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Mohamed Siala2
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Abstract. Fairness and interpretability are fundamental requirements
for the development of responsible machine learning. However, learning
optimal interpretable models under fairness constraints has been identi-
fied as a major challenge. In this paper, we investigate and improve on a
state-of-the-art exact learning algorithm, called CORELS, which learns rule
lists that are certifiably optimal in terms of accuracy and sparsity. Sta-
tistical fairness metrics have been integrated incrementally into CORELS

in the literature. This paper demonstrates the limitations of such an
approach for exploring the search space efficiently before proposing an
Integer Linear Programming method, leveraging accuracy, sparsity and
fairness jointly for better pruning. Our thorough experiments show clear
benefits of our approach regarding the exploration of the search space.

Keywords: Fairness · Interpretability · Rule Lists · Machine Learning

1 Introduction

The combination of the availability of large datasets as well as algorithmic and
computational progress has led to a significant increase in the performance of
machine learning models. Despite their usefulness for numerous applications,
the use of such models also raises several issues when their outcome impacts
individuals’ lives (e.g., credit scoring or scholarships granting). Fairness and
interpretability are key properties for the development of trustworthy machine
learning and have become legal requirements defined in legislative texts [14].

The interpretability of a machine learning model is defined in [10] as “the
ability to explain or to present in understandable terms to a human”. This
definition is quite general, and its precise instantiation depends on the task at
hand, the context considered and the target of the explanation. Several methods
have been proposed to explain machine learning models’ predictions, which can
be categorized into two main families. On one side, black-box explanations [15]
can be useful in non-sensitive contexts to provide a posteriori explanations of
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a black-box, but can be manipulated [24]. On the other side, transparent-box
design [21] aims at building inherently interpretable models (e.g., rule-based or
tree-based models of reasonable size) [13, 21].

Fairness is a central requirement for high-stake decision systems. Indeed,
learning algorithms try to extract useful correlations from the training data but
real-world datasets may include negative biases that should not be captured
(e.g., historical discrimination). Several fairness notions have been proposed to
address this issue [6, 7, 26]. Among them, statistical fairness metrics ensure that
a given statistical measure has similar values between groups as determined by
the value of a sensitive feature. They are widely used as they can implement le-
gal requirements and are easily quantifiable. Several approaches to fair learning
have emerged in the literature, categorized into three main families. Prepro-
cessing techniques [20] directly modify the training data to remove undesirable
correlations so that any classifier trained on this data does not learn such correla-
tions. Postprocessing approaches [16] modify the outputs of a previously trained
classifier to meet some fairness criteria. Finally, algorithmic modification tech-
niques [27] directly incorporate the fairness requirements into the learning algo-
rithm and output a model satisfying a given fairness definition. In this paper, we
focus on statistical fairness metrics using algorithmic modification approaches,
which usually offer the best trade-offs between accuracy and fairness [6].

While many heuristic approaches for learning have been proposed, exact ap-
proaches offer a considerable advantage as a lack of optimality can have societal
implications [4]. For instance, CORELS [3, 4] produces rule lists that are certifiably
optimal in terms of accuracy and sparsity. It relies on a branch-and-bound algo-
rithm leveraging several dedicated bounds to prune the search space efficiently.
FairCORELS [1, 2] is a bi-objective extension of CORELS handling both statisti-
cal fairness and accuracy. FairCORELS consists in an ε-constraint method that
leverages CORELS’ original search tree and bounds for the accuracy objective and
considers the fairness objective as a constraint. However, handling such con-
straints modifies the set of acceptable solutions, which makes the exploration
considerably harder. Indeed, learning optimal interpretable machine learning
models under constraints (e.g., fairness constraints) has been identified as one
of the main technical challenges towards interpretable machine learning [25].

In this paper, we address this issue and propose a method that harnesses the
fairness constraints to efficiently prune the search space and optionally guide
exploration. More precisely, we argue that CORELS’ original bounds are not suffi-
cient to efficiently explore the search space in this bi-objective setup. To address
this, we design Integer Linear Programming (ILP) models combining both accu-
racy and fairness requirements for well-known statistical fairness metrics. These
models are incorporated into FairCORELS through effective pruning mechanisms
and can also be used to guide the exploration towards fair and accurate rule lists.
Our large experimental study using three datasets with various fairness mea-
sures and requirements demonstrates clear benefits of the proposed approaches
in terms of search exploration, memory consumption and learning quality.
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The outline of the paper is as follows. First, we provide the relevant back-
ground and notations in Section 2. Then in Section 3, after describing the fair
learning algorithm used, we discuss the theoretical claims motivating the neces-
sity of efficient pruning. Afterwards, in Section 4, we propose pruning approaches
based on ILP models, before evaluating empirically their efficiency and quality in
Section 5 through a large experimental study. Finally, we conclude in Section 6.

