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Abstract

This paper introduces a wildfire monitoring system based on a fleet of Unmanned Aerial Vehicles (UAVs) to provide
firefighters with precise and up-to-date information about a propagating wildfire, so that they can devise efficient
suppression actions. We present an approach to plan trajectories for a fleet of fixed-wing UAVs to observe a wildfire
evolving over time by tailoring the Variable Neighborhood Search metaheuristic to the problem characteristics. Realistic
models of the terrain, of the fire propagation process, and of the UAVs are exploited, together with a model of the wind, to
predict wildfire spread and plan accordingly the UAVs motions. Algorithms and models are integrated within a software
architecture allowing tests with real and simulated UAVs flying over synthetic wildfires. Results of a mixed-reality test
campaign show the ability of the proposed system to effectively map wildfire propagation.

Keywords: UAV, Remote sensing, Wildfire monitoring, Multi-robot planning

1. Introduction

Real time monitoring of wildfires is essential to assess
the situation and plan effective countermeasures. Current
wildfire observation solutions provide information that is
either imprecise, incomplete or delayed, e.g. from lookout
towers or satellites. Manned helicopters and airplanes can
provide precise and up-to-date information, but at high
costs and risks. Unmanned Aerial Vehicles (UAVs) are a
way to overcome the limitations of traditional observation
techniques. They can be expeditiously deployed at low
cost with no risk for the firefighters, and provide extensive
and precise information.

1.1. Related work

The wildfire community is increasingly adopting UAVs:
beside avoiding putting pilots at risk, the observation they
provide can improve the cost-effectiveness and efficiency of
wildfire fighting efforts [1, 2]. Early examples of wildfire
observation platforms exploited High Altitude Long En-
durance UAVs as a complement to existing satellite moni-
toring systems [3]. Such UAVs can fly for hours and carry
heavy powerful payloads to observe the terrain, but their
operational complexity reduces their application extent.

Low Altitude Short Endurance UAVs in single-vehicle
configurations are easier to deploy [4]. Equipped with vis-
ible or infrared cameras, they can provide in real time
accurate information on the fire size, location and perime-
ter. The precise images can also be used to characterize
fire geometry [5, 6], a relevant information for the fire-
fighters to assess the fire severity. The produced fire maps
can be used to improve the parameters of a wildfire prop-
agation simulator [7], yielding the possibility to establish

wildfire prognosis, which can benefit to decision support
tools (Figure 1).

Deploying a fleet of UAVs can ensure the achievement
of long-lasting wildfire monitoring tasks that provide nearly
complete, accurate and up-to-date information over a wild-
fire span, as well advocated in [5, 8] and proposed in [9].
Building systems upon multiple UAVs implies extra design
challenges, as vehicles must collaborate to exploit the full
potential of the fleet. The complexity of these interactions
has to be managed in real time and requires the automa-
tion of the fleet operation. For instance, deciding how to
deploy the UAVs to maximize the amount of gathered in-
formation requires to assess the situation of both the fleet
and fire, which can hardly be handled by an operator. Au-
tonomous control algorithms are necessary to operate the
fleet, coupled with data processing abilities providing the
sufficient level of situational awareness to uphold the fleet
operations.

1.2. Approach

The work presented here introduces the Situation As-
sessment and Observation Planning (SAOP) system whose
purpose is to monitor wildfires with fleets of UAVs in or-
der to provide firefighters with real-time information on
the fire perimeters and their evolution over time.

SAOP operates along a Perception – Decision – Action
scheme. The UAVs observations are combined into a fire
map, on the basis of which which a realistic wildfire sim-
ulator produces a fire spread forecast. The fire map and
forecast are sent to the operators, but more importantly
from our concern, it is used to define an observation plan,
that defines the optimal paths for the fleet to observe the
fire. The resulting trajectories are sent to the UAVs for
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Figure 1: Fleets of UAVs can be used to monitor a wildfire by contin-
uously mapping the location of its perimeter. The proposed approach
incorporates observations made by the UAVs (bottom layer, in red)
and fire propagation predictions (in yellow).

execution, and the newly gathered information is used to
update the fire map.

SAOP is a centralized approach: while local fire maps
can be built on-board the UAVs, their fusion, the fire
propagation forecast and the establishment of observation
plans is run on a ground station that gathers all the nec-
essary informations from the UAVs and sends them the
planned observation trajectories.

1.3. Outline

This paper presents the two main ingredients required
by the autonomous operation of a fleet of UAVs to monitor
wildfires: situation assessment and observation planning,
and depicts the way they are integrated within a modular
software architecture.

Section 2 describes the approach to wildfire situation
assessment, thanks to the use of a wildfire simulator and
an ad-hoc map fusion algorithm that combines predic-
tions and observations. Section 3 is the core of the pa-
per. It provides a formal definition for the Wildfire Obser-
vation Problem (WOP) with multiple UAVs and depicts
a planning algorithm built upon the Variable Neighbor-
hood Search metaheuristic to devise observation trajec-
tories. Section 4 depicts the software architecture that
integrates the situation assessment and observation plan-
ning abilities in a mixed-reality simulation framework that
is exploited to test the proposed system in a hybrid real-
synthetic environment. Two field campaigns that illus-
trated the proposed approach and architecture with a real
UAV and a synthetic wildfire are presented.

2. Wildfire situation assessment

Wildfire situation assessment relies on a continuous
loop of the following three processes (Figure 2):
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Figure 2: Diagram of the proposed situation assessment process.

1. Prediction of future wildfire spread based on the cur-
rent estimate and the forecast provided by the prop-
agation model (section 2.1).

2. Observations by UAVs, in the form of local wildfire
maps fused into the observed wildfire map (section
2.2).

3. Estimation of the current state by fusing actual ob-
servations with previous forecasts (section 2.3).

The wildfire map is the key piece of information upon
which the proposed situation assessment process is defined.
It is a raster map structure that encodes the evolution of
the location and time of the fire front, through the ignition
time of every location. Three instances of maps define the
way to communicate information from one step to another:

• The observed wildfire map holds the fusion of the
local wildfire maps derived from UAV observations.
It depicts the knowledge about the wildfire spread
at the time of its observation.

• The current wildfire map depicts the complete cur-
rent fire front and past propagation. This map is the
result of the wildfire estimation algorithm applied to
the observed and predicted wildfire maps.

• The predicted wildfire map describes the expected
future evolution of the wildfire. It is built from the
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current wildfire map to which is applied the wildfire
propagation model.

2.1. Wildfire propagation simulation

Wildfire propagation simulation provides short term
wildfire spread forecasts for situation assessment and ob-
servation planning (and also, to generate synthetic fire sce-
narios for system development purposes). Due to the mul-
tiple physical and chemical processes the govern wildfires,
no simple model is able to simulate all kinds of wildfires,
but existing models [10, 11] are able to provide reasonably
accurate forecasts fast enough to be used in real time.

