
HAL Id: hal-03597741
https://laas.hal.science/hal-03597741v1

Submitted on 4 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MurTree: Optimal Decision Trees via Dynamic
Programming and Search

Emir Demirović, Anna Lukina, Emmanuel Hébrard, Jeffrey Chan, James
Bailey, Christopher Leckie, Kotagiri Ramamohanarao, Peter Stuckey

To cite this version:
Emir Demirović, Anna Lukina, Emmanuel Hébrard, Jeffrey Chan, James Bailey, et al.. MurTree:
Optimal Decision Trees via Dynamic Programming and Search. Journal of Machine Learning Research,
2022, 23 (26), pp.1-47. �hal-03597741�

https://laas.hal.science/hal-03597741v1
https://hal.archives-ouvertes.fr

Journal of Machine Learning Research 23 (2022) 1-47 Submitted 5/20; Revised 10/21; Published 2/22

MurTree: Optimal Decision Trees via
Dynamic Programming and Search

Emir Demirović e.demirovic@tudelft.nl
Anna Lukina a.lukina@tudelft.nl
Delft University of Technology
Delft, The Netherlands

Emmanuel Hebrard hebrard@laas.fr
LAAS CNRS
Toulouse, France

Jeffrey Chan jeffrey.chan@rmit.edu.au
RMIT University
Melbourne, Australia

James Bailey baileyj@unimelb.edu.au
Christopher Leckie caleckie@unimelb.edu.au
Kotagiri Ramamohanarao kotagiri@unimelb.edu.au
University of Melbourne
Melbourne, Australia

Peter J. Stuckey peter.stuckey@monash.edu
Monash University and DATA61
Melbourne, Australia

Editor: Luc De Raedt

Abstract

Decision tree learning is a widely used approach in machine learning, favoured in appli-
cations that require concise and interpretable models. Heuristic methods are traditionally
used to quickly produce models with reasonably high accuracy. A commonly criticised
point, however, is that the resulting trees may not necessarily be the best representation
of the data in terms of accuracy and size. In recent years, this motivated the development
of optimal classification tree algorithms that globally optimise the decision tree in contrast
to heuristic methods that perform a sequence of locally optimal decisions. We follow this
line of work and provide a novel algorithm for learning optimal classification trees based
on dynamic programming and search. Our algorithm supports constraints on the depth
of the tree and number of nodes. The success of our approach is attributed to a series
of specialised techniques that exploit properties unique to classification trees. Whereas
algorithms for optimal classification trees have traditionally been plagued by high runtimes
and limited scalability, we show in a detailed experimental study that our approach uses
only a fraction of the time required by the state-of-the-art and can handle datasets with
tens of thousands of instances, providing several orders of magnitude improvements and
notably contributing towards the practical use of optimal decision trees.

Keywords: decision trees, search, dynamic programming, combinatorial optimisation

©2022 Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christopher Leckie,
Kotagiri Ramamohanarao, and Peter J. Stuckey.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/20-520.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/20-520.html

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

1. Introduction

The combination of simplicity and effectiveness has popularised decision tree models in the
machine learning community. A notable advantage of these models is their interpretability,
in particular when the tree is of small size. Figure 1 shows an example of such a model,
which may be easily understood even by non-experts.

Despite its clear structure, constructing a decision tree to represent the data is a chal-
lenging computational problem (NP-hard). Traditionally, models are built using heuristic
methods, such as CART (Breiman et al. (1984)), which iteratively optimise a local objective
function. While these techniques have shown to be immensely valuable due to their ability
to provide high quality trees in low computational time, the resulting tree is not guaranteed
to be globally optimal, i.e., it may not necessarily be the best representation of the data in
terms of accuracy, size, or other considerations such as fairness.

An alternative to heuristic approaches is to construct optimal decision trees, i.e., the best
possible decision tree according to a given metric. The idea of computing optimal decision
trees dates back to approximately the 1970s when constructing optimal decision trees was
proven to be NP-hard by Hyafil and Rivest (1976).1 As emphasised by Bertsimas and Dunn
(2017), while optimal decision trees have always been desirable, the authors of the CART
algorithm (Breiman et al. (1984)) found that such trees were computationally infeasible at
the time, and hence heuristics were the only option.

Optimal decision trees are enticing for several reasons. It has been observed that a more
accurate representation of the data offers better generalisation on unseen data (Bertsimas
and Dunn (2017); Verwer and Zhang (2017, 2019)). This has been reiterated in our exper-
iments as well. Globally optimal trees are particularly important in socially-sensitive con-
texts, where optimality plays an important role in ensuring fairness (Aghaei et al. (2019)).
In some applications, the goal is to optimise the size of the decision tree representing a given
controller to save memory for embedded devices (Ashok et al. (2020)). Decision trees, in
particular those of smaller size, are desirable for formal methods when verifying properties
of trained controllers (Bastani et al. (2018)), as opposed to more complex machine learning
models. In recent years, there has been growing interest in explainable artificial intelligence.
The basic premise is that machine learning models, apart from high accuracy, must also
be able to explain their decisions to a (non-expert) human. This is necessary to increase
human trust and reliability of machine learning in complex scenarios that are conventionally
handled by humans. Optimal decision trees of small size naturally fit within the scope of
explainable AI, as their reduced size is more convenient for human interpretation.

Decision tree learning may be defined as a mathematical optimisation program: an
objective function is posed together with a set of constraints that encode the decision tree
structure. An advantage of optimal algorithms over heuristic approaches is that they adhere
precisely to the given specification. This allows a clear analysis and assessment of the
suitability of the particular mathematical formulation for a given application. In contrast,
in heuristic methods there is a discrepancy between the target learning problem and the goals
of the heuristic algorithm, i.e., the methods may not directly optimise the tree according
to the globally defined objective, but rather locally optimise a sequence of subproblems

1. Their proof is for the problem of finding a perfect tree minimising the expected number of feature tests.
However, it can easily be adapted to maximising the accuracy under a constraint on the maximum depth.

2

MurTree: Optimal Decision Trees via Dynamic Programming and Search

with respect to a surrogate metric. This leads to situations where it may be difficult to
make conclusive statements on the learning problem definition, as the heuristic approach
may not faithfully follow the desired metrics. For example, a specification might be deemed
suboptimal not due to a flaw in the definition, but rather because of the inability of the
heuristic algorithm to optimise according to the specification.

Despite the appeal of optimal algorithms for decision trees, heuristic methods are his-
torically the dominant approach due to computational reasons. Indeed, heuristic methods
offer scalable algorithms that produce results in the order of seconds. However, as both
algorithmic techniques and hardware advanced, optimal decision trees have become within
practical reach and attracted growing interest from the research community. In particular,
there has been a surge of successful methods in the past few years. These approaches use
generic optimisation methods, namely integer programming (Bertsimas and Dunn (2017);
Verwer and Zhang (2017, 2019); Aghaei et al. (2019); Zhu et al. (2020)), constraint pro-
gramming (Verhaeghe et al. (2019)), and SAT (Narodytska et al. (2018); Avellaneda (2020);
Janota and Morgado (2020)), and algorithms tailored to the decision tree problem (Nijssen
and Fromont (2010, 2007); Hu et al. (2019); Aglin et al. (2020a); Lin et al. (2020)). The
methods DL8 (Nijssen and Fromont (2007, 2010)) and DL8.5 (Aglin et al. (2020a,b)) are of
particular interest as they can be seen as a starting point for our work. The DL8.5 approach
has been shown to be highly effective, outperforming other approaches when computing full
binary decision trees on binary data, demonstrating the value of specialising methods to
exploit specific decision tree properties over generic optimisation approaches.

Our Contribution. While previous works use highly related ideas, the presentation
and terminology may differ substantially. In this work, we unify and generalise success-
ful concepts from the literature by viewing the problem through the lens of a conventional
algorithmic framework, namely dynamic programming and search. We introduce novel algo-
rithmic techniques that reduce computation time by orders of magnitude when compared to
the state-of-the-art. We conduct an experimental study on a wide range of benchmarks from
the literature to show the effectiveness of our approach and its components, and reiterate
that optimal decision trees lead to better generalisation in terms of out-of-sample accuracy.
In more detail, the contributions are as follows:

• MurTree (Section 4), an algorithm for computing optimal classification trees. Given
an input dataset and a set of predicates, it computes a decision tree that minimises
the number of misclassifications using the given predicates. The algorithm allows
constraints on the depth and the number of nodes of the decision tree. The method
may be extended with additional functionality, such as multi-classification, regression,
the sparse decision tree objective, lexicographical minimisation of misclassification and
size, anytime behaviour, and nonlinear metrics, as discussed in Section 4.8.

• A clear high-level view of the algorithm using conventional algorithmic principles,
namely dynamic programming and search, that unifies and generalises some of the
ideas from the literature (Section 4.1).

• A specialised algorithm for computing the optimal classification tree of depth two,
which serves as the backbone of our algorithm (Section 4.3). It uses a frequency
counting method to avoid explicitly referring to the dataset when constructing the

3

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

tree, substantially reducing the runtime of computing optimal trees. The technique
is further augmented with an incremental technique that takes into account previous
computations, providing orders of magnitude speed-ups. Counting and incremental
construction ideas have been previously used in classical algorithms, such as counting
sort, and in the frequent itemset mining community, e.g., Zaki and Gouda (2003). We
exploit such ideas in the context of decision trees.

• A novel similarity-based mechanism for computing a lower bound on the number of
misclassifications. The bound is effective in determining that portions of the search
space cannot contain better decision trees than currently found during the search,
which allows the algorithm to prune parts of the search space without needing further
inspection, providing additional speed-ups. The bound is derived by examining previ-
ously computed subtrees and computing a bound on the number of misclassifications
that must hold in the new search space (Section 4.4).

• Several extensions to DL8.5 (Aglin et al. (2020a)), namely we incorporate the con-
straint on the number of nodes, extend the caching technique to take into account
constraints on both the depth and number of nodes and provide a novel implemen-
tation of two existing caching schemes (Section 4.5), describe an incremental solving
option to allow reusing computation when solving a series of increasingly large decision
trees (Section 4.5.5), which is useful in hyper-parameter tuning, for example, refine
the lower bounding technique on the number of misclassifications from DL8.5 (Section
4.5.3), and discuss a dynamic node exploration strategy (Section 4.6) that leads to
consistent improvements over a conventional post-order search.

• A detailed experimental study to analyse the effectiveness of our individual techniques
and scalability of our approach, evaluate our approach with respect to the state-of-the-
art optimal classification tree algorithms, and compare against heuristic decision tree
and random forest algorithms on out-of-sample accuracy (Section 5). The experimental
results show that our approach provides generalisable trees and exhibits speed-ups of
(several) orders of magnitude when compared to the state-of-the-art.

The rest of the paper is organised as follows. In the next section, we introduce the
notations and definitions used throughout the paper. In Section 3, we review the state-of-
the-art for optimal decision trees. Our main contribution is given in Section 4, where we
describe our MurTree algorithm. In Section 5, we conduct a series of empirical evaluations
of our approach and conclude in Section 6.

2. Preliminaries

A feature is a variable that encodes information about an object. We speak of binary,
categorical, and continuous features depending on their domain, i.e., binary, discrete, and
continuous domains. A feature vector is a vector of features. An instance is a pair that
consists of a feature vector and a value representing the class. A class can take continuous
or discrete values. In future text, we assume the class is a discrete value, i.e. we consider
classification tasks. A dataset, or simply data, is a set of instances. While features within
a vector may have different domains, the i-th feature of each feature vector of the dataset

4

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Figure 1: A Decision Tree for Commuting to Work

shares the same domain. The assumption is that the features describe certain characteristics
about the objects, and the i-th feature of each feature vector refers to the same characteristic.

A decision tree is a machine learning model that takes the form of a tree (see Figure
1). We consider binary trees, i.e., trees that contain nodes with at most two children. We
call leaf and non-leaf nodes classification and predicate nodes, respectively. Each predicate
node is assigned a predicate that maps feature vectors to a Boolean value, e.g., “CityBike
available?” is a predicate with a clear yes/no answer. The left and right edges of a predicate
node are associated with the values zero and one, respectively. Each classification node is
assigned a fixed class. We note that other variations of decision trees are possible, e.g., more
than two children, but these are not considered in this work.

A decision tree may be viewed as a function that performs classification according to
the following recursive procedure. Given a feature vector, it starts by considering the root
node. If the considered node is a classification node, its class determines the class of the
feature vector and the procedure terminates. Otherwise, the node is a predicate node, and
the left child node will be considered next if the predicate of the node evaluates to zero, and
otherwise the right child node is selected. The process recurses until a class is determined.
The misclassification score of a decision tree on data is the number of instances for which
the classification produces an incorrect class considering the data as ground truth.

In practice, the predicates take a special form. For single-variate or axis-aligned decision
trees, which are the focus of this work, predicates only consider a single feature and typically
test whether it exceeds a threshold value. For example, the predicate in Fig. 1 “Have more
than 30 minutes?” considers a single feature representing the available time in minutes
and tests whether it exceeds the value thirty. We refer to these nodes as feature nodes, as
the predicate depends solely on one feature. Predicates are chosen based on the dataset.
Generalisations of decision trees are straight-forward: multi-variate versions use predicates
that operate on more than one feature, and predicates can be substituted by functions whose
co-domains are of size n, in which case the decision tree is an n-ary tree with an analogous
definition. These generalisations are not considered in this work.

The depth of a decision tree is the maximum number of feature nodes any instance may
encounter during classification. The size of a decision tree is the number of feature nodes.
For example, the decision tree in Fig. 1 has the depth and size equal to two. It follows that
the maximum size of a decision tree with depth d is 2d−1. An alternative size definition may

5

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

consider the total number of nodes in the tree. Note that these definitions are equivalent,
as a tree with n predicate nodes has n+ 1 classification nodes.

The process of decision tree learning seeks to compute a decision tree that minimises a
target metric under a set of constraints. We are primarily concerned with minimising the mis-
classification score given a maximum depth and a maximum number of feature nodes. Other
metrics and constraints may also be considered (see Section 4.8). Given the misclassification
score, classification nodes will be assigned the class that minimises the misclassifications on
the given dataset. This corresponds to computing the instances that reach the classification
node during classification and selecting the class of the node according to the majority class.

Following previous optimal decision tree works (Nijssen and Fromont (2007, 2010); Nar-
odytska et al. (2018); Verhaeghe et al. (2019); Aglin et al. (2020a); Hu et al. (2019); Lin
et al. (2020)), we consider the setting where all features are binary. Datasets with contin-
uous and/or categorical features are assumed to be binarised as a preprocessing step. This
corresponds to selecting the set of predicates upfront rather than during algorithm execution
as is standard in heuristic algorithms.

We use special notation for binary datasets, where the domain of features is Boolean,
i.e., {0, 1}. Given a feature vector fv, we write fi ∈ fv and fi ∈ fv if the i-th feature has
value one and zero, respectively. If fi ∈ fv, we say the i-th feature is present in the feature
vector fv (a positive feature), otherwise it is not present (a negative feature). We consider
only predicates that test the presence of a feature, i.e., the predicates Pi(fv) and Pi(fv)
evaluate to one if fi ∈ fv and fi ∈ fv, respectively, and evaluate to zero otherwise. Given
this special form, we simply write fi or fi for the predicates instead of Pi and Pi. The binary
dataset D is partitioned into a positive and negative class of instances based on the classes,
i.e., D = D+ ∪ D−. We consider the partitions as sets of feature vectors since their class is
clear from context, and write D(f) as the set of instances from D that contain feature f ,
and analogously for multiple features, e.g., D(f1, f2) are the set of instances that contain
both f1 and f2.