2 Technical Background & Notations

In this section, we introduce the necessary background as well as the different
notations used throughout the paper.

2.1 Rule Lists & Associated Notations

In supervised machine learning, the purpose of a classification problem is to
learn a classifier function that maps as accurately as possible an input space to an
output space. We use F = {f1, . . . , fG} to denote a set of G binary features, all of
them take their value in {0, 1}. The training data, denoted by E = {e1, . . . , eM},
is a set of M examples. The examples in E are partitioned into E+ and E−,
which correspond respectively to positive examples and negative ones. Precisely,
an example ej ∈ E is represented as a 2-tuple (xj , yj), in which xj ∈ {0, 1}G
denotes the value vector for all binary features associated with the example and
yj ∈ {0, 1} is the label indicating its class. We have ej ∈ E+ if yj = 1 and
ej ∈ E− if yj = 0.

We consider classifiers that are expressed as rule lists [23], which are formed
by an ordered list of if-then rules, followed by a default prediction. More precisely,
a rule list is a tuple d = (δd, q0) in which δd = (r1, r2, . . . , rk) is d’s prefix,
and q0 ∈ {0, 1} is a default prediction. A prefix is an ordered list of k distinct
association rules ri = ai → qi. Each rule ri is composed of an antecedent ai
and a consequent qi ∈ {0, 1}. Each antecedent ai is a Boolean assertion over
F evaluating either to true or false for each possible input x ∈ {0, 1}G. If ai
evaluates to true for example ej , we say that rule ri captures ej . Similarly, if at
least one of the rules in δd captures ej , we say that prefix δd captures example
ej . Rule list 1.1 predicts whether a given individual has a [low] or [high] salary.
Its prefix is composed of five rules, and its default decision is [low].

Rule list 1.1. Example rule list found by FairCORELS on the Adult Income dataset.

i f [ occupat ion : Blue−Col l a r ] then [ low ]
else i f [ occupat ion : S e rv i c e ] then [ low ]
else i f [ c a p i t a l gain : > 0 ] then [ high ]
else i f [ not ( workc las s : Government ) ] then [ low ]
else i f [ educat ion : Masters /Doctorate ] then [ high ]
else [ low ]

Using a rule list d = (δd, q0) to classify an example e is straightforward
as rules in δd are applied sequentially. If e is not captured by prefix δd, then
the default prediction q0 is returned. Finally, remark that rule list ((), q0) is
well defined, and simply consists of a default prediction (hence representing a
constant classifier).
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Table 1. Summary of four statistical fairness metrics widely used in the literature.

Metric Statistical Measure Mathematical Formulation

Statistical Parity

(SP)

Probability of Positive

Prediction

∣∣∣∣TP c
E,p + FP c

E,p

|Ep| −
TP c
E,u + FP c

E,u

|Eu|

∣∣∣∣ ≤ ε
Predictive Equality

(PE)
False Positive Rate

∣∣∣∣ FP c
E,p

|Ep ∩ E−| −
FP c
E,u

|Eu ∩ E−|

∣∣∣∣ ≤ ε
Equal Opportunity

(EOpp)
False Negative Rate

∣∣∣∣ FNc
E,p

|Ep ∩ E+| −
FNc
E,u

|Eu ∩ E+|

∣∣∣∣ ≤ ε
Equalized Odds (EO) PE and EOpp Conjunction of PE and EOpp

2.2 Statistical Fairness

The rationale of statistical fairness notions is to ensure that a given statisti-
cal measure has similar values between several protected groups, defined by the
value(s) of some sensitive feature(s) of F . The underlying principle is that such
sensitive features (e.g., race, gender, . . . ) should not influence predictions. While
the exact formulation of such metrics would enforce equality for the given mea-
sure over the protected groups, a common relaxation consists of bounding the
difference. Depending on the particular value being equalized across groups, sev-
eral metrics have been proposed in the literature. In this paper, we consider the
four most commonly used metrics: Statistical Parity [12] (SP), Predictive Equal-
ity [9] (PE), Equal Opportunity [16] (EOpp) and Equalized Odds [16] (EO).