The proposed wildfire simulator handles surface fires
(other phenomena like crown and ground fires are not con-
sidered, but they could be added if necessary). It combines
a local propagation model that describes the fire behavior
in a particular location and time with a graph-based algo-
rithm that simulates the fire spread, and outputs a wildfire
map, which encodes the ignition time of every location in
an area.

Local propagation. An essential ingredient for simulating
a fire propagation is to know, for a given ignited point,
the speed at which it will spread in any direction. This
requires three elements:

• The main propagation direction in which the fire
spread the fastest, mostly dependent on the wind
and terrain slope.

• The steady-state rate of spread (RoS), the propaga-
tion speed along the main propagation direction.

• Given the main direction and the RoS, a shape model
defines the propagation speed in any direction.

The Rothermel forward propagation model [12] pro-
vides a way to compute both the main propagation direc-
tion and the RoS. The model relates the three environment
factors that govern wildfires (fuel, wind and terrain slope)
as follows:

RoS = αf (1 + φw + φs) (1)

where αf is a constant that encompasses all fuel-related
inputs, φw is the wind factor, and φs the slope factor.

The fuel factor αf depends on the physical and com-
bustion properties of the burning material. It is empiri-
cally defined empirically for a standard set of vegetation
types [13] that can be associated to land cover maps (e.g.
the CORINE Land Cover database1).

The Rothermel model provides an estimate of the RoS
in the main direction, and is completed with a shape model,
that estimate back and flank fires propagation speed. We
implement the double ellipse shape model described in [14].

1https://land.copernicus.eu/pan-european/

corine-land-cover

Figure 3: Wildfire propagation map in a 5 km by 5 km area with
isochrons. The grid spatial resolution is 25×25m.

Integrating propagation with time. Running a simulation
over extended time periods requires a fire growth model,
several of which were proposed in the literature [15]. We
retained the raster model for its simplicity and adaptation
to our fire map structure.

The raster map encodes the ignition time of each cell
and the simulation propagates the fire from an ignited cell
to its neighbors, based on the principles described in [16].
The ignition time of a cell (x, y) is computed with:

ignition(x, y) = min
(xn,yn)∈N(x,y)

{ignition(xn, yn)+

+ travel-time((xn, yn), (x, y))} (2)

where N(x,y) is the set of the eight neighbors of (x, y) and
travel-time derives from the propagation speed of the local
propagation model in the (xn, yn) to (x, y) direction.

This is similar to distance graphs in road networks,
where each directed edge gives the travel time from one
cell to its neighbors. The classic Dijkstra shortest path
algorithm calculates the ignition time of all cells.

While fire spreads away from a particular location, fuel
is consumed and ignition stops. As a simplification, it is
considered that a cell ceases to be on fire when all the
adjacent cells have caught fire. The end-of-ignition time
ignitionend(x, y) is then defined as:

ignitionend(x, y) = max
(xn,yn)∈N(x,y)

{ignition(xn, yn)} (3)

The set of cells that constitute the wildfire perimeter
at time t are those fulfilling the condition t ∈ [ignition,
ignitionend], yielding a propagation map as illustrated in Fig-
ure 3.

2.2. Mapping wildfire from images

The problem of fire sensing with UAVs has been solved
with computer vision using visual and infrared cameras in
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Figure 4: Mapping of the fire detected in a picture to a coarser raster
map

combination with various detection algorithms [17]. This
subsection describes a simple solution based on a three-
step process:

1. detecting fire in the UAV-acquired infrared images
by applying a threshold on the pixel values,

2. mapping by projecting pixels on fire on the ground
and then into the local fire map,

3. combining local fire maps into the observed wildfire
map.

Because the images acquired by the UAV thermal cam-
eras are timestamped and geo-tagged and the digital eleva-
tion map (DEM) of the overflown terrain is known, one can
easily find the map cells that correspond to the detected
burning image pixels using Bresenham’s algorithm [18].
Also, as the resolution of the wildfire map (typically 25
meter cells) is coarser than the the image resolution, mul-
tiple pixels will lay over one wildfire map cell as illustrated
in Figure 4. A simple majority policy is used to mark a
cell as on fire. If a cell is observed burning at different
times, the oldest detection time is retained.

2.3. Fusion of observed and predicted maps

A handful of UAVs can not deliver a complete up-
to-date view of the wildfire situation: it is necessary to
estimate the wildfire map in areas where measurements
are not available by combining actual observations with
forecasts. Data assimilation processes [19, 20] can exploit
observations to improve the input parameters of the fire
propagation model, resulting in a propagation that bet-
ter matches the observations. However such approaches
require heavy computations and are not applicable for a
real-time operational system.

Except in rare extreme conditions, the fire spread func-
tion is smooth. Hence we propose to update estimate the
whole fire perimeter by combining the predicted map with
the observations by warping the shape of the former to
match the latter. This is reasonable as long as there are
not too large discrepancies between the predicted and ob-
served conditions, which is satisfied with regular updates.

The fusion is handled by an image warping technique.
Considering wildfire maps as a function of R2 → R, like
an image, the objective is to define a displacement func-
tion z : R2 → R2 that stretches the wildfire propagation
map so the forecast is coincident with the observed cells
(xo, yo) as in Equation 4. The idea is to establish a map-
ping between the observed fire cells seen at time t, and a
corresponding cell cp in the predicted wildfire map with
the same ignition time t so the function ~z(x, y) = (zx, zy)
can be derived from this relationship.

(xp, yp) + ~z(xp, xp)→ (xo, yo) (4)

Finding cp requires exploiting the gradient of the wild-
fire map that provides the direction of propagation from
every cell, which is actually encoded in the propagation
graph. Starting from cell co, cp is found by searching for
a cell that has the closest ignition time to co along the
propagation graph.

The displacement of the cells that are not coupled to
an observation is interpolated by a smooth function based
on the known co to cp displacements. Because nodes are
not evenly distributed, a mesh-free interpolation algorithm
is necessary. Radial basis function interpolation [21] with
thin-plate splines is a suitable choice. It is defined as a
weighted sum of radial basis functions φ(r) evaluated at
the interpolation centers (Equation 5), using a function of
the thin-plate spline family (Equation 6).

z∗ (x, y) =

n∑
i=1

λi φ
(
|| (x, y)− (xp, yp)i ||

)
(5)

φ(r) = −r2 ln r2 (6)

The weights λi are calculated by solving a system of lin-
ear equations that results from the interpolation require-
ment so the relationship of Equation 4 is respected for z∗

at every (xp, yp)i [22]. Figure 5 depicts an example of the
application of the fusion algorithm to a fire map and a set
of observations.

