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Real time footstep planning and control of the Solo quadruped robot in

3D environments

Fanny Risbourg1∗, Thomas Corbères2∗, Pierre-Alexandre Léziart1,

Thomas Flayols1, Nicolas Mansard1,3, Steve Tonneau2

Abstract— Quadruped robots have proved their robustness to
cross complex terrain despite little environment knowledge. Yet
advanced locomotion controllers are expected to take advantage
of exteroceptive information. This paper presents a complete
method to plan and control the locomotion of quadruped
robots when 3D information about the surrounding obstacles is
available, based on several stages of decision. We first propose
a contact planner formulated as a mixed-integer program,
optimized on-line at each new robot step. It selects a surface
from a set of convex surfaces describing the environment for
the next footsteps while ensuring kinematic constraints. We
then propose to optimize the exact contact location and the
feet trajectories at control frequency to avoid obstacles, thanks
to an efficient formulation of quadratic programs optimizing
Bezier curves. By relying on the locomotion controller of our
quadruped robot Solo, we finally implement the complete
method, provided as an open-source package. Its efficiency
is asserted by statistical evaluation of the importance of each
component in simulation, while the overall performances are
demonstrated on various scenarios with the real robot.

I. INTRODUCTION

Legged locomotion is primarily a robust control issue.

“Blind” controllers (those not relying on visual inputs) enable

robots to climb stairs or navigate uneven terrains based on

the assumption that the floor is flat and therefore adapting re-

actively to perturbations [1], [2]. However, blind controls are

insufficient in circumstances when the environment contains

holes or obstacles too high to climb.

Complex environments require the planning of a robot’s

motion several steps ahead (within an established hori-

zon) [3]. Unfortunately, computing the motion of any upcom-

ing footsteps prior to the completion of the current step sets

tight computational time constraints [4], [5]. While simulta-

neously planning the motion and footstep locations requires

tackling the combinatorics associated with the discrete choice

of contacts, a problem of exponential complexity [6], thus

motivating the use of simplifying assumptions. A popular

choice is to solely consider the dynamics of a system’s center

of mass [7]–[11], which does not guarantee the feasibility of

the planned motion. To further simplify the problem, one

can relax the discrete contact dynamics into a continuous

formulation. Regardless, these approaches remain non-linear

and computationally demanding. The proposed alternative

that we choose is to plan for the footstep locations before

computing the motion [12]–[16]. The additional decoupling
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between contact planning and motion generation challenges

further the feasibility of the plan. In addition, the planning

frequency (10Hz) remains incompatible with reactive adap-

tations to external perturbations or state estimation errors.

The recent successes of machine learning techniques suggest

that these issues could be mitigated [17], [18], but in the

meantime, there is a need for the robot controller to locally

adapt the plan, but “not too much” as we know that deviation

from that plan can lead to the failures that justified the

planning in the first place.

What does “not too much” mean? Our research question

is to find the compromise between strictly following a plan

and adapting it reactively.

Assuming that the world is a collection of convex potential

contact surfaces, we hypothesise that the key information

given by the contact planner is the choice of the next contact

surfaces to step on. We thus consider the selected surfaces

as a hard constraint that cannot be challenged before a new

plan is computed. This hypothesis leads to two issues:

a) the exact position of the next contacts should be adapted

in real-time at the control level to allow handling collision

avoidance, state estimation errors and other perturbations.

b) the contact planner should be able to predict the future

contact position, so that the output plan is robust to the

resulting misalignment.

We propose a complete implementation of this idea as

a 3-stage locomotion framework able to navigate complex

3D terrains. The first stage consists of a contact plan-

ner, formulated as a Mixed-Integer Program (MIP) [12],

[16]. To enforce the planner decisions are aligned with

the behaviour of the controller (problem b), the contact

plan minimises a cost adapted from the Raibert heuris-

tic [19]. The second stage, formulated as a Quadratic Pro-

gram (QP) under collision-avoidance constraints (problem a),

optimizes footstep locations and end-effector trajectories at

(50Hz) to account for local disturbances. The third stage

is adapted from the locomotion controller of Solo [20],

which tracks a reference centroidal movement by combining

a low-dimensional model-predictive controller (MPC) with

a whole-body controller (WBC) to generate the low-level

commands that synthesise the motion.

