a higher margin, proves to be
beneficial in simulation. In this case the controller, coun-
teracting the perturbations, may produce additional lateral
contact forces, which then cause sliding of the contact point.
Such sliding is unmodelled in the OCP dynamics, so it is a
major source of tracking failure. The proposed method is able
to account for this unwanted behaviour without explicitly
adding custom terms in the cost function.

Cost landscape: To better understand the impact of
the modified framework, in the case of the monoped, an
additional investigation is proposed. It explores the value
of the standard and robust cost against combinations of the
actuator parameters. The costs have been evaluated on a grid
of motor mass and gear ratio parameters, reconstructing the
landscape of the standard cost L and the robust one L𝜉 .
The task and problem formulation does not change but, in
this exploration, the actuator is chosen to be the same for
both joints and link lengths are fixed to the nominal values
so to visualize the landscape of the cost functions against
variations of two parameters in Fig. 10. The robust cost

10 20

n

0.2

0.4

0.6

0.8

1.0

m
[k

g
]

Lξ

7e+06

8e+06

9e+06

1e+07

1e+07

1e+07

1e+07

1e+07

2e+07

2e+07

10 20

n

0.2

0.4

0.6

0.8

1.0

m
[k

g
]

L

-2e+04

-2e+04

-1e+04

-5e+03

0e+00

5e+03

Fig. 10: Monoped jump: contour plot of the reconstructed
cost landscapes, as functions of the motor mass 𝑚𝑚 and gear
ratio 𝑛.

adds insights that the standard cost is not able to capture
and the two landscapes are different. In the standard case,
minimizing L, the best hardware combination involves large
motors and large reductions. Conversely, such choice is
highly penalized in the robust case, when joint friction and
actuator bandwidth are accounted for. One explanation is that
the increased motor size increases the inertia and nonlin-
ear dynamic effects, so the controller has to apply higher
feedback torques to compensate for perturbations. Moreover,
in our parametric model, larger motors are accompanied by
increased rotor inertias, and thus greater reflected inertias.
In the robust case instead, smaller motors are selected with
a reductions that do not reach the maximum values. This
seems to hint that, when robustness comes into play, a
more transparent 1 hardware improves performance, which
is aligned with recent studies on the subject [28].

IV. CONCLUSIONS AND FUTURE WORK

The main contribution of this work is a co-design frame-
work that includes the information of a feedback controller
performance. This approach shows relevant improvement to
robust tracking and requires little tuning: hardware and tra-
jectories that are less impacted by noise are selected without
explicitly introducing the notion of robustness in the optimal
control problem itself. This has been detailed in depth for two
different robotic platforms. Interestingly in both cases the
selected hardware is chosen to be more transparent, hinting at
a trade-off between energetic optimality and the capability to
counteract perturbations. The major drawback of the method
is the locality of the controller. As future work we plan
to investigate its substitution with more general approaches,
such as MPC or RL.

1As detailed in [28] transparent actuators can be obtained by minimizing
friction and reflected inertias at the joint level, so with quasi-direct-drive
actuation and low rotor inertia. This way the actuator bandwidth and
back-drivability are both increased. These properties are necessary for
proprioception and rapid control corrections on highly dynamic robotic
platforms.
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