3. Literature Review

Historically, the most popular techniques for decision tree learning were based on heuristics
due to their effectiveness and scalability. Examples of these algorithms include CART,
originally proposed by Breiman et al. (1984), and C4.5 by Quinlan (1993). These algorithms
start with a single node, and iteratively expand the tree based on metrics such as information
gain and Gini coefficients, possibly post-processing the obtained decision trees to prune
branches in an effort to reduce overfitting. While there is a vast literature on (heuristic)
algorithms for decision trees, in this work, we are primarily concerned with optimal single-
variate decision trees, and hence direct further discussion to such settings.

Bertsimas and Shioda (2007) presented a mixed-integer programming approach for op-
timal decision tree s that worked well on smaller datasets. Mixed-integer programming
formulations with better performance were given by Bertsimas and Dunn (2017) and Ver-
wer and Zhang (2017). These methods encode the optimal decision tree by fixing the tree
depth in advance, creating variables to represent the predicates for each node, and adding
constraints to enforce the decision tree structure. These approaches were later improved by
BinOPT (Verwer and Zhang (2019)), a binary linear programming formulation, that took

6

MurTree: Optimal Decision Trees via Dynamic Programming and Search

advantage of binarising data to reduce the number of variables and constraints required to
encode the problem. Aghaei et al. (2019) used a mixed-integer programming formulation
for optimal decision trees that supported fairness metrics. The authors argued that using
machine learning in socially sensitive contexts may perpetuate discrimination if no special
measures are taken into account. In this instance, optimal decision trees provide the best
tree that balanced accuracy and fairness, albeit with a high computational time when com-
pared to specialised heuristic methods (Kamiran et al. (2010)). Recently, Zhu et al. (2020)
proposed a novel mixed-integer programming formulation based on support vector machines
and a cutting plane technique for optimal multi-variate decision trees, and a flow-based en-
coding has been developed Aghaei et al. (2020). An advantage of declarative approaches is
that adding additional constraints may be straight-forward, however scalability may be an
issue when compared to specialised approaches when considering single-variate trees, e.g.,
DL8.5 (see below) or our method. For more information regarding decision tree optimisa-
tion using mathematical programming, we refer the readers to the survey by Carrizosa et al.
(2021).

Encodings of decision trees using propositional logic (SAT) and constraint programming
have been initially devised by Bessiere et al. (2009). Recently, an improved SAT model has
been proposed by Narodytska et al. (2018), after which several other SAT-related works
have been published (Avellaneda (2020); Janota and Morgado (2020); Schidler and Szeider
(2021)). This line of work deviates from conventional machine learning approaches, as the
aim is to construct the smallest tree that perfectly describes the given dataset, i.e., leads to
zero misclassifications on the training data, although they can be adapted to the accuracy
criterion via maximum satisfiability (MaxSAT) Hu et al. (2020). To circumvent scalability
issues, the methods perform subsampling of the data, incrementally construct the encoding,
and/or focus on improving a subtree obtained using a heuristic algorithm.

Nijssen and Fromont (2007, 2010) introduced a framework named DL8 for optimal de-
cision trees that could support a wide range of constraints. They observed that the left
and right subtree of a given node can be optimised independently, introduced a caching
technique to save subtrees computed during the algorithm in order to reuse them at a later
stage, and combined these with ideas from the pattern mining literature to compute optimal
decision trees. DL8 laid a foundation for optimal decision tree algorithms that follow.

Verhaeghe et al. (2019) approached the optimal classification tree problem by minimis-
ing the misclassifications using constraint programming. The independence of the left and
right subtrees from Nijssen and Fromont (2007, 2010) was captured in an AND-OR search
framework. Upper bounding on the number of misclassifications was used to prune parts of
the search space and their algorithm incorporated an itemset mining technique to speed-up
the computation of instances per node and used a caching technique similar to DL8 (Nijssen
and Fromont (2007, 2010)).

Hu et al. (2019) presented an algorithm that computes the optimal decision tree by con-
sidering a balance between misclassifications and number of nodes. They apply exhaustive
search, caching, and lower bounding of the misclassifications based on the cost of adding a
new node to the decision tree. The method was improved and extended by Lin et al. (2020),
providing good performance if the sparsity coefficient, which controls the balance between
accuracy and number of nodes, is sufficiently high.

7

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Aglin et al. (2020a) developed DL8.5 by combining and refining the ideas from DL8
and the constraint programming approach. Their main addition was an upper bounding
technique, which limited the upper misclassification value of a child node once the optimal
subtree was computed for its sibling, and a lower bounding technique, where the algorithm
stored information not only about computed optimal subtrees but also pruned subtrees to
provide a lower bound on the misclassifications of a subtree. This led to an algorithm that
outperformed previous approaches by a notable margin when optimising the misclassification
score under a depth constraint. The method was recently released as a Python library with
further improvements based on sparse bitvectors (Aglin et al. (2020b)).

Exploiting properties specific to the decision tree learning problem proved to be valuable
in improving algorithmic performance in previous work. In particular, search and pruning
techniques, caching computation for later reuse, and the techniques that take advantage of
the decision tree structure all lead to notable gains in performance. These are the main
reasons for the success of specialised methods over generic frameworks, such as integer
programming and SAT. As there is a significant overlap of ideas and techniques used in
related work, we discuss these in more detail in Section 4.1 when presenting the high-level
view of our algorithm.

The above discussion was mainly concerned with single-variate optimal decision tree
algorithms, which are the focus of this work. Other related work includes heuristic meth-
ods for multi-variate trees (Yang et al. (2019)), theoretical analysis of heuristic methods
(Blanc et al. (2020)), a fine-grained computational complexity study (Ordyniak and Szei-
der (2021)), neural networks for decision trees (Kontschieder et al. (2015); Tanno et al.
(2019)), randomised trees (Blanquero et al. (2020)), end-to-end learning of decision trees
(Hehn et al. (2019); Elmachtoub et al. (2020)), and dynamic programming methods to con-
struct decision trees from random forests (Vidal and Schiffer (2020)). For more refereces,
we refer the readers to a curated list of decision tree papers by Benedek Rozemberczki:
https://github.com/benedekrozemberczki/awesome-decision-tree-papers.

4. MurTree: Our Algorithm for Optimal Classification Trees

Our algorithm computes optimal classification trees by exhaustive search. The search space
is exponentially large, but special measures are taken to efficiently iterate through all trees,
exploit the overlap between trees, and avoid computing suboptimal decision trees. We
give the main idea of the algorithm, then provide the full pseudocode, and follow up with
individual subsections where we present each individual technique in greater detail.

The following text focusses on optimal classification trees that minimise the number of
misclassified instances for binary datasets and binary classification given constraints on the
depth and number of nodes. This serves as the core part of our algorithm. Further extensions
are discussed in Section 4.8, which includes multi-classification, regression, optimising the
sparse objective, lexicographically minimising the misclassification score and the number of
nodes, anytime behaviour, and optimising nonlinear metrics.

4.1 High-Level Idea

We note two important properties of decision trees:

8

https://github.com/benedekrozemberczki/awesome-decision-tree-papers

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Property 1 (Independence) Given a dataset D, a feature node partitions the dataset D into
its left and right subtree, such that Dleft ∩ Dright = ∅ and D = Dleft ∪ Dright.

Property 2 (Overlap) Given a classification node, a set of features encountered on the path
from the root node to the classification node, and an instance, the order in which the features
are used to evaluate the instance does not change the classification result.

Both properties follow directly from the definition of decision trees and are emphasised as
they play a major role in designing decision tree algorithms. Property 1 allows computing
the misclassification score of the tree as the sum of the misclassification scores of its left
and right subtree. As will be discussed, this is important as once a feature node has been
selected, the left and right subtrees can be optimised independently of each other. Property
2 shows there is an overlap between decision trees that share the same features, which is
taken advantage of by caching techniques. For example, once the optimal tree has been
computed for the dataset D(f1, f2), the resulting tree is stored in the cache and reused when
the dataset D(f2, f1) is encountered (see Section 4.5 for more details on caching), since both
D(f1, f2) and D(f2, f1) represent exactly the same subproblem.

The dynamic programming formulation of optimal classification trees given in Eq. 1
provides a high-level summary of our algorithm. The input parameters consist of a binary
dataset D with features F , an upper bound on depth d, and an upper bound on the number
of feature nodes n. The output is the minimum number of misclassifications possible on the
data given the input decision tree characteristics.

T (D, d, n) =

T (D, d, 2d − 1) n > 2d − 1
T (D, n, n) d > n
min{|D+|, |D−|} n = 0 ∨ d = 0

min{T (D(f), d− 1, n− i− 1) n > 0 ∧ d > 0
+ T (D(f), d− 1, i) : f ∈ F , i ∈ [0, n− 1]}

(1)

The first and second case in Eq. 1 place a natural limit on the number of feature nodes
and depth to avoid redundancy. The third case captures the situation where the node must
be declared as a classification node, i.e., the node is labelled according to the majority
class. The fourth case states that computing the optimal misclassification score amounts to
examining all possible feature splits and ways to distribute the feature node count to the
left and right children of the root node. For each combination of a selected feature and node
count distribution to its children, the optimal misclassification is computed recursively as
the sum of the optimal misclassifications of its children. The formulation is exponential in
the depth, feature node limit, and number of features, but with special care, as presented in
the subsequent sections, it is possible to compute practically relevant optimal classification
trees within a reasonable time.

Eq. 1 serves as the core foundation of our algorithm. In contrast to previous algorithms,
we take advantage of the structure of decision trees to allow imposing a limit on the number
of nodes as presented in Eq. 1. For example, previous methods either set the number of
nodes to the maximum value given the depth (Aglin et al. (2020a); Avellaneda (2020)), do
not directly limit the number of nodes but instead penalise the objective function for each

9

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

node in the tree (Hu et al. (2019); Lin et al. (2020)), or allow constraints on the number
of nodes but do not make use of decision tree properties (Bertsimas and Dunn (2017);
Narodytska et al. (2018); Verwer and Zhang (2017, 2019)). The last point is particularly
important as the ability to exploit optimal decision tree properties has proven to be essential
in achieving the best performance.

Different forms of Eq. 1 were used in some previous work under different terminology.
The AND-OR search method (Verhaeghe et al. (2019)), pattern mining approach (Nijssen
and Fromont (2007, 2010); Aglin et al. (2020a)), and the search by Hu et al. (2019) and Lin
et al. (2020) use the independence property of the left and right subtree (Property 1). Those
approaches save computed optimal subtrees (Property 2), which corresponds to memoisation
as an integral part of dynamic programming (Section 4.5). The DL8 papers (Nijssen and
Fromont (2007, 2010)) introduced a general framework with a variety of constraints which
includes, amongst others, constraints on the depth, node count, and fairness. Framing the
problem as a dynamic program dates from the 1970s (e.g., Garey (1972)), but the descrip-
tion in works afterwards deviated as new techniques were introduced. Our contribution is
presenting the problem using conventional dynamic programming notation and algorithms
that respect constraints on the depth of the tree and the number of nodes.

A key component of our algorithm is a specialised method for computing decision trees
of depth at most two. It takes advantage of the specific decision tree structure by performing
a precomputation on the data, which allows it to compute the optimal decision tree without
explicitly referring to the data. This offers a significantly lower computational complexity
compared to the generic case of Eq. 1, but is applicable in practice only to decision trees
of depth two. Thus, rather than following Eq. 1 until the base case, we stop the recursion
once a tree of depth two is required and invoke the specialised method.

A defining characteristic of search algorithms are pruning techniques, which detect areas
of the search that may be discarded without losing optimality. In the case of decision trees,
subtrees may be pruned based on the lower or upper bound2 of the number of misclassi-
fications of the given subtrees. If the lower bound shows that the misclassifications of a
currently considered subtree will result in a value greater than the set upper bound, the
subtree can be pruned, effectively reducing the search space. Note that the upper bound is
always set in a way to exclude trees that have a higher misclassification score than the best
tree found so far. The challenge when designing bounding techniques is to find the correct
balance between pruning power and the computational time required by the technique.

We introduce a novel similarity-based lower bounding technique (Section 4.4) that derives
a bound based on the similarity of the previously considered subtrees. We use our lower
bounding method in combination with the previous lower bounding approach introduced in
DL8.5 (Aglin et al. (2020a)), which we describe in the following text. Given a parent node,
once the optimal subtree is computed for one of the children, an upper bound can be posed
on the other child subtree based on the best decision tree known for the parent node and
the number of misclassifications of the optimal child subtree. If a subtree fails to produce a
solution within the posed upper bound, the upper bound is effectively a lower bound that
can be used once the same subtree is encountered again in the search. Our algorithm uses

2. Note that the term ‘upper bound’ is to not meant to be interpreted as an upper bound to the global
problem in the strict mathematical sense, but rather as a value that when exceeded leads to trees that
have more misclassifications than the currently best known tree during the execution of the algorithm.

10

MurTree: Optimal Decision Trees via Dynamic Programming and Search

a refinement of the described lower bound, which additionally takes into account all lower
bounds of the children of the parent node (Section 4.5.3).

The next subsection describes our techniques in more detail.

4.2 Main Algorithm Description

Algorithm 1 summarises our algorithm. It can be seen as an instantiation of Eq. 1 with
additional techniques to speed-up the computation. In further text, we use the convention
that infeasible trees (denoted with ∅) have an infinite misclassification score.

The algorithm takes as input a dataset D consisting of positive D+ and negative D−
instances, branch information (initially empty, see below for details), the depth and the
number of feature nodes, and an upper bound that represents a limit on the number of
misclassifications before the tree is deemed infeasible, i.e., not of interest for example since
a better tree is known. The output is an optimal classification tree respecting the input
constraints on the depth, size, and upper bound, or a flag indicating that no such tree
exists, i.e., the problem is infeasible. The latter occurs as a result of recursive calls (see
further), which pose an upper bound that is necessary to ensure the decision tree has a
lower misclassification value than the best tree found so far. The upper bound is initially
set to the misclassification score of a single classification node for the data and is updated
throughout the execution. We note that a tighter upper bound could be computed by using
a heuristic method at the start. The algorithm proceeds as follows.

(Alg. 1: lines 2-3) If the upper bound is negative, the algorithm reports infeasibility.
Negative bounds may be a result of the calls in the general case algorithm (Alg. 2 and 3).

(Alg. 1: lines 4-8) If no feature nodes are allowed, the algorithm returns a classification
node or reports infeasibility in case the classification node misclassification exceeds the
upper bound. The method LeafMisclassification computes the misclassification score of a
classification node given a dataset D as min{|D−|, |D+|}, and the method ClassificationNode
returns a tree consisting of a single classification node that minimises the misclassification
score on the dataset D, i.e., it assigns the majority class as its label.

(Alg. 1: lines 9-14) After basic tests, the cache is queried to check whether the optimal
subtree has already been computed as part of a previous recursive call. If the optimal
subtree is present in the cache, it is returned if the optimal subtree meets the upper bound
constraint, otherwise infeasibility is reported. Caching subtrees for trees where the depth is
constrained dates from DL8 (Nijssen and Fromont (2007, 2010)). In our work, the algorithm
additionally caches with respect to the depth and number of node constraints.