Our method hypothesis is empirically validated with the

12 degrees of freedom quadruped robot Solo [20], [21], in

scenarios where the robot has to follow a reference velocity

sent in real time by a user with a joystick. The next 6 steps

of the robot are planned every 160 ms, while the robot

whole-body control is computed at 1 kHz. Repeated tests



individually demonstrate the contribution of each aspect of

the framework (contact planning, local footstep re-planning,

collision avoidance) to the robustness of the computed mo-

tions.

Our contributions are thus a complete open-source frame-

work for the real time control of a legged robot and an

exhaustive quantitative analysis of our framework validating

our research hypothesis. In the remainder of this paper we

first present the two key components of our method (Sec-

tion II): the mixed-integer program optimising the Raibert

heuristic to compute the contact plan, and the efficient QP for

avoiding effector collisions. We then present the open-source

implementation of the complete architecture in Section III-C.

The experimental setup is presented in Section IV and the

results are analysed in Section V.

II. REACTIVE PLANNING IN COMPLEX ENVIRONMENTS

Given the current state of the robot, a 3D (X-Y translation,

Yaw rotation) velocity reference for its base and a decompo-

sition of the environment as a set of convex contact surfaces

(Fig. 1), our framework first selects the surfaces where a

contact will occur over a defined horizon. Contact positions

are then computed for the next steps in the horizon, as well

as the trajectory that brings the currently moving effector to

the contact. The contact surfaces are selected at a frequency

of approximately 10 Hz, while the effector trajectory and

contact positions are updated at 1 kHz.

Both the surface selection and contact positioning modules

use the Raibert heuristic [19]. After giving the definitions and

notations used throughout the paper, we thus first recall the

definition of the Raibert heuristic. We then present our con-

tact planner and conclude this section with a description of

the foot position adaptation and collision avoidance modules.

A. Definitions and notations

The Robot state is formally described by the:

• Center Of Mass (COM) position, velocity and acceler-

ation c, ċ and c̈, each in R
3;

• base transformation matrix in the world frame;

• 3D position of each end-effector in the world frame;

• gait, i.e. the list of effectors currently in contact, as well

as the contacts to be activated and deactivated over the

planning horizon.

The horizon n is defined as the number of future contact

creations that are considered. In the case of the trotting gait

that we use by default, a horizon n = 4 describes two steps,

as at each step two contacts are created simultaneously.

The environment is the union of m disjoint quasi-flat1

contact surfaces S =
⋃m

j=1 S j. Each set S j is a polygon

embedded in a 3D plane (Fig. 1):

S
j := {p ∈ R

3|S jp ≤ s j} . (1)

S j ∈ R
h×3 and s j ∈ R

h are respectively a constant matrix

and a vector defining the h half-spaces bounding the surface.

1a quasi-flat contact surface is such that its associated friction cone
contains the gravity vector

Fig. 1. Contact planning on convex surfaces

The contact plan is given as a list of contact surfaces

S i
k ∈ R

3,1 ≤ i ≤ l, with l the total number of end-effectors

and k describing the k-th contact phase.

B. The Raibert heuristic

Assuming that the robot is moving on flat ground, the 2D

contact position p(vre f ) for a moving-end effector is defined

using the Raibert heuristic:

p(vre f )=





psh,x(ψk)+
tst
2

vx + k(vx − vre f ,x)+
1
2

√

h
g
vx ×ωre f

psh,y(ψk)+
tst
2

vy + k(vy − vre f ,y)+
1
2

√

h
g
vy ×ωre f





where psh =
[

psh,x psh,y

]T
is the predicted position of

the shoulder, k is a user-defined feedback coefficient, v =
[

vx vy

]T
the current velocity of the robot base, vre f =

[

vre f ,x vre f ,y

]T
the linear reference velocity, ωre f the an-

gular reference velocity around z, h the height of the robot,

g the gravity and tst the period of the stance phase.

C. Contact surface selection

The contact planner solves the combinatorial problem of

selecting the contact surfaces relevant for the motion while

enforcing the kinematic constraints for a reduced model of

the robot. This problem can be formulated as a Mixed-Integer

Program (MIP) [12], solved using a variation of the SL1M

open-source framework [15], [16], with the difference that

quasi-static balance is not verified in our implementation.