Let E denote a training set and c a classifier. Throughout the paper, we
assume that E is partitioned into two groups: a protected group Ep and an
unprotected group Eu (this partition depends on the value of the sensitive fea-
ture(s)). Let also ε ∈ [0, 1] denote the unfairness tolerance (i.e., the maximum
acceptable value for the unfairness measure). Thus, the fairness requirement gets
harder as ε gets smaller. For a classifier c, among a group Eh, with h ∈ {p, u},
we denote by TP cE,h the number of true positives, TN c

E,h the number of true
negatives, FP cE,h the number of false positives and FN c

E,h the number of false
negatives. Table 1 gives the definition of the four metrics considered.

3 CORELS & FairCORELS

CORELS [4] is a state-of-the-art supervised learning algorithm that outputs a
certifiably optimal rule list minimizing the following objective function on a
given training dataset E :

obj(d, E) = misc(d, E) + λ ·Kd, (1)

in which misc(d, E) ∈ [0, 1] denotes the training classification error of the
rule list d, Kd is the length of d (i.e., number of association rules in d) and λ
is a regularization hyper-parameter for sparsity. CORELS is a branch-and-bound
algorithm, representing the search space of rule lists R as a prefix tree. Each
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node is a prefix in this tree, and each child node is an extension of its parent,
obtained by adding exactly one rule at the end of the parent’s prefix. Finally,
the root node corresponds to the empty prefix. Each node is a possible solution
(i.e., rule list), obtained by adding a default decision (based on majority predic-
tion) to the prefix associated with this node. While this search space corresponds
to an exhaustive enumeration of the candidate solutions, CORELS leverages sev-
eral bounds to prune it efficiently. Thanks to these bounds, along with several
smart data structures, CORELS is able to find optimal solutions with a reasonable
amount of time and memory. The set of antecedents A is pre-mined and given as
input to the algorithm. While CORELS is agnostic to the rule mining procedure
used as preprocessing, an overview of existing techniques can be found in [8].

FairCORELS [1, 2] is a bi-objective extension of CORELS jointly addressing
accuracy and statistical fairness, integrating several metrics from the literature.
Formally, given a statistical fairness notion, whose violation by a rule list d
on dataset E is quantified by an unfairness function unf(d, E) and a maximum
acceptable violation ε, FairCORELS solves the following optimization problem:

arg min
d∈R

obj(d, E) (2)

such that unf(d, E) ≤ ε

FairCORELS is presented in Algorithm 1. In this algorithm, dc denotes the
current best solution and zc is its objective value. Moreover, a priority queue Q
of prefixes is used to store its exploration frontier. The priority queue ordering
defines the exploration heuristic. The function b(δ, E) (coming from the CORELS

algorithm) gives an objective lower bound for any rule list built upon prefix
δ on the dataset E . At each iteration of the main loop, a prefix δ is removed
from the priority queue (Line 4). When the lower bound of δ is less than the
current best objective value (Line 5), two operations are considered. First, the
rule list d formed by prefix δ along with a default prediction is accepted as a
new best solution if it improves the current best objective value while respecting
the unfairness tolerance (Line 9). Second, extensions of δ using the antecedents
not involved in δ’s rules are added to the queue (Line 12).

The constrained optimization formulation of the fair learning problem used
in FairCORELS allows for the construction of different trade-offs between accu-
racy and fairness using a simple ε-constraint method [22]. However, the fairness
constraints modify the set of acceptable solutions and the resulting search space
is considerably harder to work with. Indeed, CORELS’ original bounds are less ef-
ficient as the fairness constraint gets stronger. In addition, some data structures
used by CORELS to speed up the exploration are no longer usable. For instance,
a prefix permutation map that reduces considerably the running time and the
memory consumption [3, 4] does not apply anymore. This symmetry-aware map
ensures that only the best permutation of each set of rules containing the same
antecedents is kept. However, it cannot be used within FairCORELS without sac-
rificing optimality. Indeed, a given permutation may allow for better objective
function values than others but may not lead to solutions meeting the fairness
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Algorithm 1 FairCORELS