(Alg. 1: lines 16-21) Assuming that the optimal subtree is not in the cache, the cache
is updated using our similarity-based lower bound (Section 4.4). Naturally, the new lower
bound will replace the old cached bound only if it is of greater value. In case the lower
bounding procedure happens to recover an optimal solution for the subtree, it is returned
or infeasibility is reported if it exceeds the upper bound (see Section 4.4 for details).

(Alg. 1: lines 22-26) Afterwards, the algorithm attempts to prune based on the (possibly
updated) lower bound stored in the cache, or return a classification node if the lower bound
matches the misclassification score of the classification node.

(Alg. 1: lines 27-32) After all simpler operations have been performed, the algorithm
tests if the subproblem is a tree of depth at most two. A key aspect of our algorithm is that

11

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

trees of depth at most two are computed using a specialised procedure (Section 4.3). Should
this be the case, the specialised algorithm is used to solve the subtree and store in the cache
the solutions using one, two, and three feature nodes, regardless of the input requirements
(number of nodes and upper bound). This is done since running the specialised algorithm
produces the mentioned solutions as part of its procedure and it may be beneficial to store all
the results. Once the computation is done, the algorithm returns the corresponding subtree
given the input number of nodes if it is within the upper bound limit, otherwise reports
infeasibility.

(Alg. 1: line 33) Assuming neither of the above conditions took place, the algorithm
reaches the general (fourth) case from Eq. 1, where the search space is exhaustively explored
through a series of overlapping recursions. This is detailed in Alg. 2 and summarised below.

Algorithm 2: General Case. (Alg. 2: line 9) The algorithm considers each feature split.
(Alg. 2: line 10-11) If the current best solution is at the lower bound, the optimal decision
tree has been found and no further splits need to be considered. (Alg. 2: line 12-13) Feature
splits that do not discriminate at least one instance are skipped since they add no value to
the tree. This is summarised as follows.

Definition 1 (Degenerate Decision Trees) A decision tree is degenerate if it contains at least
one predicate node that does not discriminate a single training instance, i.e., the predicate
returns the same truth value for each of its training instances.

Proposition 2 (Pruning Degenerate Trees) Given a degenerate decision tree with n fea-
ture nodes and misclassification score s on the training data, there exists at least one other
decision tree with n′ < n feature nodes and misclassification score s′ ≤ s.

(Alg. 2: line 14-21) Recall that the number of allowed feature nodes is given as input.
Once a feature has been considered as the root node (line 9), the remaining node budget
is split among its children. For each feature split, the algorithm considers all possible
combinations of distributing the remaining node budget amongst its left and right subtrees.
Note that when considering no other node limit other than the limit imposed by the depth of
the tree, there is only one such combination, i.e., nmax = nmin in Algorithm 2. The algorithm
invokes a subroutine given in Algorithm 3 (see below), which computes the optimal tree
given the tree configuration (the feature of the root and the number of features in children
subtrees), or reports a local lower bound on the solution (Section 4.5.3).

(Alg. 2: line 22-28) Throughout the algorithm the best tree found so far is recorded (line
19). After exhausting all feature splits for the root node, if the best tree found is within the
upper bound limit, the best tree is the optimal decision tree for the considered subproblem
and it is stored in the cache. Otherwise, a lower bound is computed and stored in the cache.
The fact that no tree was found within the upper bound limit implies a lower bound for the
given subproblem is one greater than the input upper bound. The information is stored in
the cache in case the bound is needed in one of the other recursive calls. This bound was
introduced in DL8.5 Aglin et al. (2020a) and we provide a further refinement by taking into
account the local bounds (see the refined bound in Section 4.5.3).

At the end of Algorithm 2, the internal data structures related to our similarity lower
bound are updated using the dataset D (see Section 4.4) before returning the result of the

12

MurTree: Optimal Decision Trees via Dynamic Programming and Search

algorithm, i.e., either the optimal decision tree or an infeasible tree indicating that no such
tree exists within the input specification.

Algorithm 3: Subroutine to compute the optimal tree for a given tree configuration. For
a chosen tree configuration (the feature of the root and the number of features in children
subtrees), the algorithm determines the maximum depth of the left and right subtrees based
on the second case of Eq. 1. It then considers which subtree to recurse on first. Previous work
in DL8.5 fixed the order by exploring the left before the right subtree. In our algorithm, we
introduce a dynamic strategy that prioritises the subtree with the greater misclassification
score of its leaf node (Section 4.6). The intuition is that such a subtree is more likely to
result in a tree with more misclassifications, and if one subtree has a high misclassification
score it increases the likelihood of pruning the other sibling. For example, given a scenario
where there are two children, one that will result a zero misclassification score and one that
will result in an infeasible subtree, exploring the later first will remove the need to process
the former, whereas processing the nodes in reverse order will require solving both subtrees
instead of only one.

The algorithm then solves the subtrees in the chosen order. When computing the upper
bound of the first subtree, the lower bound of the second is taken into account together with
the global upper bound provided. If the first subtree is infeasible, a local lower bound is
returned using Eq. 15. Otherwise, the second subtree is computed. If both the left and right
subtree calls successfully terminated, the obtained decision tree is returned as the optimal
tree. Otherwise, a local lower bound is returned.

This concludes the main description of our algorithm. Before proceeding with detailing
each component of our algorithm, we reiterate the differences between our approach and
DL8.5 (Aglin et al. (2020a)) in light of the technical description given above.

Comparison with DL8.5 (Aglin et al. (2020a)). Algorithm 1 shares a similar layout as
in DL8.5, but there are notable differences that result in orders of magnitude speed-ups.
The differences can be summarised as follows: 1) we allow constraining the number of
feature nodes in addition to the depth, which is important in obtaining the smallest optimal
decision, e.g., to improve interpretability, or when hyper-parameter tuning to learn trees that
better generalise on unseen instances (Section 5.4), 2) our specialised algorithm (Section
4.3) is substantially more efficient at computing trees with depth two when compared to
the general algorithm in Algorithm 1 or DL8.5, 3) we propose a new lower bound based on
the similarity with previously computed subtrees to further prune the search space (Section
4.4), refine the previous lower bound (Section 4.5.3), and consider the lower bound when
imposing the upper bound on the subtrees, 4) our cache policy (Section 4.5) is extended to
support the number of feature nodes constraint and allows for incremental solving, allowing
reusing computation when solving trees with new depth or number of nodes, e.g., during
hyper-parameter tuning, 5) we dynamically determine which subtree to explore first based
on pruning potential (Section 4.6) rather than use a static strategy, 6) we discuss our novel
implementation of two caching strategies (based on branches and datasets) that leads to a
light-weight cache (Section 4.5), allowing us to take advantage of more advanced hashing
on the dataset rather than on branches as done in DL8.5, and 7) we propose a number of
extensions (see Section 4.8).

13

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Algorithm 1: MurTree.SolveSubtree(D, B, d, n, UB), the main algorithm loop
input: Dataset D = D+ ∪ D−, branch of the subtree B, depth d ∈ N0, number of feature

nodes n ∈ N0, upper bound on the misclassifications UB ∈ Z
output: Optimal classification tree within the input specification that minimises the

misclassification score on D
1 begin

// Prune based on the upper bound
2 if UB < 0 then
3 return ∅

// Base case, second case (Eq. 1): no feature nodes are possible
4 if d = 0 ∨ n = 0 then
5 if LeafMisclassification(D) ≤ UB then
6 return ClassificationNode(D)
7 else
8 return ∅

// Use cached subtrees if possible (Section 4.5)
9 if IsOptimalSubtreeInCache(D, B, d, n) then

10 T ← RetrieveOptimalSubtreeFromCache(D, B, d, n)
11 if Misclassifications(T) ≤ UB then
12 return T
13 else
14 return ∅

// Update the cache using the similarity-based lower bound (Section 4.4)
// Note that an optimal solution may be found in the process

15 updated_optimal_solution← UpdateCacheUsingSimilarity(D, B, d, n)
16 if updated_optimal_solution then
17 T ← RetrieveOptimalSubtreeFromCache(D, B, d, n)
18 if Misclassifications(T) ≤ UB then
19 return T
20 else
21 return ∅

// Prune if the lower bound exceeds the upper bound, since no tree can be found
within the upper bound requirement (Section 4.5.4)

22 LB ← RetrieveLowerBoundFromCache(D, B, d, n)
23 if LB > UB then
24 return ∅

// If the leaf node is already at the lower bound, no need to look further
25 if LB = LeafMisclassification(D) then
26 return ClassificationNode(D)

// Use Algorithm 4 for small trees from Section 4.3
// Note that the specialised algorithm updates the cache

27 if d ≤ 2 then
28 T ← SpecialisedDepthTwoAlgorithm(D, B, d, n)
29 if Misclassifications(T) ≤ UB then
30 return T
31 else
32 return ∅

// Fourth case (Eq. 1): exhaustively search using Algorithm 2
33 return MurTree.GeneralCase(D, B, d, n, UB)

14

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Algorithm 2: MurTree.GeneralCase(D, B, d, n, UB), the general (fourth) case
of Eq. 1 used in Algorithm 1

input: Dataset D = D+ ∪ D−, branch of the subtree B, depth d ∈ N0, number of feature
nodes n ∈ N0, upper bound on the misclassifications UB ∈ Z

output: Optimal classification tree within the input specification that minimises the
misclassification score on D.

1 begin
// Use a single classification node as an initial solution

2 Tbest ← ClassificationNode(D)
3 if LeafMisclassification(D) > UB then
4 Tbest ← ∅

// Find the lower bound stored in cache (Section 4.5.4)
5 LB ← RetrieveLowerBoundFromCache(D, B, d, n)

// RLB refers to the refined lower bound in Eq. 16
6 RLB ←∞

// Compute allowed number of nodes for child subtrees
7 nmax ← min{2(d−1) − 1, n− 1}
8 nmin ← (n− 1− nmax)
9 for splitting feature f ∈ F do

// If the current best node is the optimal node, stop
10 if Misclassifications(Tbest) = LB then
11 break

// Nondiscriminary splits should be avoided
12 if |D(f)| = 0 ∨ |D(f)| = 0 then
13 continue
14 for nL ∈ [nmin, nmax] do
15 nR ← n− 1− nL

// Impose an upper bound UB′ that ensures that a feasible tree will have
fewer misclassifications than the best tree found so far Tbest

16 UB′ ← min{UB,Misclassifications(Tbest)− 1}
// Use Algorithm 3 to compute subproblem

17 (T, LBlocal)←
MurTree.SolveSubtreeGivenRootFeature(D, B, f, d, nL, nR, UB′)

18 if T 6= ∅ then
19 Tbest ← T
20 else
21 RLB ← min{RLB,LBlocal}

// Cache the optimal solution...
22 if Misclassifications(Tbest) ≤ UB then
23 StoreOptimalSubtreeInCache(Tbest,D, B, d, n)

// ...or record the lower bound (Section 4.5.3)
24 else
25 LB ← max{LB,UB + 1}
26 if RLB <∞ then
27 LB ← max{LB,RLB}

// Store the lower bound in the cache (Section 4.5.3)
28 StoreLowerBoundInCache(D, B, d, n, LB)

29 ReplaceDatasetForSimilarityBound(D, B, d)
30 return Tbest

15

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Algorithm 3:MurTree.SolveSubtreeGivenRootFeature(D, B, froot, d, nL, nR, UB):
a subroutine used as part of Algorithm 2
input: Dataset D = D+ ∪ D−, branch of the subtree B, root feature froot ∈ F ,

depth d ∈ N0, number of feature nodes in left and right subtree
nL, nR ∈ N0, upper bound on the misclassifications UB ∈ Z

output: An optimal decision tree with feature froot as its root that satisfies the
input specification and minimises the misclassification score on D. If no
such tree exists, a lower bound on the misclassification score is returned.

1 begin
// Get the depth and branches of the children subtrees

2 dL ← min(d− 1, nL)
3 dR ← min(d− 1, nR)
4 (BL, BR)← GetChildBranches(B, froot)

// Dynamic order: process left subtree first (Section 4.6)

5 if LeafMisclassification(D(f root)) > LeafMisclassification(D(froot)) then
6 UBL ← UB −RetrieveLowerBoundFromCache(D(f root), BR, dR, nR)

7 TL ←MurTree(D(f root), BL, dL, nL, UBL)
// No need to compute the right subtree if the left child is infeasible

8 if TL = ∅ then
9 LBlocal ← compute local bound (Eq. 15)

10 return (∅, LBlocal)

11 UBR ← UB −Misclassifications(TL)
12 TR ←MurTree(D(froot), BR, dR, nR, UBR)

// If both children are feasible, return the optimal solution

13 if TR 6= ∅ then
14 T ← tree with root feature froot and children TL and TR
15 return (T,Misclassifications(T))

16 else
17 LBlocal ← compute local bound (Eq. 15)
18 return (∅, LBlocal)

19 else
// Dynamic post-order: process right subtree first (Section 4.6)

20 Process right subtree analogously as above

4.3 Specialised Algorithm for Trees of Depth Two

An essential part of our algorithm is a specialised method for computing optimal decision
trees of depth two. The procedure is repeatedly called in our algorithm, i.e., each time a
tree of at most depth two needs to be optimally solved. In the following, we present an
algorithm that achieves lower complexity than the general algorithm (Eq. 1 and Prop. 3)
when considering trees with depth two.

Prior to presenting our specialised algorithm, we discuss the complexity of computing
decision trees of depth two using Eq. 1 as the baseline.

16

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Proposition 3 Computing the optimal classification tree of depth two using Eq. 1 can be
done in O(|D| · |F|2) time.

Assume that splitting the data based on a feature node is done in O(|D|) time. Eq. 1
considers |F| splits for the root and for each feature performs 2 · |F| splits for its children.
This results in 2 · |F|2 splits and an overall runtime of O(|D| · |F|2), proving Proposition
3. In practice, partitioning the dataset based on a feature can be sped-up using bitvector
operations and caching subproblems (Aglin et al. (2020a); Verhaeghe et al. (2019); Hu et al.
(2019)), but the complexity remains as this only impacts the hidden constant in the big-O.

In the following, we present an algorithm with lower complexity and additional prac-
tical improvements which, when combined, reduce the runtime of computing the optimal
classification tree of depth two by orders of magnitudes.

Algorithm 4 provides a summary. The input is a dataset D and the output is the
optimal classification tree of depth two with three feature nodes that minimises the number
of misclassified instances.

The specialised procedure computes the optimal decision tree in two phases. In the first
step, it computes frequency counts for each pair of features, i.e., the number of instances
in which both features are present. In the second step, it exploits the frequency counts to
efficiently enumerate decision trees without needing to explicitly refer to the data. This
provides a substantial speed-up compared to iterating through features and splitting data
as given in the dynamic programming formulation (Eq. 1) for decision trees of depth two.
We now discuss each phase in more detail and present a technique to incrementally compute
the frequency counts. We note that related counting and incremental computation ideas
have been used in classical algorithms, such as counting sort, and frequent itemset mining
methods, e.g., Zaki and Gouda (2003).

4.3.1 Phase One: Frequency counting (Algorithm 4, Lines 2-9)

Let FQ+(fi) and FQ+(fi, fj) denote the frequency counts in the positive instances for a
single feature and a pair of features, respectively. The functions FQ−(fi) and FQ−(fi, fj)
are defined analogously for the negative instances.