Planner inputs and outputs: The inputs are:

• The current state of the robot;

• A 3D velocity reference for base (X/Y translation, yaw);

• A list of predicted positions/orientations for the base

over the horizon, at the time of contact creation;

• A list of potential contact surfaces to step on for each

of the contacts created in the horizon

The computation of these inputs is detailed in Section III.

The planner outputs the next contact positions to be reached

by the robot and the list of selected contact surfaces over

the horizon. In our framework, following our research

hypothesis we only consider the selected contact surfaces.

MIP formulation of the problem: We briefly describe the

used MIP and refer the reader to [15] for further details.

We define the set of n variables ai = [a1
i , · · · ,a

m
i ] ∈

{0,1}m,1 ≤ i ≤ n, such that a
j
i = 0 implies that the i-th

footstep position pi in the plan belongs to the j-th contact



surface and a
j
i = 1 implies that the i-th footstep is not in

contact with the j-th contact surface2.

We solve the following MIP:

find P = [p1, · · · ,pn] ∈ R
3×n

A = [a1, · · · ,an] ∈ {0,1}n×m

min l(P)

s.t. P ∈ I ∩F

∀i,1 ≤ i ≤ n :

card(ai) = m−1

∀ j,1 ≤ j ≤ m :

S jpi ≤ s j +Ma
j
i 1.

(2)

where l is a quadratic objective function to be minimised,

M ∈ R
n is a sufficiently large number and card is the

cardinality of a vector, that is the number of entries different

from 0. The constraint card(ai) = m− 1 guarantees that at

each step the position planned lies exactly on one contact

surface. The ai variables indicate the contact surfaces that

have been selected by the planner.

Additionally I is a user-defined set of initial constraints

and F is a set of feasibility constraints. These sets are

assumed to be convex. In this work the initial constraints

impose that non moving effector positions match the current

state after one step. The feasibility constraints guarantee

that the relative distance between each effector is linearly

constrained to approximate the kinematic constraints [22].

Raibert heuristic as a cost function: We formulate the cost

function l as the minimisation of the distance between the

2D foot position and a desired 2D position:

l = ∥p∗
i −pi,xy∥

2

The desired position is the following approximation of the

Raibert heuristic:

p∗
i (vre f ) =

[

psh,i,x(ψk)+
tst
2

vre f ,x

psh,i,y(ψk)+
tst
2

vre f ,y

]

(3)

Using the notations presented in Section II-B

An additional cost function is used with a weight ten times

lower to limit the distance between the foot and the shoulder:

lsh = ∥psh,i −pi∥
2

D. Real-time Footstep position adaptation

Given the target contact surface and the current state of

the robot, we compute the next contact locations pi,1≤ i≤ n

for the moving effectors over a horizon of n3. We assume

that the optimal contact positions are given by the Raibert

heuristic, which we extend to 3 dimensions. We formulate a

QP problem to satisfy at best the surface constraints while

minimising the violation of the heuristic in the least-square

sense. The decision variables are both the velocity of the base

2To avoid the multiplication of variables indices in the problem definition,
we assume that the set of potential contact surfaces is the same over the
horizon. This is not a limitation of our approach.

3Not necessarily equal to the contact planning horizon

Collisison-free Bezier curve

Reference curve

Initial surface

Final surface

Collision half-plane with margins

Fig. 2. End-effector trajectory adaptation for collision avoidance

and the contact positions. Each position variable is defined

as an offset αi = [αi,x,αi,y,αi,z]
T ∈ R

3 with respect to the

position predicted by the Raibert heuristic:

pi =





px(vre f ,x)+αi,x

py(vre f ,y)+αi,y

αi,z





Likewise the reference velocity v+re f is updated with an

offset β = [β i,x,β i,y]T ∈ R
2 from the initial reference vre f :

v+re f =

[

βx + v∗re f ,x

βy + v∗re f ,y

]

The resulting QP is written:

min
1

2
(w1

n

∑
i=1

∥αi∥
2 +w2 ∥β∥2)

s.t. Si(pi +αi)≤ si, ∀1 ≤ i ≤ n

where a surface Si is the surface selected as the i-th contact

(Section II-A), and w1 and w2 are user-defined weights

respectively set to 1 and 1000.