Input: Training data E with set of pre-mined antecedents A; unfairness tolerance ε;
initial best known rule list d0 such that unf(d0, E) ≤ ε
Output: (d∗, z∗) in which d∗ is a rule list with the minimum objective function value
z∗ such that unf(d∗, E) ≤ ε
1: (dc, zc)← (d0, obj(d0, E))
2: Q← queue(()) . Initially the queue contains the empty prefix ()
3: while Q not empty do . Stop when the queue is empty
4: δ ← Q.pop()
5: if b(δ, E) < zc then
6: d← (δ, q0) . Set default prediction q0 to minimize training error
7: z ← obj(d, E)
8: if z < zc and unf(d, E) ≤ ε then
9: (dc, zc)← (d, z) . Update best rule list and objective

10: for a in A\{ai | ∃ri ∈ δ, ri = ai → qi} do . Antecedent a not involved in δ
11: r ← (a → q) . Set a’s consequent q to minimize training error
12: Q.push(δ ∪ r) . Enqueue extension of δ with r

13: (d∗, z∗)← (dc, zc)

requirement. In this situation, one could miss solutions that exhibit lower objec-
tive function values and meet the fairness requirement. Since we are interested
in preserving the guarantee of optimality, we cannot use such a data structure.
However, we note that a weaker permutation map can be designed and used with-
out losing the guarantee of optimality (we precisely do that later in Section 5.3).
Overall, both observations motivate the need for a new pruning approach, lever-
aging both the objective function value and the fairness constraint to efficiently
explore FairCORELS’ search space.

4 The Proposed Pruning Approach

This section presents our proposition to prune the search space by reasoning
about the number of well-classified examples and fairness. The main idea is to
discard prefixes that cannot improve the current objective while satisfying the
fairness requirement before being treated. To realize this, one has to guarantee
that for any prefix discarded, none of its extensions can satisfy both require-
ments, which is the purpose of Section 4.1. Afterwards, Section 4.2 exploits this
property in the presentation of our proposition.

4.1 A Sufficient Condition to Reject Prefixes

Let E be a training set and d be a rule list. We use W d
E to denote the number of

examples of dataset E well classified by d:

W d
E = TP dE,p + TP dE,u + TNd

E,p + TNd
E,u (3)

= TP dE,p + TP dE,u + |Ep ∩ E−| − FP dE,p + |Eu ∩ E−| − FP dE,u (4)
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We slightly extend the notation introduced in Section 2. For a prefix δ, among a
group Eh with h ∈ {p, u}, we denote by TP δE,h (respectively TNδ

E,h, FP δE,h and

FNδ
E,h) the number of true positives (respectively true negatives, false positives

and false negatives) among the examples of E captured by δ. Similarly, we define
W δ
E as the number of examples well classified by δ, among the examples of E

that δ captures. Clearly, W δ
E = TP δE,p + TP δE,u + TNδ

E,p + TNδ
E,u.

We define σ(δ) to be the set of all rule lists whose prefixes start with δ:
σ(δ) = {(δd, q0) | δd starts with δ}. Formally, we say that δd starts with δ (a
prefix of length K) if and only if the K first rules of δd are precisely those of δ,
appearing in the same order.

Consider d = (δd, q0) such that d ∈ σ(δ). On the one hand, some examples
of E cannot be captured by δ. On the other hand, all examples of E captured by
δ are captured by δd and have the same prediction as with δ.

Proposition 1. Given a prefix δ, a rule list d ∈ σ(δ) and h ∈ {p, u}, we have:

TP δE,h ≤ TP
d
E,h ≤ |Eh ∩ E+| − FN

δ
E,h

FP δE,h ≤ FP
d
E,h ≤ |Eh ∩ E−| − TN

δ
E,h

Proof. The lower bounds are an immediate consequence of the fact that all ex-
amples captured by δ are captured by d’s prefix and have the same predictions
that in δ. Concerning the upper bounds, we show the proof for the first inequality
as the second can be proven using a similar argument. Define T as the set of
examples in Eh ∩E+ that are not determined by δ. When constructing d from δ,
the maximum possible augmentation of true positives within protected group h
is to predict all the examples correctly in T . The size of the set containing true
positives of δ and T is equal to |Eh ∩ E+| − FNδ