A key observation is that based on FQ(fi) and FQ(fi, fj), we may compute FQ(fi),
FQ(fi, fj), FQ(fi, fj), and FQ(fi, fj). This is done as follows:

FQ+(fi) = |D+| − FQ+(fi) (2)

FQ+(fi, fj) = FQ+(fi)− FQ+(fi, fj) (3)

FQ+(fi, fj) = FQ+(fj)− FQ+(fi, fj) (4)

FQ+(fi, fj) = |D+| − FQ+(fi)− FQ+(fj) + FQ+(fi, fj) (5)

The equations make use of the fact that the features are binary. For example, Eq. 2
states that if the total number of positive instances is |D+| and we computed the frequency
count FQ+(fi), then the frequency count FQ+(fi) is the number of instances in which fi

17

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Algorithm 4: Specialised algorithm for computing optimal classification trees of
depth two with three nodes
input: Binary dataset D = D+ ∪ D−
output: Optimal classification tree of depth two with three feature nodes that

minimises the misclassification score on D
1 begin
2 ∀fi : FQ+(fi)← 0 ∧ FQ−(fi)← 0
3 ∀fi, fj , i < j : FQ+(fi, fj)← 0 ∧ FQ−(fi, fj)← 0

/* Step 1: construct the frequency counter of positive features */

4 for fv ∈ D+ do
5 for fi ∈ fv do
6 increment FQ+(fi)
7 for fj ∈ fv s.t. i < j do
8 increment FQ+(fi, fj)

9 FQ− is computed as above using D−
/* Step 2: construct the optimal decision tree based on the frequency counters

FQ+ and FQ− */

/* Compute the best left and right subtrees for each feature */

10 for fi ∈ F do
11 for fj ∈ F s.t. i 6= j do
12 CS(fi, fj)← min{FQ+(fi, fj), FQ

−(fi, fj)}
13 CS(fi, fj)← min{FQ+(fi, fj), FQ

−(fi, fj)}
/* Compute branch with fi as root and fj as left child */

14 MSleft(fi, fj)← CS(fi, fj) + CS(fi, fj)
15 if BestLeftSubtree(fi).misclassification > MSleft(fi, fj) then
16 BestLeftSubtree(fi).misclassification←MSleft(fi, fj)
17 BestLeftSubtree(fi).feature← fj
18 The best right subtree with fi as the root and fj as the right child is

computed analogously as above
/* Compute the best tree by taking the feature with the minimum sum of

misclassification of its children */

19 best_tree← argminfi∈F{BestLeftSubtree(fi).misclassification+
BestRightSubtree(fi).misclassification}

20 return best_tree

does not appear, i.e., the difference between |D+| and FQ+(fi). Similar reasoning is applied
to the other equations and computing the frequency count FQ− is analogous.

The following proposition summarises the runtime of computing FQ+(fi, fj).

Proposition 4 (Computational Complexity of Phase One) Let m+ denote the maximum
number of features in any single positive instance. Frequency counts FQ+(fi, fj) can be
computed in O(|D+| ·m2

+) time with O(F2) memory.

18

MurTree: Optimal Decision Trees via Dynamic Programming and Search

An efficient way of computing the frequency counts is to represent the feature vector as
a sparse vector, and iterate through each instance in the dataset and increase a counter for
each individual feature and each pair of features. This leads to the proposed complexity
result. The additional memory is required to store the frequency counters, allowing to query
a frequency count as a constant time operation. Note that the pairwise frequency count is
symmetric, i.e., FQ+(fi, fj) = FQ+(fj , fi), which requires only to consider fi and fj in the
frequency count for i < j. This results in a smaller hidden constant in the big-O notation.

4.3.2 Phase Two: Optimal tree computation (Algorithm 4, Lines 10-19)

Recall that a classification node is assigned the positive class if the number of positive
instances exceeds the number of negative instances, otherwise the node class is negative.
Let CS(fi, fj) be the classification score for a classification node with all instances of D
containing both features fi and fj . The classification score is then computed as follows.

CS(fi, fj) = min
{
FQ+(fi, fj), FQ

−(fi, fj)
}

(6)

Given a decision tree with depth two, a root node with feature froot, a left and right
children with features fleft and fright, we may compute the misclassification score in constant
time assuming the frequency counts are available. Let MSleft and MSright denote the
misclassification scores of the left or right subtree. The computations are as follows.

MSleft(froot, fleft) = CS(froot, fleft) + CS(froot, fleft) (7)

MSright(froot, fright) = CS(froot, fright) + CS(froot, fright) (8)

The total misclassification score of the tree is the sum of misclassifications of its children.
As the number of misclassification can be computed solely based on the frequency counts,
we may conclude the computational complexity.

Proposition 5 (Computational Complexity of Phase Two) Given the frequency counts FQ+

and FQ−, the optimal subtree tree can be computed in O(|F |2) time with O(|F |) memory.

It follows from Property 1 that given a root node with feature froot, the left and right
subtrees can be optimised independently. Therefore, it is sufficient to compute for each
feature its best left and right subtrees, and take the feature with the minimum sum of its
child misclassifications. To compute the best left and right feature for each feature, the
algorithm maintains information about the best left and right child for each feature found
so far, leading to the memory requirement from Proposition 5. The best features are initially
arbitrarily chosen. Recall that from Property 1 it follows that the left and right subtree can
be optimised independently:

min
fleft,fright∈F

MS(froot, fleft, fright) = min
fleft∈F

MSleft(froot, fleft)+ min
fright∈F

MSright(froot, fright)

Therefore, rather than considering triplets of features (froot, fleft, fright), it iterates
through each pair of features (froot, fchild), computes the misclassification values of the
left subtree using Eq. 7, updates the best left child for feature froot, and performs the same

19

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

procedure for the right child. After iterating through all pairs of features, the best left and
right subtree is known for each feature, leading to the proposed complexity. The optimal
decision tree can then be computed by finding the feature with minimum misclassification
cost of its combined left and right misclassification.

After discussing each individual phase, we may conclude the overall complexity:

Proposition 6 (Computational Complexity of Depth-2 Decision Trees) Let m be the upper
limit on the number of features in any single positive and negative instance. The number of
operations required to computing an optimal decision tree is O(|D| ·m2+ |F|2) using O(F2)
auxiliary memory.

The result follows by combining Propositions 4 and 5. The obtained runtime is sub-
stantially lower at the expense of using additional memory compared to the dynamic pro-
gramming formulation (Eq. 1) outlined in Proposition 3. Note that instances with binary
features are naturally sparse. If the majority of instances contain more than half of the
features, then as a preprocessing step all feature values may be inverted to achieve sparsity
without loss of generality. The advantage of our approach is exemplified with lower sparsity
ratios, i.e., cases where each vector contains a small number of features compared to the
total number of features.

There are several additional points to note, which are not shown in Algorithm 4 to keep
the pseudo-code succinct.

The above discussion assumed the feature node limit was set to three. The algorithm
can be modified for the case of two feature nodes, keeping the same complexity, while in the
case with only one feature node the pairwise computations are no longer necessary leading
to O(|D| ·m+ |F |) complexity, where m is the upper limit on the number of features in any
single positive and negative instance. As an optimisation technique, each time the algorithm
is invoked, we extract the solutions using one, two, and three nodes and store all of these
in cache (see Section 4.5), regardless of the initial node count. The reasoning is that it is
likely the other node counts will be considered in the future and the extra computation
performed to capture all solutions is negligible. Furthermore, the algorithm is implemented
to lexicographically minimise the misclassifications and the number of nodes.

To improve the performance in practice, the algorithm iterates through pairs of features
(fi, fj) such that i < j. After updating the current best left and right subtree feature using
fi as the root and fj as the child, the same computation is done using fj as the root and fi as
the child. Compared to the pseudo-code in Algorithm 4, this cuts the number of iterations
by half, but each iteration does twice as much work, which overall results in a speed-up in
practice. Moreover, rather than computing the best tree in a separate loop after computing
the best left and right subtrees for each feature, this is done on the fly by keeping track of
the best subtree encountered so far during the algorithm.

Specialised algorithm for decision trees of depth three. We considered computing decision
trees with depth three using a similar idea. Even though this results in a better big-O
complexity for trees of depth three, albeit requiring O(F3) memory, our preliminary results
did not indicate practical benefits. Including additional low-level optimisation might improve
the results, but for the time being we leave this as an open question.

20

MurTree: Optimal Decision Trees via Dynamic Programming and Search

4.3.3 Incremental Computation

The specialised method for computing decision trees of depth two is repeatedly called in the
algorithm. For each call, the algorithm is given a different dataset that is a result of applying
a split in one of the nodes in the tree. The key observation is that datasets which differ only
in a small number of instances result in similar frequency counts. The idea is to exploit
this by only updating the necessary difference rather than recomputing the frequency counts
from scratch. Such a strategy resembles techniques used in the frequent itemset community
(Zaki and Gouda (2003)). We further elaborate on the idea used in our algorithm.

The key point is to view the previous dataset Dold and the new dataset Dnew in terms
of their intersection and differences.

Observation 1 Given two datasets Dnew and Dold, let their difference be denoted as Din =
Dnew \Dold and Dout = Dold \Dnew and their intersection as Dsame = Dnew ∩Dold. We may
express the datasets as Dnew = Din ∪ Dsame and Dold = Dout ∪ Dsame

We first note that set operations can be done efficiently for datasets.

Proposition 7 (Computational Complexity of Set Operations on Datasets) Given a dataset
D and two of its subsets Dnew ⊆ D and Dold ⊆ D, the sets Din = Dnew − Dold and Dout =
Dold −Dnew can be computed in O(|Dnew|+ |Dold|) time using O(|D|) memory.

The above can be realised by associating each instance of the original dataset D with
a unique ID and storing positive and negative instances in their corresponding positive
and negative arrays sorted by ID. Once these conditions are met, a linear pass through
the datasets may determine the differences, and accordingly the frequency counts may be
updated incrementally.

Proposition 8 (Computational Complexity of Incremental Frequency Computation) Let m
denote the maximum number of features in any considered instance. Given the frequency
counts FQold of a previous dataset Dold, a new dataset Dnew, and their differences Din and
Dout, the frequency counts FQnew of the new dataset Dnew can be computed in O((|Din| +
|Dout|) ·m2) time.

To show the complexity, note the difference between FQold and FQnew.

Observation 2 Let K(FQ) denote the set of instances used to compute the frequency counts
FQ. It follows that K(FQold) = Dout ∪ Dsame and K(FQnew) = Din ∪ Dsame.

Consider taking FQold and applying a series of operations to reach the new frequency
counts FQnew. The complexity result of Proposition 8 follows from the previous observations
and the following:

Observation 3 The frequency counts FQold already capture the counts for instances Dsame

Observation 4 The frequency counts FQold need to be incremented using instances Din

Observation 5 The frequency counts FQold need to be decremented using instances Dout

21

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Using the incremental update procedure is sensible only if the number of updates required
is small compared to recomputing from scratch. In our algorithm, in each call to compute a
decision tree of depth two, the algorithm incurs an overhead (Proposition 7) to compute the
differences between the old and new dataset. It proceeds with the incremental computation
if |Din ∪ Dout| < |Dnew|, and otherwise computes from scratch.

Our algorithm keeps two sets of frequency counters, which are tied to two different
datasets D1

old and D2
old. When our method is called, the algorithm uses as a starting point

the previous frequency counter that requires the least number of operations to incrementally
construct the new new frequency counter for the new dataset Dnew. Upon completing the
frequency counter computation, the new counter will replace the chosen old one.

The overhead of computing the number of operations required is negligible compared to
the overall complexity of computing the optimal tree of depth two (Proposition 6), but the
benefits can be significant if the difference is small. Assuming that two neighbouring features
are similar, two successive features considered for splitting are likely to lead to require only
a small number of modifications.

The previous paragraph motivates the choice of only storing two frequency counters.
When computing a tree of depth three, the data is split amongst the left and right subtree.
Whereas the data passed to the left and right subtree may be very different from one another,
the data passed to the left subtree during the next split may not be substantially different
from the data used in current split in the left subtree (similarly for the right subtree). Recall
that the specialised depth two algorithm would be called on the child subtree sequentially. In
order to preserve the frequency counters of both children in between two successive splits,
the heuristic choice was made to store two sets of frequency counters. As shown in the
experimental section, the incremental strategy provides notable runtime reductions.

4.4 Similarity-Based Lower Bounding

We present a novel lower bounding technique that does not rely on the algorithm having
previously searched a specific path, as opposed to the cache-based lower bound introduced in
the later section. Given a dataset Dnew for a node, the method aims to derive a lower bound
by taking into account a previously computed optimal decision tree using the dataset Dold.
It infers the bound by considering the difference in the number of instances between the
previous dataset Dold and the current dataset Dnew. The bound is used to prune portions of
the search space that are guaranteed to not contain a better solution than the best decision
tree encountered so far in the search. We note that our approach is related to the lower
bound for decision lists (Angelino et al. (2017)) and diffset computation (Zaki and Gouda
(2003)). We present the ideas as an application to decision trees using elementary algebra.

Assume that for both datasets, the depth and the number of allowed feature nodes
requirements are identical. As in the previous section, we define the sets Din = Dnew \Dold,
Dout = Dold \ Dnew, and Dsame = Dnew ∩ Dold.

Given the limit on the depth d and number of features nodes n, a dataset Dnew, and a
dataset Dold with T (Dold, d, n) as the misclassification score of the optimal decision tree of
Dold (recall Eq. 1), we define the similarity-based lower bound,

LB(Dnew,Dold, d, n) = T (Dold, d, n)− |Dout|, (9)

22

MurTree: Optimal Decision Trees via Dynamic Programming and Search

which is a lower bound for the number of misclassifications of the optimal decision tree for
the dataset Dnew of a tree of depth d with n feature nodes. Formally:

Proposition 9 LB(Dnew,Dold, d, n) ≤ T (Dnew, d, n).

As a result, subtrees with a lower bound greater than its upper bound are immedi-
ately pruned, effectively speeding up the search. To show that Proposition 9 is indeed a
lower bound, let T (D) = T (D, d, n), note that removing Dout from Dold may reduce the
misclassification cost by at most |Dout|:

T (Dold)− T (Dold \ Dout) = T (Dold)− T (Dsame) ≤ |Dout|. (10)

T (Dold)− |Dout| ≤ T (Dsame). (11)

Adding instances to Dsame cannot decrease the misclassification score T (Dsame):

T (Dnew) = T (Dsame ∪ Din) ≥ T (Dsame) (12)

Combining Eq. 11 and 12 we arrive at:

T (Dold)− |Dout| ≤ T (Dnew) (13)

LB(Dnew,Dold, d, n) ≤ T (Dnew) (14)

which shows the derivation of Proposition 9.
As implied in the previous text, a set of previous datasets and their optimal values need

to be kept available for comparison once a new dataset is considered. This give rise to a
trade-off: keeping more datasets increases the probability of deriving a greater lower bound
at the expense of computational time for each lower bound computation.

Our algorithm stores two datasets for each depth value. When computing the bound
for a new dataset with depth d, the two datasets stored at depth d are used to compute
the similarity-based lower bound, and the stronger bound of two is taken. Once a subtree
has been exhaustively searched with depth d, its corresponding dataset replaces the most
similar dataset stored at depth d. Similarity between datasets is formally computed as
|Dout| + |Din|. The intuition is to ensure that given two successive splits at depth d, the
resulting left and right subtree datasets of the first split will be used to compute the bound
of the dataset that come in the next split. This is similar reasoning as in the case of the
incremental computation in the specialised algorithm (see end of Section 4.3.3).