E. End-effector trajectory optimisation

The trajectory of a moving end-effector p(t) : R 7→ R
3 is

computed as a compromise between a uniquely defined ref-

erence pre f (t) and the adjustment required to avoid collisions

with the environment (Fig. 2). The trajectories are 3D Bézier

curves of degree d defined in the Bernstein basis:

p(t) =
d

∑
i=0

Bd
i (

t

T
)xi (5)

where x =
[

x0 . . . xd

]

∈ R
3d are the d +1 control points

of the curve and T is the total duration of the trajectory.

1) Tracking a reference trajectory: The reference end-

effector trajectory pre f (t) is decoupled into a 2D X and Y

trajectory and a Z trajectory. A 2D curve of degree 5 is

used for computing the X and Y reference trajectory. To

satisfy continuity constraints, the initial position, velocity

and acceleration of the curve are constrained to match the



 Base 6D pose

 Environment   
description 

   Surfaces  Motor  
 commands   

Control  Reference    
 velocity 

Joint state
IMU 

Robot

 State estimation Estimator

Guide path  Footsteps 
Base 
pose

 trajectory
Feet 

 targets 
Contact
planner

Footstep
adaptation

End-effector
trajectory

Reactive planner

III. B. II. C. II. D. II. E. III. C.

III. A.

Fig. 3. Solo12 walking controller architecture. The contribution of this paper lies in the integration of a reactive planning module in the controller

current state of the effector. We also constrain the terminal

position to match the contact location with a null velocity

and acceleration. These 6 constraints thus uniquely define

pre f (t) in X and Y. The reference trajectory in Z is computed

similarly but is of degree 6 to allow the user to define an

apex4 for the trajectory at T/2.

The adjusted end-effector trajectory p(t) is a degree 7

curve (we keep a low dimension to avoid over-fitting). p(t)
and pre f (t) are discretised over T into nT + 1 samples 0 ≤
tk ≤ Tk. By definition of a Bezier curve p(tk) is linearly

defined by the control points x, such that ∀k,∃Ak,p(tk) =
Akx, with Ak constant.

2) Collision avoidance constraints: For each contact sur-

face(s) active during the motion Fig. 2 and for each sample

pre f (tk), we check whether the segment connecting the

sample to its neighbours is in collision. If this is the case,

a collision constraint defined by the traversed half-space

(Fig. 2-Pink) is created for p(tk) (using a small margin for

safety). All the collected constraints are then stacked into a

single matrix and vector G and g that linearly constrain the

control points of x, leading to the QP:

min
x

1

2

nT

∑
k=0

∥p(tk)−pre f (tk)∥
2

s.t. p(0) = pre f (0), ṗ(0) = ṗre f (0)

p̈(0) = p̈re f (0)

p(T ) = pre f (T ), ṗ(T ) = p̈(T ) = 0

Gx ≤ h

III. FRAMEWORK ARCHITECTURE

Our framework (Fig. 3) is generic but designed around

Solo [23]. It continuously takes as input a desired reference

velocity for the geometric root of the robot, given with a

joystick. We do not consider visual perception in this work.

The state estimator (Section III-A) combines data obtained

from the Inertial Measurement Unit (IMU) and motion

capture (MoCap) to estimate the state of the robot.

The guide path module (Section III-B) computes a trajec-

tory for the base, used as input for the reactive planner.

4In our experiments the apex is defined as the difference between the
initial contact surface and the target contact surface + 5 cm

The reactive planner is the main addition to our previous

framework [20]. It uses the base trajectory and reference

velocity to compute a contact plan, adapt the next footstep

locations and compute the flying feet trajectories to avoid

collisions with the environment (Section II).

The control module (Section III-C) consists of a centroidal

MPC and a WBC in charge of computing the required contact

forces and the joint torque required to achieve them, as well

as a low-level controller that convert the torques targets into

motor commands. The software implemented the proposed

method will be made available under open license (BSD3)

on the project page [24] upon acceptance of the paper.