3. Observation planning

Wildfire monitoring involves following a large perime-
ter which is constantly evolving. Thus, planning efficient
surveillance missions for a fleet of UAVs requires care-
ful observation placement and sequencing with respect to
the wildfire spread and UAV motion restrictions. This
section proposes a formalization of the Wildfire Observa-
tion Problem (WOP) and introduces a planning algorithm
derived from the Variable Neighbourhood Search (VNS)
metaheuristic, equally applicable to single and multiple
UAVs systems.

3.1. Challenges

The planning algorithm must efficiently exploit the UAV
flying time to observe as much as possible of the fire while
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(a) Real wildfire (b) Predicted wildfire

(c) Warping centers

(d) Deformation of the predicted wildfire map

(e) Estimated wildfire map (f) Comparison between the real and estimated perimeters

Figure 5: Fusion of observed and predicted wildfire maps. 5a is the real wildfire (ground truth), and 5b the predicted fire map from imprecise
inputs. UAVs partial measurements of the real wildfire perimeter (orange cells in 5c) are combined with the fire forecast 5b, using the
deformation map 5d defined by the connection between predicted and observed cells established with the propagation graph (5c). This yields
an estimation (5e) of the real wildfire map, 5f illustrates the ability of this fusion process to estimate a good approximation of the overall fire
perimeter size and shape.
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considering the various factors that conditions an observa-
tion mission. The WOP is defined by a series of charac-
teristics:

1. Wildfires are only observable at the fire front. Moni-
toring of a live wildfire consists on following the evo-
lution of its active perimeter2.

2. The wildfire perimeter is dynamic. Wildfire propaga-
tion models provide coarse estimates on fire perime-
ter propagation that can be used to drive observation
planning.

3. Time is crucial. A straightforward consequence of 1)
and 2) is that the observation of active fire contours
is constrained within narrow time windows.

4. Observations must be prioritized. Fully monitoring
one or multiple wildfires over a large area can not be
assured with only a handful of UAVs. Information
will be inevitably lacking, and hence the selection of
areas to observe must be driven by a notion of utility,
a numerical value that has to be defined.

5. UAV motions are constrained. Fixed-wing UAV can
only move forward and turn at a limited rate, and
the effect of wind on their trajectory is significant,
which adds more complexity to the planning prob-
lem3. Also, flight speed and endurance hamper the
maximum spatial and temporal range to survey the
terrain.

6. Observation effort must be balanced between the UAVs.
As several UAVs monitor a large or several fire fronts,
the observation plan must balance UAV workload
while considering the combined limits in observation
reward and motion cost for the whole mission dura-
tion.

Overall, the characteristics of the WOP impose many
restrictions to the set of possible solutions to explore. More-
over, this is a multi-objective optimization problem that
depends on a balance between several criteria and on nu-
merous uncertain factors: finding an absolute optimal so-
lution may not make much sense, and we propose a heuris-
tic approach that efficiently finds solutions of good quality.

3.2. Models

The proposed approach for wildfire observation plan-
ning is based on the integration of realistic models to en-
sure the feasibility and suitability of the plans. Besides the
wildfire propagation model introduced in section 2, these
are UAV models for perception and motion, and a model of
utility that assesses the interest of making an observation.

2Observing burnt areas is also an essential task to detect re-
ignitions, but we only focus on the monitoring of live wildfires

3Only leveled flights are considered, a constraint imposed by the
fire mapping process.

3.2.1. UAV motion model

Planning an observation of a given place and time calls
for the definition of feasible and optimal flight trajectories:
this is done thanks to the use of a UAV motion model
encoding the particularities of flight dynamics, and that
allows to estimate the duration of the trajectory.

Definition 1 (Waypoint). A waypoint w is an interme-
diate point of the trajectory that a UAV has to reach. A
waypoint is represented by a tuple (x, y, ψ) where x, y,
correspond to East/North coordinates, and ψ is the course
angle4.

Definition 2 (Trajectory). A trajectory T is defined as
a tuple (uav, t0,W ) where uav is a UAV motion model,
t0 is the start time and W = 〈w0, . . . , wn〉 an ordered se-
quence of waypoints.

Travel time between consecutive waypoints is computed
with the UAV model, which, given a trajectory start time
t0, allows to predict the associated time of arrival t(w)
of every waypoint. A trajectory is said to be valid iff it
satisfies three conditions:

1. The path between any pair of consecutive waypoints
must be feasible by uav.

2. The last waypoint wn must coincide with w0 or with
a safe landing spot defined by the user.

3. The flight duration (t(wn)− t0) must be lower than
the maximum flight endurance of uav.

Assuming level flight and constant cruise speed, mini-
mum length paths for fixed-wing UAVs are Dubins paths
[23], composed of straight lines and minimum radius turns.
But the influence wind can not be neglected on the UAV
trajectories – especially for the WOP, as wildfires mostly
occur in windy conditions. A UAV flying in presence of a
steady wind of norm Vw, on a horizontal plane (x, y), at
a constant airspeed Va with a heading angle ψ obeys the
following model named Dubins-wind :

ẋ = Va · cos(ψ) + Vwx

ẏ = Va · sin(ψ) + Vwy

ψ̇ = u

(7)

The presence of wind affects the UAV as an additive
disturbance (Vwx, Vwy). As a result, the ground speed
(ẋ, ẏ) differs from its constant airspeed Va, and depends
on the UAV heading angle with respect to the wind direc-
tion. When flying along straight line segments, the UAV
heading angle differs from its flying direction, and constant
bank angle trajectories that are circles in the absence of
wind become trochoids.

4Assuming leveled flights, the altitude z is constant
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(a) Wind blowing towards the south (b) Wind blowing towards the east

Figure 6: Depiction of the effect of wind over Dubins paths. Depending on the wind speed and direction, the path linking the same waypoint
sequence can drastically change in shape and length. Steering while facing wind results in a tighter turn radius due to the slower ground
speed. Conversely, turning in the direction of wind leads to wider turns.

Consequently, standard circular Dubins paths under
the presence of wind are sub-optimal and, while UAV guid-
ance controllers can compensate some wind disturbance in
order to follow the original optimal Dubins paths, it is
more energy efficient to follow the optimal trajectories de-
rived from the constant wind condition. As depicted in
Figure 6, wind direction has a significant impact on tra-
jectory length.

A numerical approach to solve the problem of finding
time optimal paths under steady uniform winds is pro-
posed by [24]. The strategy is to find the optimal path
with wind by reformulating the problem as finding the
no-wind path from a fixed position to a virtual moving
destination that drifts in opposite direction to the wind
vector. The goal of the redefined problem is to reach the
virtual target at the right time with a regular Dubins path.
When the planned no-wind path is transformed back by
the action of wind, the disturbed path corresponds to time
optimal trajectory that reaches the original destination.