If the datasets Dold and Dnew are equal, then any result for dataset Dold can be directly
used for Dnew. As discussed in the next section, optimal solutions and lower bounds for
subtrees are stored in the cache. When computing a similarity-based lower bound for a new
dataset at depth d, if it is detected that it is equal to one of the two stored datasets at depth
d, then the optimal solution and lower bounds of the stored datasets are fully transferred
to the new dataset. Note that this situation may only occur when using a branch-based
caching (see next section).

As shown in the experimental results (Section 5.2.2), the use of the similarity-based lower
bound reduces the runtime for all datasets, with only a few exceptions.

23

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

4.5 Caching of Optimal Subtrees (Memoisation)

As is common in dynamic programming algorithms, a caching or memoisation table is main-
tained to avoid recomputing subproblems. In our case, information about computed optimal
subtrees is stored. This is used to retrieve a subtree that has already been computed, pro-
vide lower bounds, and reconstruct the optimal decision tree at the end of the algorithm.
Caching has been used in previous works (Nijssen and Fromont (2007, 2010); Aglin et al.
(2020a); Verhaeghe et al. (2019); Hu et al. (2019); Lin et al. (2020)).

We adapt and extend the caching techniques from the literature for our algorithm, i.e.,
our cache takes into account constraints both on depth and the number of nodes. We discuss
two caching techniques, namely branch and dataset caching, that have been introduced
in DL8 (Nijssen and Fromont (2007, 2010)) and (variants) have appeared in later works.
Whereas the different techniques were viewed as a trade-off between computational time
and efficiency, we show that in our realisation both techniques take only a small fraction of
the total runtime, allowing us to use dataset caching without incurring notably drawbacks.

Formally, we define the cache as a mapping of a subtree (represented as a branch or
dataset, see below) to a set of cache entries. Each entry contains information on the lower
bound and/or the optimal root node of the subtree under constraints on the depth and
number of feature nodes, which includes the root feature, the number of feature nodes in its
left and right children, and the misclassification score. Initially, the cache is empty and is
populated throughout the algorithm. As we employ a specialised algorithm for depth two
trees, we do not cache the lowest decision tree layer. This leads to fewer subtree entries in the
cache, saving space and increasing efficiency. We note that given our techniques described
below, the overhead of look-up a subtree in our cache is kept low.

A key concept is the hash function of a subtree. We discuss the branch and dataset
representations, corresponding hash functions, and our realisation of these ideas.

4.5.1 Subtree Hashing Based on Branches

The key observation is that given a path from the root to any given node, each permutation
of the feature nodes on the path results in the same dataset for the node furthest from the
root, e.g., D(fi)(fj) = D(fj)(fi). This allows representing a path as a set of features, e.g.,
{fi, fj}. The path of a subtree is called a branch. We reiterate that each subtree may be
associated with exactly one branch, while a single branch of length k may be linked to k!
subtrees. This is valuable since it implies that the computation of a single subtree may be
shared amongst each k! subtree associated with the same branch. We note that the branch
representation has been introduced in DL8 using the term itemset.

Our branch-based cache consists of an array of hash tables: each branch of length k is
stored in the k-th hash table. We stored the branch as a sorted array, where features are
converted into integers based on their index and polarity3, i.e., given a feature f with index
i, we assign the value 2i+ 1 to the positive feature f and 2i to the negative feature f . We
use a conventional hash function4 on integer arrays within the hash tables, i.e., given an
array A of length n, its hash is computed using Algorithm 5.

3. Such a conversion is borrowed from the SAT solving literature.
4. E.g., see the function template hash_combine in the C++ Boost library.

24

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Algorithm 5: A standard hash function for an array of integers
input: Array of integers A = [a1, a2, ..., an]
output: An integer k representing the hash value of A

1 begin
2 k ← n
3 for i ∈ [1, n] do
4 k ← k ⊕ (ai + 0x9e3779b9 + 64k + k/4)
5 return k

The advantage of a branch representation is its compactness, i.e., each subtree is repre-
sented only using a few features, allowing efficient hash function computation. The downside
is that different branches may lead to the same dataset (subproblem), but this will not be
detected when using caching based on branches, leading to unnecessary recomputation.

4.5.2 Subtree Hashing Based on Datasets

An alternative to the branch representation is to use more general representations. This is
desirable since once a lower bound or optimal solution has been computed for a subtree,
the results may be shared amongst any future subtree that optimises exactly the same
subproblem rather than only sharing with subtrees with equivalent branches, alleviating the
drawback of the branch representation. The downside is that more general representations
may be computationally intensive.

DL8 (Nijssen and Fromont (2007, 2010)) proposed to compute the closure of a branch
(itemset): given a branch, its closure is the set of features that appear in all instances of the
dataset corresponding to the branch. The closure is then used as the subproblem represen-
tation. Note that the branch is a subset of its closure. Such an approach correctly identifies
all equivalent subproblems, addressing the issue of the branch representation. The draw-
back is that computing the closure requires additional computation, providing an important
trade-off that must be considered. A related idea has been recently proposed by Lin et al.
(2020), where the subproblem is represented using a bitset, i.e., the i-th bit is set is the i-th
instance is present.

In our work, we introduce an alternative representation that uses the dataset as the
subproblem representation and discuss several techniques that keep the computational time
of caching low.

At the start of the algorithm, each instance is assigned a unique identifier in the form of
an integer. A dataset contains an array for each class and instances within each array are
kept sorted with respect to their identifier. Given such data structures, determining whether
two datasets D1 and D2 are identical may be done in linear time with respect to the number
of present instances, i.e., O(|D1|).

Our cache consists of an array of hash tables, where datasets with m instances are stored
in the m-th hash table. We use instance identifiers and Algorithm 5 to compute the hash
value of a dataset, where the dataset is treated as an array with instance identifiers as
integers. The hash is computed only once and stored in the dataset for further use.

In our experiments, the effectiveness of dataset caching showed better performance than
branch caching and the additional memory requirements were not an issue.

25

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

For both caching ideas we introduced a further optimisation to speed-up in practice. For
each array of array of hash tables, the last two calls are stored in a temporary buffer. Before
searching in the hash table, the cache first looks up the temporary buffer in case the item
sought for is already present. This was done since the same cache call may be performed
many times during the algorithm, e.g., after splitting the dataset, the algorithm select the
node allocation to the left and right child, but each cache call will lead to the same cache
entry.

4.5.3 Storing Subtrees and Lower Bounds in the Cache

Information is stored in cache once a subtree has been exhaustively explored. We consider
two scenarios:

Scenario #1: a decision tree has been found within the upper bound. In this situation, the
computed subtree is optimal and the corresponding entry is stored/updated using the root
node assignment as the optimal assignment, the lower bound is set to the misclassification
score, noting the depth and feature node limit that was given when computing the subtree.
In the event that the algorithm determines that the minimum misclassification score may
be achieved using fewer nodes than imposed by the node limit, we may use the following
proposition to create additional cache entries:

Proposition 10 Let T (D, d, n) be the misclassification score of the optimal decision tree
for the dataset D with depth limit d and node limit n. If there exists an n′ < n such that
T (D, d, n′) = T (D, d, n), then T (D, d, i) = T (D, d, n) for i ∈ [n′, n].

Similar reasoning is used to populate entries in case a smaller depth is used than allowed.
We note that during the algorithm, a given branch or dataset may be only exhaustively
explored once, depending on the subtree representation used in the cache. The next time
a branch or dataset is encountered, its corresponding solution is retrieved from the cache
(Section 4.5.4).

Scenario two: no decision tree has been found within the upper bound. It follows that the
lower bound on the number of misclassifications for the subtree is at least one greater than
the upper bound. This is the lower bounding reasoning introduced in DL8.5 (Aglin et al.
(2020a)).

In this work, we note a slightly stronger lower bound. Let LB(D, d, n) be the lower
bound for the number of misclassifications of an optimal decision tree for the dataset D
with n nodes and depth d, i.e., T (D, d, n) ≥ LB(D, d, n). We introduce the following refined
lower bound RLB:

LBlocal(D, f, d, nleft, nright) = LB(D(f, d− 1, nleft)) + LB(D(f, d− 1, nright)) (15)

RLB(D, d, n) = min{LBlocal(D, f, d, nleft, nright) | f ∈ F ∧ nleft + nright = n− 1} (16)

The bound RLB considers all possible assignments of features and numbers of feature
nodes to the root and its children, and selects the minimum sum of the lower bounds of

26

MurTree: Optimal Decision Trees via Dynamic Programming and Search

its children. It follows that no decision tree may have a misclassification score lower than
RLB. We combine RLB with the upper bound to obtain a lower bound for the case where
no decision tree with less than the specified upper bound UB could be found:

T (D, d, n) ≥ max{RLB(D, d, n), UB + 1}. (17)

The proposed bound generalises the bound from DL8.5 (Aglin et al. (2020a)), which only
considers the second expression on the right-hand side of Eq. 17 to derive a lower bound
when no tree could be found within the given upper bound.

Once the lower bound has been computed, it is recorded in the cache for the subtree
along with the constraints on the depth and number of feature nodes, and the optimal
assignment is set to null.

4.5.4 Retrieving Subtrees and Lower Bounds from the Cache

When considering a new subtree, the algorithm searches for set of entries corresponding to
the subtree using hash tables, as discussed at the beginning of the section.

A lower bound for the current tree may be inferred from the bounds of the larger tree,
formally summarised in the following proposition.

Proposition 11 Given the dataset D and depth bound d and the maximum number of fea-
ture nodes n, a bound for a larger tree is a bound for the current tree, i.e., ∀n′ ≥ n, d′ ≥ d :
LB(D, d′, n′) ≤ LB(D, d, n).

When retrieving a lower bound for trees that have no cache entries, Proposition 11 allows
inferring a lower bound from larger trees that may be stored in the cache. Note that the
lower bounds are nonincreasing with size, i.e.,

LB(D, d′, n′) ≤ LB(D, d, n) n′ ≥ n ∧ d′ ≥ d (18)

The tightest bound is returned when retrieving the lower bound. If there are no appli-
cable entries in the cache, the trivial lower bound of zero is returned. For example, given
a dataset D(f1, f2) with the node limit set to five and depth three, if there is no subtree
for the given size in the cache but there is an entry when the node limit was set to six and
seven with the same depth, then the lower bound using six nodes is the tightest valid lower
bound available for the tree with five nodes.

4.5.5 Incremental Solving

We label the process of querying the algorithm to compute progressively smaller or larger
decision trees as incremental solving. For example, once the algorithm has computed an
optimal decision tree for a given depth and number of nodes, the user may be interested
in a tree with more or fewer nodes. Such situations also occur as part of hyper-parameter
tuning. Our cache naturally supports these types of queries. Computations used for a tree
with a given depth and node count may be reused when the algorithm is run with a different
set of depth and node count values.

27

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

4.5.6 Recovering the Optimal Decision Tree

Recall that for each subtree optimally computed, only the root node is stored in the cache.
When necessary, the complete subtree may be reconstructed as a series of queries to the
cache, where each time a single node is retrieved, as introduced in DL8 (Nijssen and Fromont
(2007, 2010)). In our algorithm, there is an exception to the mentioned tree reconstruction
procedure. After solving a tree of depth two, the root node is stored, but not its children.
During the algorithm these are not necessary, but the children are needed when reconstruct-
ing the optimal decision tree found at the end. In this case, the required child nodes are
recomputed using Algorithm 4. This avoids storing an exponential number of entries (re-
call that the number of paths increases exponentially with the depth) which do not serve
a purpose other than the final reconstruction. The resulting computational overhead of
recomputing the solutions at the end is negligible compared to the overall execution time.

4.6 Node Selection Strategy

Given a feature for a node and the size allocation for its children, the algorithm decides on
which child node to recurse on first. In DL8.5, the algorithm always visits the left subtree
before the right subtree.

Our search strategy is a variant of such post-order traversal, labelled dynamic ordering,
which dynamically decides which child node to visit first. The idea is to prioritise the child
node that has (heuristically) the higher number of misclassifications, which in turn leads to
a higher chance to prune to the other sibling. The potential is roughly approximated by
the number of misclassifications of its corresponding classification node. In our experiments
such a strategy shows consistent improvement over a static post-order traversal used in
DL8.5 (Aglin et al. (2020a)). We considered a more complex approach that selected the
subtree with the larger gap between the upper and lower bound, however this did not leave
to improvements over the dynamic strategy ordering.

Ordering search nodes according to a heuristic is common in combinatorial optimisation,
e.g., variable selection in integer/constraint programming, and in the data mining literature,
e.g., Zaki (2000); Zimmermann and De Raedt (2009). The above idea represents such an
idea applied to optimal decision trees.

4.7 Feature Selection

For a given node, each possible tree configuration (a feature and the size of its children) is
considered one at a time, unless the node is pruned or the optimal solution is retrieved from
the cache (see Subsection 4.5). The order in which tree configurations are explored may
have an impact on performance, as evidenced in search algorithms in general.

We considered three feature selection strategies from the literature, which order the
features according to the following: 1) Gini coefficient of the features, 2) in order of feature
appearance in the dataset, and 3) randomly order features. As discussed in (Section 5.2.3),
in our experiments the inorder variant was selected as the default option.

28

MurTree: Optimal Decision Trees via Dynamic Programming and Search

4.8 Extensions

The core algorithm has been presented in the previous sections. We now discuss several
extensions that use the presented core algorithm as a basis.

4.8.1 Multi-Classification

To extend the algorithm for multi-classification, the key step is to generalise Algorithm
4 to compute frequency counters for each class. Equations analogous to Equations 2—8
are devised to compute the misclassification scores. Since classes partition the data, the
complexity results remain valid for multi-classification.

4.8.2 Regression

As in multi-classification, the main step in extending our method to work with regression is
to adapt the specialised algorithm for computing depth two trees (Algorithm 4). Consider
regression trees where leaf nodes are assigned fixed values that are computed as the average
value of their corresponding training instances. The specialised algorithm for depth two
trees, in addition to the frequency counters, maintains a similar structure where the total
sum of target values of each pair of features is stored, and analogous equations to Equations
2—8 are used. Note that our similarity-based lower bounds, in their current form, would
not be applicable to regression.

4.8.3 Sparse Objective

Apart from minimising the misclassification score, the sparse objective is a popular metric
for decision trees, which considers a weighted linear combination of the misclassification
score and the number of feature nodes. This objective was used in the original CART paper
(Breiman et al. (1984)) and discussed in some of the other optimal decision tree works
(Bertsimas and Dunn (2017); Hu et al. (2019); Lin et al. (2020)). Formally, the sparse
objective is specified as follows:

misclassifications+ α× nodes, (19)

balancing the size of the decision tree against the misclassifications using the sparse co-
efficient α ∈ N0. The intuition is that adding a node to a decision tree should only be
considered if it leads to a reduction in the misclassifications by at least α. The depth may
also be penalised in a similar manner.

To support the sparse objective, we perform a sequence of queries to our algorithm,
each time modifying the number of nodes and imposing an upper bound according to the
new number of nodes considered, illustrated in Algorithm 6. Given our caching mechanism,
computations in between calls are reused, even if the sparse weight α is changed (see below).