A. State estimation

The IMU used on the Solo quadruped includes an extended

Kalman filter that estimates the body angular velocity, ori-

entation and acceleration without gravity. With our setup,

position and yaw orientation in the world are not observable

quantities and would drift if we were to assess them by

integration. For those, we use a MoCap system. Estimates

of the linear velocity v ∈ R
3 comes from a decoupled

linear approach [25] that combines MoCap and IMU data

with a complementary filter [26]. To update the velocity

estimate at time t + 1 the accurate acceleration of the IMU

v̇IMU is integrated and slowly dedrifted by MoCap velocity

measurements vMoCap:

vt+1 = α(vt +∆t v̇t
IMU )+(1−α)vt

MoCap (6)

with α a weight close to 1 (0.97 in our case).

B. Base guide trajectory computation

The guide path module computes the trajectory in trans-

lation and rotation for the base of the robot on the horizon.

The estimated current state is the initial state of the trajectory.

The reference velocities (vre f ,x, vre f ,y, ωre f ) are integrated to

get a (x, y, yaw) trajectory starting from the current state.

The height of the base and the roll and pitch angles

are estimated from the environment, which is represented

as a height-map in this module. We assume that the robot

orientation can be defined relatively to the average height of

the closest points (less than 20cm away from the current x/y

position) in the height-map. A 3D plane is then fitted with the

resulting points in the least-square sense. The roll and pitch

values of the fitted plan are use for the orientation of the



Fig. 4. Some scenarios built for the experiments with the convex surfaces highlighted. From the left to the right: straight hole, bridge, stairs and stepping
stones scenarios

base. The x/y position of the base, projected on this plane,

gives the z position of the base (offset by a constant). The

vertical velocity is obtained by differentiating the z positions

obtained through the integration of the x and y quantities,

while wroll and are set to 0.

C. Control

In this section we briefly describe the components of the

lower level controllers in our architecture, but refer to [20]

for additional implementation details.

1) Centroidal MPC: We assume a constant offset between

the center of the base and the COM position in the initial

configuration5 and formulate a convex QP to track the base

guide trajectory while satisfying the dynamics constraints.

This MPC outputs contact forces that should be applied by

feet in stance phase and runs at 50 Hz with a 0.32s horizon

using the OSQP solver [27].

2) Whole-Body control: The WBC runs at 1 kHz. It

includes a task-based Inverse Kinematics (IK) that uses a

full model of the quadruped [28] to compute desired joint

positions, joint velocities and base accelerations to follow

the centroidal guide path and the feet trajectories from the

collision QP, (Section II-E). Then, a QP solver outputs

feedforward torques after making a trade-off between contact

forces provided by the MPC and base accelerations of the IK,

with the under-actuated part of the dynamics as a constraint.

Here we use OSQP as well.

3) Low-Level control: The low-level controller consists of

a Proportional-Derivative (PD) plus feedforward controller.

The target torques τ sent to the actuators are a combination

of a feedback and feed-forward terms using the target joint

positions q∗, joint velocities q̇∗ and feed-forward torques

τ∗ computed by the WBC, with proportional and derivative

gains Kp and Kd . These torques are directly computed by

motor control boards at 10 kHz based on measured joint

positions q and velocities q̇:

τ = Kp(q
∗−q)+Kd(q̇

∗− q̇)+ τ∗ (7)

IV. EXPERIMENTAL SETUP

We tested our research hypothesis and framework on the

Solo quadruped [23]. In simulation and during experiments,

the robot has been challenged with complex environments.

The controller proved capable of progressing on terrains with

holes, bridges, stepping stones or stairs. Several scenarios

were designed to demonstrate the robustness of the controller.

5A reasonable assumption for Solo as most of the mass is in the trunk

A. The Solo quadruped

The quadruped robot Solo [23] has been developed by

the Open Dynamic Robot Initiative. Solo is a relatively low

cost and easy to repair robot composed mainly of 3D-printed

and off-the-shelves components. It is small (approximately

22 cm of height) and light (2.5 kg). It has 12 degrees of

freedom actuated by brushless outrunner motors adapted to

torque control. Encoders are located at each joint and an IMU

embedding an extended Kalman filter is used for attitude

estimation. The control loop runs on a distant computer and

motor commands are sent at 1kHz through an Ethernet cable.