E,h. Hence the upper bound. ut

As a consequence of Proposition 1, W d
E ≥ W δ

E . We now define four integer
decision variables that are used in our Integer Linear Programming (ILP) models.
These variables are used to model the confusion matrix of any rule list whose
prefix starts with δ as well as to define constraints modelling accuracy and
fairness requirements over such matrix.

xTPE,p ∈ [TP δE,p, |E
p ∩ E+| − FNδ

E,p], x
TPE,u ∈ [TP δE,u, |E

u ∩ E+| − FNδ
E,u],

xFPE,p ∈ [FP δE,p, |E
p ∩ E−| − TNδ

E,p], x
FPE,u ∈ [FP δE,u, |E

u ∩ E−| − TNδ
E,u].

Consider the following constraint in which L and U are two integers such
that 0 ≤ L ≤ U ≤ |E|:

L ≤ xTPE,p + xTPE,u + |Ep ∩ E−| − xFPE,p + |Eu ∩ E−| − xFPE,u ≤ U. (5)

We define ILP (δ, E , L, U) to be the ILP model defined by the four variables
xTPE,p , xFPE,p , xTPE,u , xFPE,u and Constraint (5).

Proposition 2. Given a prefix δ and 0 ≤ L ≤ U ≤ |E|, if ILP (δ, E , L, U) is
unsatisfiable then we have:

@d ∈ σ(δ) | L ≤W d
E ≤ U
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Proof. Assume that there exists some d ∈ σ(δ) such that L ≤ W d
E ≤ U . Then,

xTPE,p = TP dE,p, xTPE,u = TP dE,u, xFPE,p = FP dE,p and xFPE,u = FP dE,u is
a solution to ILP (δ, E , L, U). Indeed, Constraint (5) is satisfied by hypothesis,
and the bounds of the four variables are respected due to Proposition 1 and the
fact that d is an extension of δ. Finally, if ∃d ∈ σ(δ) | L ≤ W d

E ≤ U , then
ILP (δ, E , L, U) is satisfiable, which completes the proof by contrapositive. ut

In the following paragraph, we show how the ILP (δ, E , L, U) model can be
extended to include the different considered statistical fairness metrics (defined
in Table 1). For the sake of conciseness, we detail the procedure for the Statistical
Parity metric and provide the key elements for the three other metrics. Note that
propositions similar to Proposition 3 can be adapted and proved for the three
other metrics, following the same reasoning.

Integrating Statistical Parity. We introduce a constant C1 = ε× |Ep| × |Eu|
and the following constraint:

−C1 ≤ |Eu| × (xTPE,p + xFPE,p)− |Ep| × (xTPE,u + xFPE,u) ≤ C1. (6)

Let ILPSP (δ, E , L, U, ε) be the Integer Linear Programming model defined
by the four variables xTPE,p , xFPE,p , xTPE,u , xFPE,u and Constraints (5) and (6).

Proposition 3. Given a prefix δ, an unfairness tolerance ε ∈ [0, 1], and 0 ≤
L ≤ U ≤ |E|, if ILPSP (δ, E , L, U, ε) is unsatisfiable then we have:

@d ∈ σ(δ) | L ≤W d
E ≤ U and unfSP (d, E) ≤ ε

Proof. Assume that there exists some d ∈ σ(δ) such that L ≤ W d
E ≤ U and

unfSP (d, E) ≤ ε. First, observe that Constraint (6) is equivalent to the math-
ematical formulation of the Statistical Parity condition defined in Table 1. In-
deed, unfSP (d, E) ≤ ε if and only if −C1 ≤ |Eu| × (TP dE,p + FP dE,p) − |Ep| ×
(TP dE,u + FP dE,u) ≤ C1. Then, xTPE,p = TP dE,p, xTPE,u = TP dE,u, xFPE,p = FP dE,p
and xFPE,u = FP dE,u is a solution to ILPSP (δ, E , L, U, ε). Finally, if ∃d ∈ σ(δ) |
L ≤W d

E ≤ U and unfSP (d, E) ≤ ε, then ILPSP (δ, E , L, U, ε) is satisfiable, which
completes the proof by contrapositive. ut

Integrating Other Statistical Fairness Metrics. Consider a prefix δ, an
unfairness tolerance ε ∈ [0, 1] and 0 ≤ L ≤ U ≤ |E|. We define the following
useful constants C2 = ε×|Eu∩E−|×|Ep∩E−|, and C3 = ε×|Ep∩E+|×|Eu∩E+|.