3.2.2. Perception model

The perception model provides an estimate of the por-
tions of land that can be observed by the UAV and the
fraction of these expected to be on fire. It exploits the
current predicted wildfire map, the pose of an UAV at a
given time, and the field of view of the on-board camera.
The information provided by the perception model is used
by the planner to evaluate possible trajectories during the
search, using a measure of utility to assess the amount of
information they can bring.

Our model assumes a nadir pointed camera, and that
only images acquired during straight lines are processed –
which is currently a constraint for most commercial UAVs.
It simply consists in recovering the map cells covered by
the camera footprint on the ground, the state of the cells
(burning or not) being used to define the utility of the
observation. Figure 7 shows a portion of a UAV flight
trajectory exhibiting the cells it allows to observe.
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Figure 7: Illustration of the perception model outputs resulting from
a UAV trajectory (blue line), overlaid on a predicted fire map (red
lines are the fire isochrons). Observed cells are in in gray, and the
observed burning cells in green. Note that cells are only observed
during straight segments of the trajectory.

3.2.3. Utility model

Utility is a function that allows the observation plan-
ner to assess the quality of a solution. For the WOP, it
is a performance measurement of the ability to track fire
perimeters. Contrary to metrics rating the flight time or
distance, defining a utility function considering the extent
and the quality of the information acquired so far is not
trivial. The utility function should indeed comply with
various needs:

• It must favor trajectories leading the UAVs to the
fire front.

• The fire front spread is rather regular in both space
and time, and its speed is nearly negligible with re-
spect to the UAVs speed. Hence consecutively ob-
serving two neighboring burning locations does not
give much more additional information compared to
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observing just one of them. Similarly, repeatedly
tracking the same spot over time is not very advan-
tageous compared to broadly monitoring the wildfire
perimeter.

• Short term propagation forecasts are not expected to
diverge too much from reality, and their observations
should not be favored,

• Finally, the overall wildfire monitoring system is un-
der the control of human operators who task the
system by specifying the areas to observe, which is
turned into a utility.

These concerns are encoded within a utility map U ,
that associates each cell c of the fire map to the utility
U(c) ∈ [0, 1] of being observed.

U is initialized with the intrinsic utility UB(c) that
quantifies the information gain of observing a cell c in-
dependently of any other observation. Considering that
faster parts of the perimeter have to be observed more fre-
quently than slower ones, UB is scaled linearly with the
rate of spread:

UB (c) = Umin +

(
RoS(c)−RoSmin

RoSmax −RoSmin

)
∗ (1− Umin)

where Umin is a constant setting the minimal utility. The
utility map is initialized with the intrinsic utilities (U(c)←
UB(c) ∀c).

When an observation is made, the system gains direct
information on the observed cell. As highlighted and ex-
ploited in section 2, indirect information is also gained on
the nearby locations due to the regularity and predictabil-
ity of fire propagation. We capture this potential indirect
information gain on cell cind after an observation of cell
cobs by the function:

uind(cobs, cind) = UB(cind) · α · (1− dist(cobs, cind)/dmax)

where the indirect information gathered decreases with the
distance up to dmax, and α ∈ [0, 1] is a scaling constant
that represents the maximum ratio of information that can
be indirectly gathered in a single observation.

When an observation is made, the obs-utility-update
of Algorithm 1 is used to compute the information gain and
decrease in U the utilities that remain to be harvested. It
computes for each nearby cell c′ the indirect information
gained δuc′ and retracts it from U , thus decreasing the
potential of a future observation.

The demand of operators to focus on a particular area
can be encoded by setting to zero the utility of all obser-
vation outside of the observation area.

3.3. Planning problem formulation

The problem to solve is to find an observation mission
plan to determine a subset of places deemed on fire to
visit by the fleet of UAVs, and in which order, so that

Algorithm 1 Observation utility computation

function obs-utility-update(c, U)
δu = U(c)
U(c)← 0
for all cell c′ within dmax distance of c do

δuc′ = min { U(c′), uind(c, c′) }
U(c′)← U(c′)− δuc′
δu← δu+ δuc′

return δu

the information gain about a wildfire is maximal and an
allotted time budget is not exceeded. A plan is made up
of trajectories (one per-UAV) confined in time by human
operators.

Definition 3 (Flight Window). A flight window F =
(uav, T, dmax, [tmin, tmax]) represents the opportunity for
uav to make a trajectory T and whose duration is at most
dmax, the maximum flying time allowed by the UAV model,
start and end times comprised within the interval [tmin, tmax].

Flight windows reflect the UAV temporal allocation for
the complete duration of a mission, and allow operators
to manage the endurance of individual UAVs and of the
fleet long term (for instance, a couple of UAVs can be
assigned alternating flying intervals to extend the duration
of a monitoring mission).

Definition 4 (Plan). Given a set of flight windows F =
{F0, . . . , Fm}, a plan π associates each flight window Fi to
a trajectory Ti = π(Fi). A plan has an associated utility
value U(π) measuring the fitness of the trajectory set to
observe a particular wildfire scenario.

A plan π is valid if every trajectory Ti is valid and fits
within its flight window Fi.

Definition 5 (Plan Utility). The utility of a plan U(π)
is the sum of the utilities collected by each observation in
the plan.

3.4. Variable Neighborhood Search planner

The WOP resembles the Orienteering Problem (OP)
[25] of operations research, a variant of the Vehicle Rout-
ing Problem. Given a graph where each vertex (observa-
tion) is given a score and each edge a traversal cost (travel
time), the OP deals with the problem of finding a route
through a subset of these vertices that maximizes the col-
lected score without exceeding a travel budget. While the
OP remains very simple in its formulation, it has seen mul-
tiple extensions that approaches our needs, like The Team
Orienteering Problem [26] that considers multiple agents,
the Orienteering Problem with Time Windows (OPTW)
[27], the Team Orienteering Problem with Time Windows
(TOPTW) [28], and the Generalized Orienteering Problem
(GOP) that considers nonlinear objective functions [29].
Many variants of the OP and approaches to tackle them
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are presented in a comprehensive survey [30]. As the
OP is NP-hard, most successful approaches are based on
known metaheuristics such as TABU search, Iterated Lo-
cal Search, Genetic Algorithms, Ant Colony Optimization,
and Variable Neighborhood Search (VNS) [28].

The VNS metaheuristic stands out as one of the most
effective approaches according to benchmarks [30]. How-
ever, none of the surveyed VNS variants perfectly fits the
characteristics of the WOP. As a result, the VNS meta-
heuristic has to be tailored to our problem with compatible
UAV perception and motion models as well as a combina-
tion of neighborhoods adapted to the continuous and very
large space definition of vertices.