To perform tests in simulation, the physics engine PyBul-

let [29] was used with a model of the robot. The base pose

and velocity usually obtained with the motion capture were

replaced by the ones given by the simulator.

B. How to evaluate the controller

A qualitative evaluation of the framework was first per-

formed both in simulation and in real life experiments. More

specific results were then obtained in simulation to highlight

the use of a module or another and evaluate the influence of

a given parameter. Specific environments were designed in

simulation and built for real life experiments when possible:

• Flat terrain used to assess the general robustness of

the controller to perturbations.

• Straight hole on the ground up to 15 cm of width.

It shows the ability to avoid a forbidden area while

maintaining balance for any angle of approach.

• Bridge-like structures, two non-parallel thin (10 cm)

walkways where a precise location of the feet is required

and relative foot positions are challenging to set.

• Stairs, straight or spiral, with several heights and width.

Holes between the steps were added, as well as irreg-

ularities in the height of the steps. They were used to

show the usefulness of the collision avoidance module.

• Stepping stones to illustrate the necessity of the contact

plan and test if the footstep plan is adapted fast enough

to adapt to quick changes in the reference velocity. In

real-life experiments, the stepping stone were rectangles

of 22 cm by 11 cm and were either flat, or with a height

of 6 cm. They were placed randomly and could be added

or removed at will to add more or less difficulty.

Pictures of some scenarios realized for real-life experi-

ments are presented in Fig. 4
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Fig. 5. Repeated tests with a modified controller to evaluate the benefit of each module. For each scenarios, six velocity profiles, summarizing the range
of robot capabilities, were run in simulation and the results of each test is reported here.

C. Qualitative results

All scenarios were tried successfully in simulation, with

different reference velocities and initial positions of the

robot. In real-life, the robot managed to recover from strong

perturbations on flat ground, could cross a hole materialized

by a line drawn on the ground and turn over it. It walked

on a drawn bridge which required to move its left feet away

from his right one. On stepping stones the robot managed

to place correctly its feet and maintain its balance even

with quick variations in the reference velocity, for example

deciding to stop or to turn. The stairs were climbed with

varying approach angles and the robot could turn over them

without falling. The companion video highlights some of

these experiments. An extended video is available on the

project page [24].

V. RESULTS AND DISCUSSION

A. Influence of each module on the framework robustness

To evaluate the contribution of each component to the

robustness of the framework we instantiated alternative

frameworks where one module had been deactivated. The

frameworks were then compared with each other in sim-

ulation, on scenarios designed to highlight the edge cases

(Fig. 5). Four different scenarios were selected, and for each

of them, six different velocity profiles were applied.

1) Contact planner utility: We replaced the contact plan-

ner with a naive heuristic where the selected surface is the

closest to the position predicted 2D Raibert’s heuristic (the

planning is thus restricted to a horizon n = 1). In the straight

hole and spiral staircase scenarios, the contact planner is

effectively replaced by the heuristic without any incidence

on the success rates (Fig. 5). The benefit of contact planning

is highlighted on the irregular stairs and stepping stones

scenarios. The failure cases occur when the projection of the

2D heuristic is on a surface that cannot be reached from the

current state of the robot, while this surface choice rejected

by the contact planner, justifying the need to test several

candidate surfaces (and thus to use our planner).

2) The necessity of the footstep adaptation: On flat

ground, planning the footstep locations at a high frequency

(1 kHz) has proven useful to keep the robot stable and react

quickly to disturbances [20], [30]. To evaluate the importance

of the footstep adaptation module, we tried the framework

using directly the footstep positions computed by the contact

planner. Since the contact plan is only computed once per

step, the footstep positions were then fixed throughout the

whole step. Fig. 5 illustrates that in most cases not adapting

the footstep location leads to failures of the framework.

We also computed the distance between the contact posi-

tions predicted by the contact planner and the final contact

positions reached on four different scenarios. Table I shows

that the average distance is small (< 5 mm), which confirms

that the predicted position is relevant in the nominal case.