Note that, as an emerging functionality, running Algorithm 6 with α = 0 considers all
possible trees given the upper values on the depth and number of nodes and stores the
computation in the cache. As a result, the optimal tree given any α may be computed
immediately, as all the necessary subtrees needed for the computation will be already stored
in the cache. This may be considered when tuning a tree for the best sparse coefficient α. In
this case, it is important that the depth is small enough that the algorithm may terminate

29

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Algorithm 6: MurTree.SolveSparseObjective(D, d, n, α), an algorithm to min-
imise the sparse objective (Eq.19)

input: Dataset D = D+ ∪ D−, depth d ∈ N0, number of feature nodes n ∈ N0, sparse
coefficient α ∈ N0

output: Optimal decision tree within the input specification that minimises the sparse
objective (Eq. 19) on dataset D

1 begin
2 Tbest ← ClassificationNode(D)
3 for n′ ∈ [1, n] do
4 UB ← SparseObjective(Tbest)− (α · n′)− 1
5 T ←MurTree.SolveSubtree(D, ∅, d, n′, UB)
6 if T 6= ∅ then
7 Tbest ← T

8 return Tbest

within reasonable time, as the runtime exponentially increases with respect to the depth.
Otherwise, for larger depths, it may be beneficial to consider particular α values rather
than tuning for all values, since setting the coefficient to a positive value α > 0 contributes
towards reducing the search space, which may assist the search in the case of deeper trees.

4.8.4 Minimising Number of Nodes

We may consider a lexicographical objective, where the aim is to achieve the minimum
misclassification score using the least amount of nodes. Note that our presented algorithm
is focussed on minimising misclassifications within the given constraints on the depth and
number of nodes, but does not necessarily return the smallest tree. To take into account
the lexicographical objective, we may first compute the optimal tree, and then query the
algorithm to compute smaller trees using the misclassification score as an upper bound.
Recall that computations from one call will be reused in other calls through the cache. This
is summarised in Algorithm 7.

Algorithm 7:MurTree.SolveSubtreeLexicographically(D, d, n), an algorithm to
compute the tree with minimum misclassifications using the least amount of nodes

input: Dataset D = D+ ∪ D−, depth d ∈ N0, number of feature nodes n ∈ N0

output: Optimal decision tree that lexicographically minimise the misclassification and
then the number of nodes on dataset D

1 begin
2 Tbest ←MurTree.SolveSubtree(D, ∅, d, n, UB)
3 UB ←Misclassification(Tbest)
4 for n′ ∈ [n− 1, 0] do
5 T ←MurTree.SolveSubtree(D, ∅, d, n′, UB)
6 if T 6= ∅ then
7 Tbest ← T

8 return Tbest

30

MurTree: Optimal Decision Trees via Dynamic Programming and Search

4.8.5 Anytime Behaviour

An anytime algorithm has the property that it may provide a solution at any time during
its execution. Our algorithm discussed in the previous sections has, in some sense, support
for anytime behaviour since a global solution is only registered at the root node. However,
the algorithm may be augmented to save a better solution as soon as it is found, rather
than delay until the root node recursion. The key observation is that any solution, even a
classification node, is a solution to the decision tree problem. When processing one child
subtree, the other subtree may be assumed to be a classification node for the purposes of
the anytime solution. A separate data structure may be maintained to keep track of the
current tree, incrementally update the misclassification score, and update the global solution
should a better solution present itself during search. This incurs an additional overhead,
but it is negligible compared to the other operations, e.g., computing a tree of depth two.
We note that while anytime behaviour may be supported, our algorithm is not designed to
exhibit strong anytime behaviour, but rather minimise the time to exhaustively explore the
search space of all decision trees. Another technique to improve the anytime behaviour is to
consider an iterative deepening approach, where the optimal trees of depth k is computed
before proceeding with trees of depth k + 1 until the desired maximum depth is reached,
possibly using Gini feature selection.

4.8.6 Optimising Nonlinear Metrics

Our algorithm may be extended to support metrics which have a nonlinear relationship
between the misclassifications of each class, e.g., F1-score. The key idea is to generalise the
method to a bi-objective setting, where the objectives represent the number of misclassified
instances for each individual class. This allows computing the Pareto front and subsequently
computing the tree that minimises the given nonlinear metric. While this is desirable, the
task of minimises such metrics is significantly more computationally expensive compared to
linear metrics such as the misclassification score. We refer the interested reader to a separate
article (Demirović and Stuckey (2021)), where we explored this idea in more detail.

5. Computational Study

The goal of this section is to evaluate different variants of our algorithm and compare with
the state-of-the-art. With this in mind, we designed three major themes to investigate,
each addressing a unique set of questions: 1) variations and scalability of our approach,
2) effectiveness compared to the state-of-the-art optimal classification tree algorithms, and
3) out-of-sample accuracy as compared to heuristically-obtained decision trees and random
forests.

5.1 Datasets and Computational Environment

We use publicly available datasets used in previous works (Bertsimas and Dunn (2017);
Verwer and Zhang (2019); Narodytska et al. (2018); Aglin et al. (2020a); Hu et al. (2019)),
most of which are available from the UCI and CP4IM repositories. The datasets include
85 classification problems with a mixture of binary, categorical, and continuous features.
Datasets with missing values were excluded from experimentation. Some benchmarks ap-

31

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

peared in previous works under different binarisation techniques or simplifications, e.g.,
multi-classification turned into binary-classification using a ‘one-versus-all’ scheme or a sub-
set of the features were removed. We include such variants as separate datasets.

Datasets with categorical and/or continuous features are converted into binary datasets
as a preprocessing step using a supervised discretisation algorithm based on the minimum
description length principle (MDLP) by Fayyad and Irani (1993), effectively converting each
feature into a categorical feature based on the statistical significance of the feature values
for the class, and then using a one-hot encoding to binarise the features. This was done
for 22 datasets, while the remaining 63 datasets were already binary. The implementation
of MDLP from the R programming package was used (Kim (2015)). While the chosen
discretisation strategy was sufficient for our evaluation purpose, we acknowledge that there
may be better ways of discretising features. We leave the analysis of discretisation strategies
for optimal decision trees for future work.

We partition the datasets into four groups based on the source of the dataset. For this
reason the names displayed do not follow an alphabetical order.

Our code, binarised datasets, and the binarisation script are available online: https:
//bitbucket.org/EmirD/murtree.

Experiments were run on an Intel i-7-8550U CPU with 32 GB of RAM running one
algorithm at a time using one processor. The timeout was set to ten minutes except for
the hyper-parameter tuning where no limit was enforced. In the following, we dedicate a
separate subsection to each of the three major experimental topics.

5.2 Variations of Our Algorithm and Scalability

The aim of this subsection is to investigate variations of our approach, namely:

1. Compare branching and dataset caching.

2. Assess the efficiency of incremental frequency and similarity lower bound computation.

3. Analyse the impact of the feature and node selection strategies.

4. Demonstrate the limits and scalability of our approach.

The default setting of our algorithm uses all techniques presented in the paper, i.e.,
incremental frequency computation, incremental solving, similarity lower bounding, in-order
feature selection, dynamic node selection, and the dataset-based cache.

5.2.1 Part One: Cache Variants

We run our algorithm varying the cache strategy (branch- and dataset-based caching: Sec-
tion 4.5). For each combination, we fix the depth of the tree to four and task the algorithms
to compute fifteen optimal decision trees, one tree for each value of n ∈ [1, 15]. Such a
computation task is common in hyper-parameter tuning or when optimising the sparse ob-
jective. The algorithms take advantage of incremental solving, i.e., subproblems stored in
the cache from previous trees are reused.

The results are given in Table 1, where the runtime and number of cache entries for each
setting are shown. Benchmarks where the difference was insignificant are excluded.

32

https://bitbucket.org/EmirD/murtree
https://bitbucket.org/EmirD/murtree

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Table 1: Comparing the efficiency of branch and dataset caching. For each dataset, the
number of instances (D), binary features (F), and number of classes (C) are displayed.
Datasets where the difference between the methods is insignificant are excluded. The time
represents the number of seconds to compute decision trees with n ∈ [1, 15] feature nodes
with maximum depth four (fifteen trees in total). The number of cache entries is given in
thousands. Bold numbers highlight better runtime.

Branch Cache Dataset Cache
Name |D| |F| |C| Time Cache Entries Time Cache Entries
ionosphere 351 445 2 250 170 132 54
letter 20000 224 2 417 32 264 11
pendigits 7494 216 2 153 34 88 11
segment 2310 235 2 11 12 8 4
splice-1 3190 287 2 111 44 99 35
vehicle 846 252 2 31 40 18 13
Statlog_satellite 4435 385 6 507 97 519 95
Statlog_shuttle 43500 181 7 114 17 124 17
appendicitis 106 530 2 12 140 7 22
australian 690 1163 2 1001 699 740 463
backache 180 475 2 48 120 34 72
cleve 303 395 2 14 83 12 73
colic 368 415 2 55 105 41 86
heart-statlog 270 381 2 12 77 9 66
hepatitis 155 361 2 19 72 12 41
hungarian 294 330 2 16 60 12 50
new-throid 215 334 3 35 56 32 39
promoters 106 334 2 32 61 27 54

Based on the results, we conclude that the dataset cache leads to the best performance
in terms of runtime. We note that the difference in efficiency is also reflected in the number
of cache entries. Dataset caching requires fewer cache entries, indicating that the equiva-
lence between difference subproblems could be effectively exploited. The exception are two
datasets, where the number of cache entries is similar and branch caching has a slight ad-
vantage. The reason for only a slight difference is that even though dataset caching requires
more computational time and memory compared to branch caching, the overall difference is
not significant in our implementation compared to the other algorithmic components. We
note that we experimented with a cache based on the closure of a branch, but this incurred
a notable overhead for most instances compared to dataset- and branch-caching.

5.2.2 Part Two: Incremental Frequency Computation and the
Similarty-Based Lower Bound

We run our algorithm tuning on and off the incremental frequency computation (Section
4.3.3) and the similarity-based lower bound (Section 4.4). This gives rise to a total of four
settings. As before, the depth of the tree is fixed to four and the algorithms compute fifteen
optimal trees by varying the number of nodes from one to fifteen.

The results are given in Table 2, where the runtime is shown for each setting. Benchmarks
where the difference was insignificant are excluded.

We draw two main conclusions. First, incremental computation is always beneficial.
The splits of two neighbouring features often only differ in a small number of instances, and
consequently performing minor changes to the previously computed frequency counters saves

33

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Table 2: Comparison to determine effectiveness of the incremental frequency counter com-
putation (‘Inc’) and the similarity-based lower bound (‘SLB’). For each dataset, the number
of instances (D), number of binary features (F), and number of classes (C) are displayed.
Datasets where the effect of similarity-based lower bounding is insignificant are excluded.
The time represents the number of seconds the algorithms require to compute decision trees
with n ∈ [1, 15] feature nodes with maximum depth four (fifteen trees in total). Timeouts
(1800 seconds) denoted as —. Bold numbers highlight better runtime.

Name |D| |F| |C| noInc-noSLB inc-noSLB inc-SLB
letter 20000 224 2 810 237 269
pendigits 7494 216 2 185 86 96
segment 2310 235 2 49 15 9
default_credit 30000 44 4 7 7 9
magic04 19020 79 2 8 6 9
Statlog_satellite 4435 385 6 1060 756 516
Statlog_shuttle 43500 181 7 131 88 128
appendicitis 106 530 2 32 28 7
australian 690 1163 2 — — 788
backache 180 475 2 86 77 37
cleve 303 395 2 65 58 14
colic 368 415 2 89 73 43
heart-statlog 270 381 2 55 49 10
hepatitis 155 361 2 30 26 13
hungarian 294 330 2 31 28 15
new-throid 215 334 3 148 143 35
shuttleM 14500 691 2 1062 805 416

time compared to recomputing from scratch. Second, the lower bound contribute towards
equal or lower runtimes in a most of the benchmarks. Overall, the experiments demonstrate
that it is typically beneficial to include both incremental computation and lower bounding.

5.2.3 Part Three: Feature and Node Selection Strategies

We run our algorithm varying the feature selection strategy (Section 4.7: in order, random,
and sorted according to Gini coefficients) and the node selection strategy (Section 4.6: post-
order and dynamic). As before, the depth of the tree is fixed to four and the algorithms
compute fifteen optimal trees by varying the number of nodes from one to fifteen.

The results are given in Table 3, where the runtime is shown for each setting. Benchmarks
where the difference was insignificant are excluded.

We draw several main conclusions. First, random feature selection is never beneficial.
This is partially due to its anti-synergy with our incremental frequency computation and
similarity lower bounding. Second, dynamic node selection is consistently better than a fixed
post-order selection, albeit the performance gains are relatively small compared to the other
algorithmic components. Third, both Gini and in-order feature selection are competitive,
although in-order performs better on slightly more datasets while being much simpler.

5.2.4 Part Four: Scalability

We investigate the sensitivity of our MurTree algorithm with respect to the number of
instances and maximum depth. In Table 4, results are shown for a subset of representation
datasets when our algorithm is run to compute trees of depth ∈ [4, 5] on datasets where

34

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Table 3: Comparison of feature and node selection strategies. For each dataset, the number
of instances (D), number of binary features (F), and number of classes (C) are displayed.
The time represents the number of seconds the algorithms require to compute decision trees
with n ∈ [1, 15] feature nodes with maximum depth four (fifteen trees in total). Datasets
solved under a second or when the differences between the variants was negligible have been
omitted.

Feature Selection Gini Random InOrder
Node Selection Dynamic Dynamic PostOrder Dynamic
Name |D| |F| |C| Time Time Time Time
ionosphere 351 2 2 154 332 139 132
letter 20000 2 2 310 443 276 264
pendigits 7494 2 2 100 133 93 88
segment 2310 2 2 16 23 10 8
splice-1 3190 2 2 94 128 103 99
vehicle 846 2 2 23 30 22 18
default_credit 30000 4 4 9 9 7 7
magic04 19020 2 2 11 11 9 9
Statlog_satellite 4435 6 6 458 665 518 519
Statlog_shuttle 43500 7 7 140 187 126 124
australian 690 2 2 445 1155 803 740
backache 180 2 2 24 40 37 34
cleve 303 2 2 10 17 14 12
colic 368 2 2 44 60 43 41
heart-statlog 270 2 2 8 14 11 9
hepatitis 155 2 2 12 18 14 12
hungarian 294 2 2 13 17 14 12
promoters 106 2 2 21 31 30 27
shuttleM 14500 2 2 466 468 477 383

instances are duplicated k ∈ [1, 2, 3, 4] times. Similarly as before, each run computes fifteen
and thirty-one trees with varying size, depending on the depth. Depth three trees are
computed in negligible time and are excluded from further consideration.

The results indicate a linear dependency with the number of instances for the majority
of the datasets. As most of the computational time is spent in repeatedly solving optimal
subtrees of depth two (Section 4.3), the finding is consistent with the theoretical complexity
(Proposition 6). This is a notable improvement over generic optimisation approaches, such
as integer programming or SAT. The latter may exhibit an exponential runtime dependency
on the number of instances as new binary variables are introduced for each instance, and
typically do not consider datasets with more than a thousand instances.

In contrast to the number of instances, the depth has a large impact on the running time.
The number of possible decision trees grows exponentially as the depth increases, which is
reflected in the sharp increase of both the time and number of cache entries. For example,
our approach computes depth-three trees within seconds, but the runtimes go up notably
for depth four and five, e.g., the differences between depths is in the order of magnitude.
Our proposed techniques manage to delay the exponential blow up, but do not remove it.