3.4.1. VNS basics

VNS algorithms [31] are built on sequences of neigh-
borhoods 〈N 1, . . . ,Nm〉, where each neighborhood aims
at improving a particular aspect of the current plan. When
applied to an existing plan, a neighborhood generates closely
related plans, e.g. by swapping the order at which two
locations are visited or changing the orientation of a way-
point.

Definition 6 (Neighborhood). A neighborhood N de-
fines for each valid plan π a set of neighbor plans N (π) ⊆
Π where Π is the set of valid plans.

Given an initial plan and a sequence of neighborhoods
the core of the VNS procedure is descent phase where:

1. One of the neighborhood is used to provide a set of
candidate modifications to the current plan.

2. If a modification improves the current plan, it is kept,
and the descent restarts from the first neighborhood,

3. Otherwise, the descent switches to the next neigh-
borhood (or finishes if their is none).

Once a local minimum has been reached by the descent
phase, a shuffling function can be used to apply random
changes to the current solution before starting a new de-
scent phase, with the hope of reaching better solution. The
stop condition may be a maximum run time, a maximum
number of iterations or a stabilization of the improvement
rate.

The key benefit of this metaheuristic lies in its generic
and adaptable definition. The VNS algorithm can be tai-
lored to a specific problem by changing how the descent
and perturbation phases behave and the sequence in which
neighborhoods are explored. The challenge of designing a
VNS approach to solve a given problem resides in the for-
mulation of the problem and in the definition of a good
set of neighborhoods for solving it in reasonable time.

For the WOP problem, the advantage of using a VNS
algorithm is that observation plans are built for the fleet of
UAVs as a whole: the problem of allocating UAVs to areas
to observe is implicitly solved with careful neighborhood
design. Also, as a VNS algorithm works by applying small

incremental improvements to a plan, it can be stopped at
any time or restarted from an existing plan. The later is
especially interesting, because plans can be repaired and
improved over time as wildfire forecasts are updated.

Another benefit of a heuristic approach is that good
solutions can be rapidly found. Because plans will be up-
dated frequently due to evolving fire conditions, planned
monitoring missions do not need to be perfectly optimal.

Unfortunately, the basic VNS scheme is not all the way
applicable for wildfire observation planning because the
descent phase consisting in finding a local optimum is not
feasible. Improving the current solution means adding,
removing and updating waypoints, but the space of pos-
sibilities is very large. Furthermore, there is no determin-
istic optimization strategy to follow (no clear direction of
descent), and an exhaustive search would be very time-
consuming. Instead, the proposed descent strategy relies
on sampling to produce a representative set of small local
optimizations within the current neighborhood and fre-
quent neighborhood changes.

3.4.2. Neighborhood-specific utility

Unlike in the classical VNS, each neighborhood N is
associated with a utility function uN : Π → R that gives
the quality of a plan in the context of this neighborhood
and may differ from the plan’s utility function. For in-
stance, a neighborhood aiming at optimizing trajectories
could base its utility function only on the length of the
plan. This neighborhood-dependent utility allows greater
separation of concerns between different specialized neigh-
borhoods, while the full problem remains mono-objective.

Given a plan π ∈ Π and a neighborhood N , the descent
exploits this local utility through the gen-neighborN (π)
function that returns either (i) a new valid plan π′ ∈ N (π)
such that uN (π′) < uN (π), or (ii) nil if the neighborhood
failed to generate an improved neighbor.

3.4.3. Shuffling

In order to escape from local optima obtained in the de-
scent phase, we define a perturbation function Shuffle(π) :
Π → Π that produces a new plan by disturbing the plan
π. The strategy applied consists in removing a sequence of
waypoints from the current plan. The number of consec-
utive waypoints to be removed in each trajectory is ran-
domly chosen between 0 and the maximum number of way-
points that can be removed, excluding the imposed start
and end of the trajectory.

3.4.4. VNS Algorithm

Our VNS approach, fully depicted in Algorithm 2, takes
as parameters an initial plan, a sequence of neighborhoods,
a shuffling function and a maximum run time. Given an
initial (possibly empty) plan πinitial, the descent phase
of VNS attempts to generate plan improvements by sys-
tematically and sequentially trying all neighborhoods 〈N 1,
. . . ,Nm〉 with gen-neighbor until a neighborhood Ni pro-
vides an improvement. If an enhancement according to the
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Algorithm 2 Pseudo-code of the proposed Variable
Neighborhood Search (VNS) algorithm. VNS takes as
parameters an initial plan πinitial, a sequence of neigh-
borhoods 〈N 1, . . . ,Nm〉, a real CPUmax indicating the
maximum planning time and a function Shuffle that is
applied to the best plan on a restart.

function VNS(πinitial, 〈N 1, . . . ,Nm〉, CPUmax)
initialization(πinitial)
πbest ← πinitial
num-restarts← 0
while runtime ≤ CPUmax do

π ← Shuffle(πbest)
i← 1 . Select the first neighborhood
while i ≤ m do

π′ ← gen-neighborNi
(π)

if π′ 6= nil then
π ← π′ . Update current plan
if U(π) > U(πbest) then

πbest ← π

i← 1 . Select first neighborhood
else

i← i+ 1 . Select next neighborhood

num-restarts← num-restarts + 1

return πbest

plan global utility function is provided, the current plan is
updated and the process restarts from the first neighbor-
hood N1. When no neighborhood is able to generate an
improvement, the best plan found so far is perturbed by
the shuffling function and the descent phase restarts from
the first neighborhood N1. This process is repeated until
the total runtime goes over the allowed budget CPUmax,
at which point the best plan found is returned.

As the VNS approach is able to start from any valid
plan, πinitial can be set to a previously computed plan
πprev. In this case, the VNS algorithm is constrained to
improve only future parts of πprev. First, an initializa-
tion function translates the future waypoints to locations
expected to be on fire, removing from the plan the way-
points that can not be translated. Then, the current plan
is refined following the same procedure for initial plans.

3.5. Definition of applicable neighborhoods

We define two classes of neighborhoods that have proved
useful for the WOP problem:

• An insertion neighborhood

• A path optimization neighborhood

These neighborhoods respectively insert waypoints in
trajectories to improve the utility of the plan and reduce
the duration of those trajectories so more observations can
be made. Both exploit the ProjectWaypoint function,
which tweaks the trajectories to observe the fire front, so
as to ensure that the selected waypoints bring as much
utility as possible.