The maximum distance measure varies from 1 to 4 cm in the

stepping stones scenario, the latter being in the same order of

magnitude than the footstep distance. This illustrates further

the importance of adapting reactively the footstep position

to maintain balance.

TABLE I

Distance between planning contact position and adapted position

Scenario Mean distance (m) Maximum distance (m)

Flat 0.0018 0.012

Hole 0.0019 0.026

Bridge 0.0021 0.025

Stepping stones 0.0037 0.043

3) Collision avoidance is needed for irregular steps: Sur-

prisingly, disabling collision avoidance does not result in an

increased failure rate in three of the considered environments

(Fig. 5). The irregular stairs environment is characterised

by overlapping steps with gaps between them. The foot can



then get stuck in-between two steps without the proper end-

effector trajectory. With the collision avoidance module, the

effector trajectory avoids the edges of the stairs and goes

backwards at first, as shown in Fig. 2 and in the video,

resulting in a better behaviour. This scenario highlights the

need for collision avoidance in such cases.

B. Effect of the surface planner horizon length

The contact planner horizon length n is intuitively a crucial

parameter. However in all the scenarios listed in section IV-

B, after having defined a goal position and compared the

success rate obtained with different values of n, no significant

difference was observed. Planning with a two-step horizon

seems sufficient to avoid the failure cases observed without

the planner in section V-A.1. As expected the planning time

increases with the horizon, and a horizon n = 8 (4 steps) was

too expensive for real-time computation on scenarios with

many potential surface such as the stepping stones scenarios.

C. Computation time of each module

During the experiments on the robot, we measured the

computation time of each module to make sure they were

compliant with the real-time requirements. The results are

presented in table II. The contact planner maximal compu-

tation time of 137 ms is lower than 160 ms, the duration of

a step. The two QPs of the footstep adaptation and collision

avoidance modules are solved fast enough to be computed

at 1 kHz in the main control loop.

TABLE II

Computation times of the different modules of the controller

Module Average time (ms) Maximal time (ms)

Guide path 0.122 0.238

Contact planner 58.4 137.4

Footstep adaptation 0.0270 0.0825

Collision avoidance 0.099 0.656

Centroidal MPC 2.00 12.01

VI. CONCLUSION AND FUTURE WORK

We have presented a complete method for real-time plan-

ning and controlling the locomotion of a legged robot over

challenging terrains. Our framework plans a feasible contact

sequence for the Solo robot at about 10 Hz, while the contact

positions and end-effector trajectories are locally adapted at

1 kHz, synchronously with the low-level control of the robot.

We have reported the details of the complete implementation

for our quadruped robot Solo, and the code will be made

available under an open license. Our experiments empiri-

cally validate our approach on scenarios that highlight the

contribution of each module of the framework.

A potential limitation of our framework is linked to our

research hypothesis, as the contact surface selected for the

currently flying effector cannot change, which could result

in failures if the robot is pushed. We plan to investigate

whether re-planning of the next contact surface would be fast

enough to prevent a fall in that case. The same computational

time constraints also limit the completeness of our collision

avoidance method as the only surfaces checked for collisions

are the ones involved in the contact creation, preventing the

robot from robustly stepping over obstacles. Future work will

consider checking all potentially colliding obstacles, possibly

by lowering the frequency of the collision avoidance QP.

Future developments will also include the adaptation of

the base trajectory to the contact plan, in order to ensure

their accordance. For now, if the contact planner fails in

finding a plan that matches it (if an obstacle prevents the

robot from going in the reference velocity direction), the

robot will fall. This is currently handled by considering that

the reference velocity is given by a user who has a knowledge

of the environment and will not send the robot towards areas

impossible to reach. However the contact planner could be

augmented to output an adapted base trajectory, possibly

solving this issue.

Finally, the fact that a short horizon is enough to achieve

most of the considered scenarios motivates us to extend

our framework towards more dynamic scenarios that will

require further planning, including jumping motions. These

scenarios may invalidate the Raibert heuristic and require the

proposition of more advanced formulations of the dynamics.
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[20] P.-A. Léziart, T. Flayols, F. Grimminger, N. Mansard, and P. Souères,

“Implementation of a reactive walking controller for the new open-
hardware quadruped solo-12,” 2021.

[21] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
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