The main conclusion of the above discussion is that the bottleneck of the approach is not
necessarily in the number of instances, but rather in the depth of the tree. Note that the
experiments are merely indicative. In practice, however, introducing more instances might
implicitly increase or decrease the number of binary features in the discretisation and have

35

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Table 4: Scalability of our MurTree approach as instances are duplicated two, three and four
times with varying depth. For each dataset, the number of instances (D), number of binary
features (F), and number of classes (C) are displayed. Results for a subset of all datasets
are shown for simplicity. The time represents the number of seconds the algorithms require
to compute decision trees with n ∈ [1, 15] for depth = 4 (fifteen trees) and n ∈ [1, 31] for
depth = 5 (thirty-one trees). The number of cache entries is given in thousands.

Time for depth=4 Time for depth=5
Name |D| |F| |C| 1|D| 2|D| 3|D| 4|D| cache 1|D| 2|D| 3|D| 4|D| cache
anneal 812 93 2 1 1 1 2 2 10 15 20 27 22
audiology 216 148 2 1 1 1 1 3 14 20 25 30 79
australian-credit 653 125 2 2 3 4 5 6 76 95 125 160 157
breast-wisconsin 683 120 2 1 2 2 3 3 17 26 37 47 56
diabetes 768 112 2 2 3 4 5 5 65 91 119 146 118
german-credit 1000 112 2 3 5 7 9 10 160 232 308 381 385
heart-cleveland 296 95 2 1 1 1 2 3 19 25 31 36 74
hypothyroid 3247 88 2 2 3 5 6 2 40 60 85 106 27
kr-vs-kp 3196 73 2 1 2 3 4 1 17 29 42 54 16
mushroom 8124 119 2 5 9 13 18 5 101 234 345 478 130
segment 2310 235 2 8 15 21 30 4 60 105 155 202 44
yeast 1484 89 2 1 3 3 4 3 35 61 88 108 57
biodeg 1055 81 2 2 2 4 4 8 75 104 135 161 261
default_credit 30000 44 4 7 14 21 30 3 150 463 720 1063 81
HTRU_2 17898 57 2 3 6 8 12 4 100 209 310 434 72
Ionosphere 351 143 2 3 4 5 6 15 147 181 213 254 688
appendicitis 106 530 2 7 8 9 9 22 421 447 479 512 1497
hepatitis 155 361 2 12 13 14 14 41 850 916 956 1075 3360

an effect on shaping the structure of the dataset, both of which may impact positively or
negatively the running time.

Apart from the depth, another important factor is the number of binary features, which
additionally dictates the number of possible decision trees necessary to explore to find the
optimal tree. As the ability of our techniques to prune and reduce computational time
depends on the structure of the dataset, it is difficult to artificially increase the number
of features and show the dependency. For example, duplicating features would not lead to
conclusive statements on the impact of the number of features on runtime, as our lower
bounding mechanism would trivially prune these features. We instead refer to the computa-
tional complexity of our algorithm from Proposition 6 and the number of possible decision
trees as an indicative measure of the influence of the number of binary features and sparsity
of the feature vectors on the runtime.

5.2.5 Section Summary

The experimental results confirmed the efficiency of our incremental frequency computation
and similarity-based lower bounding approach. Each of the techniques provides a reduction
in terms of runtime. We show that dataset-based caching exhibits equal or better perfor-
mance than branch-based caching across the datasets. Our approach scales approximately
linearly with respect to the number of instances, and the depth of the tree has a large in-
fluence on the runtime, i.e., decision trees of depth three and four are typically computed
within seconds or minutes, respectively, but trees of depth five are notably more challenging
depending on the dataset. Increasing the number of binary features increases the expected

36

MurTree: Optimal Decision Trees via Dynamic Programming and Search

runtime, but this is difficult to measure as it depends on the effectiveness of the pruning
techniques for the dataset at hand. We found that inspecting features in the order as given
in the dataset was more effective than ordering features according to their corresponding
Gini coefficients, possibly due to the in order feature selection synergies well with incremen-
tal frequency and similarity lower bound computation, but the difference largely depends on
the dataset. Lastly, our dynamic node selection strategy offered consistent improvements
over a static strategy.

5.3 Comparison Against State-Of-The-Art Optimal Decision Tree Algorithms

Amongst the optimal decision tree methods discussed in Section 3, we consider DL8.5 by
Aglin et al. (2020a) as the main competing method. The rationale is that DL8.5 has been
shown to largely outperform the other techniques based on generic optimisation modelling,
such as integer programming (Verwer and Zhang (2019); Bertsimas and Dunn (2017)) and
constraint programming (Verhaeghe et al. (2019)), when minimising the misclassification
score for full binary trees. We now discuss other approaches.

The SAT method by Narodytska et al. (2018) takes a different approach: rather than
directly minimising the misclassifications given a fixed depth, it attempts to construct the
smallest decision in terms of the total number of nodes that perfectly fits the data, i.e., trees
that have a misclassification score of zero. As finding the zero-misclassification tree using
the complete dataset was computationally infeasible for SAT, and also prone to overfitting,
the authors proposed to subsample datasets by selecting 5-20% of the instances. While
this setting has its merits, it diverges from the goals of our paper. Furthermore, we found
that our algorithm computes the perfect decision tree within seconds on exactly the same
subsampled data used in the SAT paper and as can be seen in tables, we can directly optimise
with the complete datasets.

Other SAT works (Avellaneda (2020); Janota and Morgado (2020); Schidler and Szeider
(2021)) use either the discussed SAT method or BinOpt (Verwer and Zhang (2019)) as a
ground for comparison, but these have been shown to be outperformed other recent works,
e.g., DL8.5, which we further improve upon. The same reasoning holds when comparing to
other generic (optimisation) frameworks such as integer programming. The reason for the
discrepancy in runtime between our approach and SAT is that we provide a highly specialised
procedure that exploits classification tree properties, e.g., Properties 1 and 2. One could
argue that declarative approaches are easily extendable with new constraints beyond those
considered here, which may be of interest, but we do not make use of such functionality. For
these reasons, we perform no further comparison with these methods.

Hu et al. (2019) (OSDT) and Lin et al. (2020) (GOSDT) introduce exhaustive search
algorithms optimising the linear combination of the misclassification score and number of
nodes in tree (Eq. 19. The pruning mechanism of both works is based on the sparsity
coefficient α from Eq. 19, i.e., the lower bound for each new introduce node is at least α.
As such, the sparsity coefficient α plays a key role in the algorithm: the larger the α, the
faster the algorithms may exhaustively explore the search space. Recall that our approach
optimises the sparse objective using Algorithm 6. We experimented with both approaches,
and rather than providing detailed tables, we summarise our findings.

37

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

A direct comparison can be made with OSDT using a ten minute timeout with depth
four trees. We found that our algorithm computes optimal trees with the specified objective
within seconds for the benchmarks used by Hu et al. (2019), whereas their method may
require minutes or timeout. On the majority of our benchmarks, the approach by Hu et al.
(2019) timeouts, unless the sparsity coefficient is set to be sufficiently high. As presented, our
approach may handle any sparsity coefficient (previous tables may be interpreted as using
α = 0) within the time limit for trees with maximum depth four. Note that optimising with
larger sparsity coefficient values reduces the runtime due to pruning.

The comparison with GOSDT is slightly different, since the problem definition is not the
same. In GOSDT, the algorithm does not directly support limiting the depth or number of
nodes, but instead the structure of the tree is controlled through the objective function and
the sparsity coefficient. To facilitate a fair comparison, we first ran GOSDT on 68 datasets
(all but the ’reduced’ benchmarks) to observe the results. We used a time limit of ten
minutes and set the sparsity coefficient to the default value5 of 0.01 · |D|. We observed that
GOSDT timed out on 65% of the 68 datasets. Even though the depth is not limited, on 90%
the (possibly suboptimal) computed tree was of depth at most four, the maximum depth
was seven, and all trees had a small number of nodes. These results are expected since the
goal of the authors of GOSDT was to produce small trees. That said, our MurTree approach
can produce optimal small trees (e.g., depth ∈ {1, 2, 3, 4} and any number of nodes) within
seconds or minutes even when the sparsity coefficient is set to zero. Note that after running
our algorithm using value zero for the sparsity coefficient, the cache will be populated, and
then a tree for any sparsity value may be extracted immediately. Intuitively, the zero-case
coefficient is the worst case, and optimising with greater values of the sparsity coefficient is
beneficial as it offers pruning.

We now proceed with the main comparison with DL8.5.

5.3.1 Comparison with DL8.5 by Aglin et al. (2020a)

The aim is to assess the effectiveness of our MurTree approach with respect to DL8.5, the
state-of-the-art method for optimal decision trees. We evaluate the runtime of both methods
to exhaustively explore the search space: a lower runtime indicates a more effective approach.

DL8.5 optimises the misclassification score given a constraint on the depth of the tree.
The number of feature nodes cannot be limited, meaning that full binary trees are considered,
i.e., effectively the number of feature nodes is set to the maximum value given the depth. We
experiment with maximum depths of four and five. To ensure a fair comparison, i.e., have
both algorithms solve exactly the same problem, we set the maximum number of feature
nodes for our method to 15 for depth four and 31 for depth five trees. The complete dataset
is given to both algorithms without dividing into the training and test set. Ten minutes is
allocated for each dataset.

Although it is standard practice in machine learning to compare learning algorithms on
out-of-sample accuracy, in this case runtime is more appropriate for evaluating the meth-
ods since both algorithms are optimising the same objective. The out-of-sample accuracy
evaluation of optimal decision trees is reserved for the next section. Note that since the

5. To avoid confusion, we note that our definition of the sparse objective is based on misclassifications,
whereas in GOSDT it is based on accuracy. Both definitions are equivalent.

38

MurTree: Optimal Decision Trees via Dynamic Programming and Search

algorithms discriminate trees solely based on the objective, the resulting trees obtained by
both methods, assuming neither method timed out, will have the same objective value but
may differ in their structure and features selected.

The runtimes, given in Table 5, show that our method is orders of magnitude faster than
DL8.5. This is a significant result, as DL8.5 has been previously shown to outperform other
techniques for optimal classification trees based on integer and constraint programming by a
large margin. Our results illustrate the advantage of designing and specialising decision tree
optimisation algorithms compared to using off-the-shelf tools. Both DL8.5 and our MurTree
approach exploit the dynamic programming structure of decision trees, but our method
employs additional techniques to further take advantage of the properties of decision trees.
The reduced runtime contributes greatly towards the application of optimal classification
tree methods in practice, especially when tuning is involved (see next section).

5.4 Comparison Against Conventional Algorithms on Out-Of-Sample Accuracy

In this section, we analyse the suitability of our optimal decision trees as out-of-sample
classifiers. The aim is to demonstrate that more accurate trees of limited size lead to better
generalisations than what is offered by heuristic approaches. Note that the restricted size of
optimal decision trees plays the role of a regulariser to avoid overfitting. The main compari-
son is done against an optimised implementation of CART (Breiman et al. (1984)), a widely
used decision tree learning algorithm. For illustrative purposes, we also make a comparison
with random forests, as a related method that typically improves accuracy over standard
decision tree algorithms at the expense of being less interpretable. As will be discussed, our
experiments further confirm similar empirical findings (Verwer and Zhang (2019); Bertsimas
and Dunn (2017)). The experiments were run on exactly the same (binarised) benchmarks
for all methods. We use the algorithms provided by the sklearn (Pedregosa et al. (2011))
Python package for machine learning for the other methods.

5.4.1 Hyper-Parameter Tuning

Selecting a good set of parameters is important when evaluating the performance of machine
learning models. Hyper-parameter tuning is performed for all methods using grid search.
Given a model, we compute the average train and test accuracy using stratified five-fold
cross-validation for each combination of parameters. The set of parameters that leads to
the best test accuracy is selected. Note that the model is trained on the training sets,
but evaluated on the test sets. The runtime presented includes the time taken to perform
cross-fold validation using all parameters and the time to train a new decision using the
selected parameters on the complete dataset. All methods and parameter configurations
used exactly the same folds.

5.4.2 Comparison Against Heuristic Decision Trees (CART)

We considered three tuning settings for our MurTree method to analyse the effect of re-
stricting tuning options. The three settings are as follows:

1. MT-F: Only a single parameter configuration is set based on a heuristically obtained
tree. The parameter values are fixed to match those produced by the decision tree com-

39

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Table 5: Comparison of DL8.5 (Aglin et al. (2020a)) and our approach, MurTree. For
each dataset, the number of instances (D), number of binary features (F), and number of
classes (C) are displayed. Entries display runtime in seconds (rounded to nearest integer) to
compute the optimal classification tree of depth four and five. Time limit set to ten minutes.
Timeouts denoted as —

Name D F C Depth=4 Depth=5
DL8.5 MurTree DL8.5 MurTree

anneal 812 93 2 55 < 0.5 — 4
audiology 216 148 2 99 < 0.5 < 0.5 < 0.5
australian-credit 653 125 2 383 2 — 46
breast-wisconsin 683 120 2 188 1 — 2
diabetes 768 112 2 421 2 — 83
german-credit 1000 112 2 326 2 — 86
heart-cleveland 296 95 2 108 < 0.5 — 7
hepatitis 137 68 2 13 < 0.5 35 < 0.5
hypothyroid 3247 88 2 104 2 — 38
ionosphere 351 445 2 — 89 — 194
kr-vs-kp 3196 73 2 49 1 — 16
letter 20000 224 2 — 296 — —
lymph 148 68 2 8 < 0.5 7 < 0.5
mushroom 8124 119 2 26 1 23 < 0.5
pendigits 7494 216 2 — 76 — 464
primary-tumor 336 31 2 1 < 0.5 11 < 0.5
segment 2310 235 2 1 < 0.5 1 < 0.5
soybean 630 50 2 3 < 0.5 36 < 0.5
splice-1 3190 287 2 — 133 — —
tic-tac-toe 958 27 2 1 < 0.5 7 < 0.5
vehicle 846 252 2 — 11 — 277
vote 435 48 2 4 < 0.5 26 < 0.5
yeast 1484 89 2 186 2 — 54
fico-binary 10459 17 2 1 < 0.5 6 1
bank_conv 4521 26 2 2 < 0.5 15 1
biodeg 1055 81 2 67 1 — 22
default_credit 30000 44 4 155 4 — 68
HTRU_2 17898 57 2 64 2 — 30
Ionosphere 351 143 2 126 1 316 2
magic04 19020 79 2 244 4 — 106
messidor 1151 24 2 < 0.5 < 0.5 5 < 0.5
spambase 4601 132 2 — 8 — 268
Statlog_satellite 4435 385 6 — 320 — —
Statlog_shuttle 43500 181 7 — 25 — —
appendicitis 106 530 2 — 7 — 422
australian 690 1163 2 — 386 — —
backache 180 475 2 — 8 — 176
cancer 683 89 2 16 < 0.5 301 5
cleve 303 395 2 — 4 — 500
colic 368 415 2 — 17 — —
haberman 306 92 2 14 < 0.5 293 4
heart-statlog 270 381 2 — 6 — 383
hepatitis 155 361 2 — 4 — 119
hungarian 294 330 2 — 4 — 194
new-throid 215 334 3 — 21 — —
promoters 106 334 2 — 1 — 1
shuttleM 14500 691 2 — 42 — —

40

MurTree: Optimal Decision Trees via Dynamic Programming and Search

puted using CART. Note that, strictly speaking, this is not a hyper-tuning approach,
but nevertheless gives insight on the generalisability of optimal decision trees.