3.5.1. Projection on fire front

Waypoints in a trajectory are only useful when they al-
low observing the fire front, i.e., if they are directly above
an ignited cell. The ProjectWaypoint function (Algo-
rithm 3) provides a way to move an arbitrary waypoint w
so that when reached by a uav the cell beneath it is ig-
nited. For this, it computes the arrival time tw at w from
a previous waypoint wprev. If the cell beneath it is not
ignited at tw, it computes the fire propagation direction at
w and transfers w to be over the next cell in this direction
(or in the opposite direction if the fire front already passed
through w). This moves w to be one cell closer to the fire
front and is repeated until the fire front is reached.5

Algorithm 3 Pseudo-code of the ProjectWaypoint
function. The algorithm relocates a waypoint w over a cell
where the wildfire is active. The ProjectTrajectory
function does the same thing for an entire trajectory (or
any sequence of waypoints).

function ProjectWaypoint(w, uav, tprev, wprev)
while true do

tw ← tprev + travel-time(uav,wprev, w)
if tw ∈ [ignition(w), ignitionend(w)] then

return w
// compute direction of propagation at w
~p← ∇ignition(w)
// Move w towards the fire front
if tw < ignition(w) then

w ← next-in-direction(w, ~p)
else

w ← next-in-direction(w,−~p)
function ProjectTrajectory(〈w0, . . . , wn〉, uav, t0)

for all i ∈ [1, n] do
wi ← ProjectWaypoint(wi, uav, ti−1, wi−1)
ti ← ti−1 + travel-time(uav,wi−1, wi)

This function is useful for the waypoint insertion neigh-
borhood, so that the new waypoint is placed at a valid lo-
cation, and to correct the placement of the following way-
points (as illustrated figure 8). Also, after an update of
the wildfire situation, the observation plan can be refined
instead of starting from scratch. In such situations, the
ProjectWaypoint function is used to quickly update
the original plan.

The associated ProjectTrajectory function acts
similarly on an entire trajectory, shifting all waypoints of
the sequence onto the firefront so that they lead to an ac-
tual observation. It can be used as a repair procedure to
adapt a sequence waypoint when, e.g., a trajectory has
been modified (during planning) or to adapt a trajectory
to a new knowledge on the fire front (when replanning).

5For completeness one can check that the algorithm converges by
ensuring that the ignition time at w is monotonically increasing or
decreasing.
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wi

wi+1

w'

Figure 8: The waypoint insertion process. A randomly chosen way-
point w′ (dashed, light blue) is inserted in a trajectory between wi

and wi+1 (dark blue). w′ is re-projected into a previous isochron
(light blue) whose time corresponds to the time needed to reach it
from wi. Finally, due to the increment in travel time between wi

and wi+1 caused by the insertion, wi+1 is moved to a later isochron.

3.5.2. Insertion neighborhoods

A waypoint insertion neighborhood alters a plan by
inserting a new waypoint w′ in a trajectory T .

Since the number of potential waypoints is large, new
waypoints are obtained through sampling. The insertion
procedure selects a location at random and tries to find
the best insertion order in a trajectory and across trajec-
tories. Each candidate waypoint goes through Project-
Waypoint so the UAV is able to reach it within the asso-
ciated [ignition, ignitionend] range of the underlying cell.

Given a random waypoint w and a trajectory T with
waypoints 〈w0, . . . , wn〉, we construct a neighbor for each
i ∈ [0, n − 1] by (i): inserting after wi the w′ resulting
from the use of ProjectWaypoint to place w in a valid
location (feasible by the UAV and situated over an ac-
tive fire perimeter when reached) and (ii): adapting the
rest 〈wi+1, . . . , wn−1〉 of the trajectory with the Project-
Trajectory function to account for the added delay in
reaching wi+1 (Figure 8).

The utility of a neighbor plan is assessed by the plan
utility function, with ties broken by trajectory duration.

Several waypoint insertion neighborhoods can be de-
fined that differs in how the expanded trajectory – and
thus the affected UAV – is selected.

3.5.3. Path optimization neighborhoods

Waypoint orientation has an important effect on Du-
bins path length, and can greatly extend a trajectory with
pointless turns. A path optimization neighborhood is nec-
essary to reduce flight time, so more waypoints could be
added within the limited flight duration.

Path length optimization of all waypoints being in-
tractable, a local path optimization neighborhood applies
a stochastic or deterministic rotation to a randomly cho-
sen waypoint in the plan with the objective of reducing
the duration of a trajectory. While the main purpose of

wi

wi+1

Figure 9: Illustration of the local path optimization process. The
dark blue curve represents the original trajectory and the light blue
curve the optimized one. The improved path contains longer straight
line sections so more portions of the wildfire can be observed.

waypoint rotation is not to improve the global plan util-
ity value, well oriented waypoints typically yield improve-
ments to the observation utility as the optimized path con-
tains longer straight flight sections (Figure 9).

The path optimization neighborhood works by picking
a random modifiable waypoint wi (different from the take-
off and landing spots w0 and wn) from a trajectory Tj ∈ π.
Then, an orientation changer generator proposes a new
orientation angle for this waypoint and the travel time
from and to this waypoint is re-computed. If the candidate
reduces the length of the trajectory, the move is accepted.
Otherwise, the operation is repeated until a move that
improves trajectory length is found or a maximum number
of trials is reached.

Three orientation change generators have been found
useful: Random rotation, Flip and Mean angle. The third
generator is inspired from [32] and smooths the trajectory
by giving a waypoint wi the mean angle between wi+1 and
wi−1. These heuristics efficiently fix badly placed way-
points that are not oriented along the overall trajectory
direction, which force UAVs to perform pointless sharp
turns (as in Figure 9).

3.6. Implementation details and illustrations

This section provides some insight on the observation
planner implementation and illustrates its application over
typical wildfire scenarios.

3.6.1. VNS implementation details

Successful tailoring of the VNS metaheuristic to a par-
ticular problem requires thoughtful neighborhood design.
The order according to which the neighborhoods are called
by the VNS planner, the total planning time and the sam-
pling parameters impact the efficacy of the planner. This
subsection summarizes the results of [33] where several
neighborhood configurations were evaluated on a previous
version of the VNS planner. While improvements have
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been made since, especially on the definition of observa-
tions, the findings about the configurations are still valid.

The best sequence of neighborhood structures found is
composed of one instance of the path optimization neigh-
borhood Nopt and three instances of the insertion neigh-
borhood Nins:

〈Nopt,N all−best
ins ,N 1−best

ins ,N rand
ins 〉

Both the Nopt and Nins classes of neighborhood rely
upon sampling in order to propose improvements to the
current plan. The number of samples introduce a trade off
between plan quality and time spent. Nopt is configured to
try 100 orientation-change samples for the illustrative ex-
amples in this section. The N all−best

ins , N 1−best
ins and N rand

ins

are set to 50, 200 and 200 waypoint-insertion samples re-
spectively.