2. MT-R: The heuristically obtained decision tree provides an upper bound on the al-
lowed parameter values for tuning, i.e., given a tree constructed by CART with
depth d and number of feature nodes s, tuning is done with depth ∈ 1, ..., d and
feature node count ∈ {depth, ..., s}.

3. MT-A: Fully exploit available parameters of our algorithm until depth four, i.e.,
depth ∈ {1, 2, 3, 4} and num_feature_nodes ∈ {depth, depth+ 1, ..., 2depth − 1}.

The aggregated results on 84 datasets are shown in Figure 2 for the three settings com-
pared to CART, which was tuned using depth ∈ [1, 2, 3, 4].

When considering the MT-F parameter selection strategy, the results are roughly com-
parable to the outcome produced by CART, even though optimal decision trees have been
training accuracy. The mismatch between better training and lack of consistent performance
on the test set indicates that the structure of the tree produced by CART may be suboptimal
for the considered dataset.

The performance is notably different when allowing more freedom in parameter selection.
The MT-R parameter selection strategy produces better results for most datasets, while
taking into account all parameter options (MT-A) consistently demonstrates greater out-of-
sample accuracy across the datasets.

The runtime of our MurTree approach is reasonably short for most benchmarks. How-
ever, as expected, CART is much faster, i.e., the runtime was only a fraction of a second for
almost all benchmarks. Nevertheless, the runtime difference between the methods may be
acceptable for a vast number of application, especially when training time is not a concern.

Overall, we conclude that the trees produced by our MurTree algorithm provide bet-
ter generalisation compared to trees obtained using CART, a classification decision tree
algorithm, at the expense of greater runtime.

5.4.3 Comparison Against Random Forests

For completeness we show a comparison with tuned random forests using the same sklearn
Python package. A forest of trees is typically more accurate than a single decision tree,
but the resulting model is less concise and more difficult for human interpretation. The
forests were tuned by varying the number of trees in the forest from [10, 50, 100], selecting
the maximum depth from [no_limit, 1, 2, 4], and considering a subset of the features at each
step to evaluate with respect to [|F|, 12 |F|,

√
|F|, log2(|F|)], where F is the set of features.

We show the difference in both training and test accuracy in Figure 3. It is evident
that random forests have the advantage on the training set, which translates to the test set.
Nevertheless, for roughly half of the datasets optimal trees of depth four achieve comparable
performance in terms of accuracy. This demonstrates that for some applications optimal
decision trees may be preferred over heuristically trained random forests. The runtime of
random forest is not negligible but still reasonable: majority of the datasets fall into the
10-19 seconds range. We note that a different tuning strategy for random forests may lead
to lower/higher runtimes.

41

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

-5 -3 -2 -1 0 1 2 3 4 7 8 10

1

5

10
11

26

12

5
6

2 2
1 1

Difference in accuracy in percentage on the test set

N
um

be
r
of

da
ta
se
ts

w
it
h
gi
ve
n
di
ffe

re
nc
e

0-4 5-9 10-59 180-299 300-1799 1800+

71

2

6

1
3

1

Runtime ranges in seconds

N
um

be
r
of

da
ta
se
ts

w
it
h
gi
ve
n
ru
nt
im

e

MT-F: Depth and number of nodes fixed to the values of the CART tree

-2 -1 0 1 2 3 4 6 7 8 10

1

9

32

14

12

6

3

1
2

1 1

Difference in accuracy in percentage on the test set

N
um

be
r
of

da
ta
se
ts

w
it
h
gi
ve
n
di
ffe

re
nc
e

0-4 5-9 10-59 60-179 300-1799 1800+

70

3 4
2

4
1

Runtime ranges in seconds

N
um

be
r
of

da
ta
se
ts

w
it
h
gi
ve
n
ru
nt
im

e

MT-R: The CART tree provides the upper bound on the depth and number of nodes

-1 0 1 2 3 4 5 6 7 8 19

4

27

14

17

7
6

1 1

3

1 1

Difference in accuracy in percentage on the test set

N
um

be
r
of

da
ta
se
ts

w
it
h
gi
ve
n
di
ffe

re
nc
e

0-4 5-9 10-59 60-179 300-1799 1800+

53

6

12

6
5

2

Runtime ranges in seconds

N
um

be
r
of

da
ta
se
ts

w
it
h
gi
ve
n
ru
nt
im

e

MT-A: full tuning, i.e.,depth ∈ {1, 2, 3, 4} and num_nodes ∈ {1, 2, ..., 15}

Figure 2: Performance comparison of our MurTree approach against CART on 84 datasets
using difference tuning strategies for the depth and number of nodes of the optimal tree.

42

MurTree: Optimal Decision Trees via Dynamic Programming and Search

-26 -24 -23 -19 -16 -14 -13 -12 -11 -10 -8 -7 -6 -5 -4 -3 -2 -1 0 1

1 1 1 1 1

4

1

2

1 1

2 2

1

3

4

3

13

9

26

6

Difference in accuracy in percentage on the training set

N
um

be
r
of

da
ta
se
ts

w
it
h
gi
ve
n
di
ffe

re
nc
e

-17 -14 -9 -7 -5 -4 -3 -2 -1 0 1 2 4

2
1 1

3
2

1

8

11

13

32

5

3

1

Difference in accuracy in percentage on the test set

N
um

be
r
of

da
ta
se
ts

w
it
h
gi
ve
n
di
ffe

re
nc
e

Figure 3: Accuracy comparison of our MurTree (MT-A) approach against random forests
on 84 datasets on both the training and test set.

6. Conclusion

We presented MurTree, an algorithm for computing optimal decision trees, i.e., decision
trees that achieve the best representation of the data in terms of the misclassification score.
The algorithm is based on dynamic programming and search. Our novel techniques exploit
decision tree properties to provide orders of magnitude speed-ups when compared to the
state-of-the-art. The conducted experimental study shows that optimal decision trees are
desirable as their out-of-sample accuracy is greater than decision trees obtained using a
conventional learning algorithm (CART), while providing concise and interpretable models
within reasonable time for the majority of the benchmarks.

There are several limitations of our algorithm, some of which are shared with other
optimal decision tree algorithms. The depth of the trees is kept relatively low, e.g., depth
four. A low depth is convenient for interpretability, but for some applications, deeper trees
may be necessary, e.g., compactly representing controllers using perfect trees (Ashok et al.
(2020)). We observed that for half of the datasets considered, optimal decision trees provide
comparable performance in terms of out-of-sample accuracy when compared to the more
complex model of random forests, but for the other half of datasets, random forests had
better generalisation. In the setting we consider, the predicates are required to be provided in
advance, i.e., the dataset must be binarised. Given that the algorithm is unlikely to support
tens of thousands of predicates in the current form, a trade-off must be made between
the runtime and number of predicates when using datasets with continuous or categorical
features. Even though our algorithm provides significant speed-ups, traditional heuristic
methods remain much faster. Nevertheless, for most tested datasets our approach produced
optimal trees within seconds or minutes, which may be acceptable for offline applications.

There are several directions for future work. Considering novel metrics to improve the
ability to generalise better on unseen data may be one such direction, or understand which
optimal tree to select out of a set of trees with minimum misclassification scores. Analysing

43

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

the effect of supervised discretisation algorithms for binarising the datasets may lead to
additional insights. Furthermore, constructing forests of optimal trees is another research
direction worth considering.

Acknowledgments

We would like to acknowledge the comments of the editor and the anonymous reviewers.
Their commitment to the reviewing process has considerably contributed towards clarity,
accessibility, and correctness of the paper. An anonymous reviewer motivated us to explore
caching based on datasets which led to improvements. Part of this work was done while
Anna Lukina was visiting the Simons Institute for the Theory of Computing.

References

Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. Learning optimal and fair
decision trees for non-discriminative decision-making. In Proceedings of AAAI, 2019.

Sina Aghaei, Andres Gomez, and Phebe Vayanos. Learning optimal classification trees:
Strong max-flow formulations. arXiv preprint arXiv:2002.09142, 2020.

Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using
caching branch-and-bound search. In Proceedings of AAAI, 2020a.

Gaël Aglin, Siegfried Nijssen, Pierre Schaus, and UCLouvain ICTEAM. Pydl8. 5: a library
for learning optimal decision trees. In Proceedings of IJCAI, 2020b.

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin.
Learning certifiably optimal rule lists for categorical data. The Journal of Machine Learn-
ing Research, 2017.

Pranav Ashok, Mathias Jackermeier, Pushpak Jagtap, Jan Křetínskỳ, Maximilian
Weininger, and Majid Zamani. dtcontrol: decision tree learning algorithms for controller
representation. In Proceedings of the International Conference on Hybrid Systems: Com-
putation and Control, 2020.

Florent Avellaneda. Efficient inference of optimal decision trees. In Proceedings of AAAI,
2020.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning
via policy extraction. In Proceedings of NeurIPS, 2018.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106(7),
2017.

Dimitris Bertsimas and Romy Shioda. Classification and regression via integer optimization.
Operations Research, 55(2), 2007.

Christian Bessiere, Emmanuel Hebrard, and Barry O’Sullivan. Minimising decision tree size
as combinatorial optimisation. In Proceedings of CP, 2009.

44

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Guy Blanc, Jane Lange, and Li-Yang Tan. Provable guarantees for decision tree induction:
the agnostic setting. Proceedings of ICML, 2020.

Rafael Blanquero, Emilio Carrizosa, Cristina Molero-Río, and Dolores Romero Morales.
Sparsity in optimal randomized classification trees. European Journal of Operational Re-
search, 2020.

Leo Breiman, JH Friedman, RA Olshen, and CJ Stone. Classification and regression trees.
Cole Statistics/Probability Series, 1984.

Emilio Carrizosa, Cristina Molero-Río, and Dolores Romero Morales. Mathematical opti-
mization in classification and regression trees, 2021.

Emir Demirović and Peter Stuckey. Optimal decision trees for nonlinear metrics. In Pro-
ceedings of AAAI, 2021.

Adam N Elmachtoub, Jason Cheuk Nam Liang, and Ryan McNellis. Decision trees for
decision-making under the predict-then-optimize framework. Proceedings of ICML, 2020.

Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of IJCAI, 1993.

Michael R Garey. Optimal binary identification procedures. SIAM Journal on Applied
Mathematics, 23(2), 1972.

Thomas M Hehn, Julian FP Kooij, and Fred A Hamprecht. End-to-end learning of decision
trees and forests. International Journal of Computer Vision, 2019.

Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning optimal
decision trees with maxsat and its integration in adaboost. In Proceedings of IJCAI, 2020.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. In Proceedings
of NeurIPS, 2019.

Laurent Hyafil and Ronald L Rivest. Constructing optimal binary decision trees is NP-
complete. Information Processing Letters, 5(1), 1976.

Mikoláš Janota and António Morgado. Sat-based encodings for optimal decision trees with
explicit paths. In Proceedings of SAT, 2020.

Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination aware decision tree
learning. In IEEE International Conference on Data Mining, 2010.

HyunJi Kim. Package ‘discretization’ in cran-r. https://CRAN.R-project.org/package=
discretization, 2015. [Online; accessed 21-May-2020].

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep
neural decision forests. In Proceedings of the IEEE International Conference on Computer
Vision, 2015.

45

https://CRAN.R-project.org/package=discretization
https://CRAN.R-project.org/package=discretization

Demirović, Lukina, Hebrard, Chan, Bailey, Leckie, Ramamohanarao, and Stuckey

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and
scalable optimal sparse decision trees. In Proceedings of ICML, 2020.

Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva. Learning optimal
decision trees with SAT. In Proceedings of IJCAI, 2018.

Siegfried Nijssen and Elisa Fromont. Mining optimal decision trees from itemset lattices. In
Proceedings of SIGKDD, 2007.

Siegfried Nijssen and Elisa Fromont. Optimal constraint-based decision tree induction from
itemset lattices. Data Mining and Knowledge Discovery, 21(1), 2010.

Sebastian Ordyniak and Stefan Szeider. Parameterized complexity of small decision tree
learning. In Proceedings of AAAI, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2011.

Ross Quinlan. C4.5: Programs for Machine Learning. Kaufmann, 1993.

André Schidler and Stefan Szeider. Sat-based decision tree learning for large data sets. In
Proceedings of AAAI, 2021.

Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio Criminisi, and Aditya Nori.
Adaptive neural trees. In Proceedings of ICML, 2019.

Hélene Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy Quimper, and Pierre Schaus.
Learning optimal decision trees using constraint programming. In Proceedings of CP, 2019.

Sicco Verwer and Yingqian Zhang. Learning decision trees with flexible constraints and
objectives using integer optimization. In Proceedings of CPAIOR, 2017.

Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary linear
program formulation. In Proceedings of AAAI, 2019.

Thibaut Vidal and Maximilian Schiffer. Born-again tree ensembles. In Proceedings of ICML,
2020.

Bin-Bin Yang, Song-Qing Shen, and Wei Gao. Weighted oblique decision trees. In Proceed-
ings of the AAAI, 2019.

Mohammed J Zaki and Karam Gouda. Fast vertical mining using diffsets. In Proceedings
of SIGKDD, 2003.

Mohammed Javeed Zaki. Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering, 12(3), 2000.

Haoran Zhu, Pavankumar Murali, Dzung T Phan, Lam M Nguyen, and Jayant R
Kalagnanam. A scalable mip-based method for learning optimal multivariate decision
trees. In Proceedings of NeurIPS, 2020.

46

MurTree: Optimal Decision Trees via Dynamic Programming and Search

Albrecht Zimmermann and Luc De Raedt. Cluster-grouping: from subgroup discovery to
clustering. Machine Learning, 77(1), 2009.

47

	Introduction
	Preliminaries
	Literature Review
	MurTree: Our Algorithm for Optimal Classification Trees
	High-Level Idea
	Main Algorithm Description
	Specialised Algorithm for Trees of Depth Two
	Phase One: Frequency counting (Algorithm 4, Lines 2-9)
	Phase Two: Optimal tree computation (Algorithm 4, Lines 10-19)
	Incremental Computation

	Similarity-Based Lower Bounding
	Caching of Optimal Subtrees (Memoisation)
	Subtree Hashing Based on Branches
	Subtree Hashing Based on Datasets
	Storing Subtrees and Lower Bounds in the Cache
	Retrieving Subtrees and Lower Bounds from the Cache
	Incremental Solving
	Recovering the Optimal Decision Tree

	Node Selection Strategy
	Feature Selection
	Extensions
	Multi-Classification
	Regression
	Sparse Objective
	Minimising Number of Nodes
	Anytime Behaviour
	Optimising Nonlinear Metrics

	Computational Study
	Datasets and Computational Environment
	Variations of Our Algorithm and Scalability
	Part One: Cache Variants
	Part Two: Incremental Frequency Computation and the Similarty-Based Lower Bound
	Part Three: Feature and Node Selection Strategies
	Part Four: Scalability
	Section Summary

	Comparison Against State-Of-The-Art Optimal Decision Tree Algorithms
	Comparison with DL8.5 by dl85

	Comparison Against Conventional Algorithms on Out-Of-Sample Accuracy
	Hyper-Parameter Tuning
	Comparison Against Heuristic Decision Trees (CART)
	Comparison Against Random Forests

	Conclusion