The difference between the three variations of Nins re-
sides in the specific strategy followed to insert random
waypoints into plan trajectories:

1. N all−best
ins systematically tries all possible insertion

locations in every trajectory of the plan. As a result,
this neighborhood tends to produce plans with large
utility improvements where a single UAV is in charge
of a group of nearby observations.

2. N 1−best
ins picks one trajectory at random and finds the

best place to insert the waypoint.

3. N rand
ins takes a random waypoint and inserts it in a

random position of a random trajectory. Contrary
to N all−best

ins , N rand
ins produces neighbor plans with

lesser utility improvements but favoring expansion
to unexplored areas.

N all−best
ins allows to quickly build an initial solution

by promoting highly rewarding neighbor plans. However,
once N all−best

ins fails to generate improved solutions, the
planner falls back to the broaderN 1−best

ins andN rand
ins neigh-

borhoods.
The effect of Nopt, which the VNS systematically goes

back to on a plan update, is the reduction of trajectory
duration so that more waypoints can be inserted after-
wards. A secondary benefit of Nopt is the production of
trajectories that are smooth.

3.6.2. Illustrations

The behavior of the VNS planner is illustrated over
three distinct wildfire situations with single and multiple
UAVs monitoring plans (statistical evaluations on a se-
ries of problems can be found for a former version of the
planner in [33]). Figure 10 is a typical situation where
an ongoing fire has to be mapped by UAVs with sufficient
endurance to observe the complete perimeter. Figure 11
considers a bigger fire and reduced UAV autonomy. Fig-
ure 12 shows the case of multiple active wildfires of dif-
ferent sizes. In the 3 cases, results obtained with a single
UAV and three UAVs are shown.

Observation plans have been generated with 30 seconds
of planning time on an 2.90 GHz Intel Core i7-7820HQ
CPU. UAVs in situation 1 and 3 have 30 minutes of flight
endurance, and only 15 minutes in situation 2. Figure 10a
and Figure 10b demonstrate the priority to observe the
front fire with respect to the backfire as trajectories con-
tain more waypoints over the former than the later. When
UAVs do not have enough endurance to cover the complete
perimeter (Figure 11a), the efforts are distributed (Fig-
ure 11b). In situation 3, UAVs have sufficient endurance
and the planner finds the best way to switch between in-
dependent perimeters (Figure 12a). Although the trajec-
tories in Figure 12b look redundant, UAV passage times
are different: in this case adding more UAVs does not pro-
vide more information about the total perimeter, but more
frequent updates as UAVs are scattered.

Impact of wind. Figure 13 and Figure 14 show situations
where strong winds have a great influence on the result-
ing trajectory. In both cases, different flight patterns can
be seen, depending on whether the UAV is flying into or
against the wind: when traveling with tailwind, the added
ground speed allows covering more areas in less time. Con-
versely, the extra speed results in wider turn radius that
make tight trajectories more difficult and, at the end, re-
quire longer paths.

4. Integration, simulation and field tests

4.1. Integration architecture

The mapping and observation planning functionalities
are integrated within a wholesome architecture that com-
prises the UAVs system and a supervision scheme (Fig-
ure 15), relying on the Robot Operating System (ROS)
middleware.

The situation assessment functionality is distributed
across multiple locations of the SAOP system. Wildfire
perception and mapping algorithms run on-board UAVs
embedded computer, and the prediction of wildfire spread
and fusion with the observed wildfire maps is done on
ground. This separation is mainly due to communication
constraints, as fire maps are smaller than images and do
need to be fused at every image acquisition, and also be-
cause the fusion process is centralized, on the CPU that
handles fire propagation. The observation planning pro-
cess runs on ground, using the maps outputted by the sit-
uation assessment subsystem. The UAV platform is man-
aged by the LSTS toolchain [34], a software suite devel-
oped by the University of Porto for the operation of het-
erogeneous fleets of unnamed aerial and marine vehicles.

In a fully autonomous system, a complete supervision
component should be in charge of the control and synchro-
nization of all the system processes. However, we opted for
a less ambitious scheme, yet more realistic in current oper-
ational contexts: the supervision component is mainly the
interface with the system operator (Figure 16). Through
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Figure 10: Observation plans for situation 1
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Figure 11: Observation plans for situation 2

0 m 1 km 2 km 3 km 4 km 5 km 6 km 7 km

East

0 m

1 km

2 km

3 km

4 km

5 km

6 km

7 km

8 km

N
or

th

01:53

03:00

04:06

04
:0

6

05:13

05:13

0
6

:2
0

0
6

:2
0

06:20

07:26

07:26

07:26

08:33

08:33

09
:4

009:40

(a) One UAV

0 m 1 km 2 km 3 km 4 km 5 km 6 km 7 km

East

0 m

1 km

2 km

3 km

4 km

5 km

6 km

7 km

8 km

N
or

th

01:53

03:00

04:06 05:13

0
6

:2
0

0
6

:2
0

06:20

07:26

07:26

07
:2

6

08:33

08:33

09
:4

0

09:40

(b) Three UAVs

Figure 12: Observation plans for situation 3

13



0 m 1 km 2 km 3 km 4 km 5 km

East

0 m

1 km

2 km

3 km

4 km

5 km

N
or

th

20

30

40

50
60

70

80 90

1
0

011
0

120

130

1
4

0

1
5

0

160

1
7

0

1
8

0

1
9

0

2
0

0

UAV 0

Figure 13: Illustration of an observation plan with strong wind blow-
ing from the south. The twisting paths while flying northwards elon-
gate the trajectory duration, but induce longer straight segments.
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Figure 14: Illustration of an observation plan with strong wind blow-
ing from the west. Note the turn radius is wider in the outbound
part of the trip (south) than in the return section (north) due to the
effect of wind.

this interface, the operator coordinates the behavior of
SAOP components by issuing action commands, such as
Create plan, Stop plan or Predict wildfire. It can also spec-
ify an area to observe, select which UAVs should partici-
pate in the mission, or decide the time to start the mission.

4.2. Mixed-reality simulation

Testing and experimenting the SAOP wildfire moni-
toring system in real life is of course challenging because
of the nature of wildland fires. Prescribed or controlled
fires could be good opportunities, but such fires can not
be repeated twice with the same conditions, hampering
the improvements at the system and sub-systems levels.
Also, UAV operations are still tedious, time-consuming
and costly, all the more for a UAV fleet.

Simulation is the only way to obtain arbitrary repeat-
able wildfire test scenarios, and is of course of primary
importance for early testing and validation. We opted
for a mixed-reality approach, similar to [35], which allows
to have the either simulated or actual UAVs in the loop,
while simulating the occurrence of a wildfire. The simula-
tion leverages on the LSTS toolchain to simulate UAVs or
to control actual UAVs, and exploits the Morse robotics
simulator [36] to simulate wildfire image acquisitions ac-
cording to each UAV position and orientation, be they real
or simulated.

4.3. Field tests

The overall system has been tested during two demon-
stration campaigns held in Vigo (Spain) and near Porto
(Portugal) in April and May 2019 respectively, in the con-
text of the FireRS project6 in collaboration with the Uni-
versity of Porto and the University of Vigo. The objectives
of the tests were to assess the validity of the proposed
approach and software integration, and to showcase the
FireRS project to the media.

First tests. These first tests were meant to assess the com-
munication infrastructure of SAOP with the UAVs. Upon
the reception of an alarm that identifies a localized wildfire
ourbreak, SAOP predicted the fire spread and generated
an observation plan (Figure 17) – no actual UAV flights
were planned for these tests.

Tests with a UAV. This campaign focused on wildfire ob-
servation planning and actual flights with a UAV, at a
location near Porto (Figure 18). Because of the impossi-
bility to have a real fire in this location, we resorted to
the mixed reality simulation framework, with a simulated
wildfire.

The goal was to test the ability of SAOP to map of
a wildfire perimeter with an X8 flying wing UAV7 oper-
ated by the University of Porto. Due to communication

6wildFIRE Remote Sensing, http://www.fire-rs.com
7https://www.lsts.pt/index.php/systems/60
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Figure 16: Screenshot of the SAOP human-machine interface

issues with the network between the UAVs and SAOP on
the control station, the fire mapping module ran off-board
rather than on the embedded UAV computer (processing
images generated with the Morse simulator): this modi-
fication could rapidly be implemented on-site, thanks to
the modular system architecture.

A first test showcased the execution of the flight plan
produced by SAOP after a simulated wildfire outbreak,
with the UAV initially in a flying loitering state. Two ad-
ditional tests demonstrated the whole mapping / predic-
tion / planning sequence over the front of the simulated
wildfire 30 min and 1 h after the ignition. Figure 19 illus-
trates some of the results of SAOP during these tests.

5. Conclusion

This paper has introduced the design of a wholesome
wildfire monitoring system using fleets of fixed-wing UAVs.
The main contribution is the definition of an approach to
tackle the Wildfire Observation Problem, resorting to a
VNS approach to produce realistic observation plans, han-
dling altogether the allocation and trajectory definition
problems. A wildfire situation assessment process, that
estimates the current wildfire spread from partial obser-
vations of the fire perimeter has also been presented and
integrated. The approach exploits realistic UAV motion
and perception models, as well as a realistic fire propaga-
tion model. It has been integrated in a modular global
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Figure 17: Screenshot of the alarm reception interface depicting the position of a detected fire alarm (left) and the SAOP HMI showing the
prediction of the fire spread.

Figure 18: Detailed map of the flight site near Porto (Portugal).
The 500 m radius red circle represents the area where the UAVs are
allowed to operate, centered on the airstrip used for taking off and
landing. The flame tag denotes the location of the simulated fire
ignition.

architecture, validated in simulations and field tests, re-
sorting to mixed reality scenarios.

The presented SAOP system is a proof-of-concept, within
which various revisions and improvements must be achieved
so as to foster the development of actual operational sys-
tems. We highlight below the three improvements which
we deem essential, and sketch the way we think they should
be tackled.

Wildfire situation assessment

Besides the integration of state of the art fire observa-
tion exploiting infrared and visible cameras, and of fusion
algorithms that would explicitly handle the observation
and prediction uncertainties, the wildfire situation assess-
ment could benefit from several improvements.

By allowing to estimate the key parameters that gov-
ern the wildfire propagation (mainly the fuel information),
data assimilation processes would allow to make more re-
liable predictions, as well as more precise estimates of the
uncertainties. No solution able to process the gathered
data in real time is currently available, but the future
should bring the technological advances that will allow
the deep integration of data assimilation into autonomous
wildfire monitoring. In turn, having better estimates of
the mapping and propagation uncertainties would allow a
more sensible definition of the utility function, which is
the main driver of the planning process.

But however precise are the models and the detection,
propagation and fusion processes, the complexity of wild-
fires is such that the predictions will always yield uncertain
forecasts, that will eventually threaten the quality of the
observation plans. A sensible solution would be to endow
the UAVs with the ability to adapt their trajectories in
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Figure 19: Illustrations of the SAOP results. From top to bottom:
predicted fire spread after the reception of the fire outbreak; planned
and executed flight at the end after a first call to SAOP with the
mapped fire; and mapped wildfire after 30 minutes of execution.
Note the mapped fire spread over time (the shown area size is 1.8km
× 1.8km, tics are every 250m).

a closed loop with fire detection and local mapping, so
that they can be controlled at a higher level (e.g. “track
the fire perimeter”) than with a sequence of waypoints to
reach. Introducing such actions within the VNS planning
can easily be done.

Controlling the UAVs altitude

We omitted to consider altitude variations for the UAV
motion model. While this is a reasonable simplification for
mostly flat terrains, it is in mountainous areas that wild-
fires raise the most difficulties, from any point of view:
controlling the UAVs altitude then becomes necessary, so
as to avoid collisions and improve the wildfire observations.
As of today, small fixed-wings UAVs mostly interleave lev-
elled flights with altitude changes using spiral-like flight
patterns, but the extension of Dubins paths to consider
3D trajectories is tractable [37, 38, 39]. A straightfor-
ward consequence of introducing such trajectories in our
approach would be a significant increase of the complexity
of our waypoint-based planning approach, due to a sharp
increase of the number of possible waypoints to sample
from. More efficient sampling techniques could be defined,
but more interestingly it is the introduction of higher level
actions of the UAVs (e.g. “climb”), similar to the au-
tonomous fire tracking ability mentioned above, that will
allow to alleviate the algorithmic complexity of planning.

Dealing with long term operations

Our wildfire observation planner manages the UAV en-
durance through the definition of time windows and maxi-
mum trajectory durations, and is hence adapted to a time
scale in the order of hours – the UAVs endurance. The
planner has an overall greedy behavior, as there are always
some locations to observe that increase the overall plan
utility. As a result the UAV endurance can be depleted
too early, impeding operations in the long run. Wildfires
can however last up to several days, and call for an other
level of fleet mission management, e.g. developed within
a constraint satisfaction framework.

Adding this fleet management layer does not preclude
the use of our planer, but it also calls for a higher super-
vision level. As of today in SAOP, supervision is mainly
playing the role of a thin abstraction layer issuing high-
level commands to components. While this allows for some
operational autonomy, as it frees the user from the defi-
nition or low-level tasks or trajectories, the addition of
a higher planning layer would call for more supervision
capacities, e.g. to let the operators decide whether moni-
toring plans can allocate resources aggressively or conser-
vatively, and also to help them control the long-term fleet
capacities jointly with the higher level mission planner.
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