Predictive Equality. Consider the following constraint:

−C2 ≤ |Eu ∩ E−| × xFPE,p − |Ep ∩ E−| × xFPE,u ≤ C2. (7)

Let ILPPE(δ, E , L, U, ε) be the ILP model defined by the four variables
xTPE,p , xFPE,p , xTPE,u , xFPE,u and Constraints (5) and (7). If ILPPE(δ, E , L, U, ε)
is unsatisfiable, then: @d ∈ σ(δ) | L ≤W d

E ≤ U and unfPE(d, E) ≤ ε.
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Equal Opportunity. Consider the following constraint:

−C3 ≤ |Ep ∩ E+| × xTPE,u − |Eu ∩ E+| × xTPE,p ≤ C3. (8)

Let ILPEOpp(δ, E , L, U, ε) be the ILP model defined by the four variables
xTPE,p , xFPE,p , xTPE,u , xFPE,u and Constraints (5) and (8). If ILPEOpp(δ, E , L, U, ε)
is unsatisfiable, then: @d ∈ σ(δ) | L ≤W d

E ≤ U and unfEOpp(d, E) ≤ ε.

Equalized Odds. Since the Equalized Odds metric is the conjunction of Equal
Opportunity and Predictive Equality, we simply use the conjunction of Con-
straints (7) and (8) to integrate it.

Let ILPEO(δ, E , L, U, ε) be the ILP model defined by the four variables
xTPE,p , xFPE,p , xTPE,u , xFPE,u and Constraints (5), (7) and (8). If ILPEO(δ, E , L, U, ε)
is unsatisfiable then: @d ∈ σ(δ) | L ≤ W d

E ≤ U and unfEO(d, E) ≤ ε.

4.2 Integration Within FairCORELS

We have proposed a sufficient condition to reject prefixes that do not respect a
given fairness metric within a requirement of well-classified examples. One can
use this property to reject prefixes before being they are treated in the main
loop of FairCORELS. This pruning idea can be integrated using two approaches.

The first one called the eager approach, checks the sufficient condition before
adding an extension of a prefix to the priority queue (before Line 12 with δ ∪ r
being the prefix given in the ILP). The second approach called the lazy approach,
checks the sufficient condition when a prefix is removed from the priority queue
and passed the branch and bound lower bound test at Line 5 with δ being the
prefix tested. If the corresponding ILP (called with valid bounds) is unsatisfiable,
then the prefix δ being tested can safely be discarded since no rule list whose
prefix starts with δ can satisfy the conjunction of fairness and well-classified
examples requirements. The difference between the two approaches can be seen
as the trade-off between memory consumption and computational time. Indeed,
given the same inputs and exploration strategies, the eager approach consumes
less memory than the lazy approach as it prunes prefixes before adding them to
the queue. However, it requires more calls to the ILP solver.

Finally, we also consider using the ILP models to guide exploration. To realize
this, we add an objective to the previously defined ILP, maximizing xTPE,p −
xFPE,p + xTPE,u − xFPE,u . The ILP is then called as in the eager approach, just
before adding an extension of a prefix to the priority queue (before Line 12).
Whenever it is unsatisfiable, the corresponding prefix is pruned. However, when
it is satisfiable, we additionally get the best accuracy reachable (e.g., a lower
bound on the objective function value) while also meeting the fairness constraint
and improving the objective function. We use this value to order the priority
queue Q and define the ILP-Guided search heuristic. Intuitively, it guides the
exploration towards the prefixes whose fairness may conflict least with accuracy
(those with highest ILP objective function).

When building the ILP models, we use tight lower and upper bounds on the
number of well-classified examples, whose computations are detailed hereafter.
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Lower Bound Computation. Let L(k, d, E) = |E| · (1− (misc(d, E)+λ · (Kd−k))).

Proposition 4. Consider a rule list d2. A rule list d1 = (δd1 , q0) has better
objective value on E than d2 if and only if W d1

E > L(|δd1 |, d2, E), in which |δd1 |
is the length of d1’s prefix.

Proof. obj(d1, E) < obj(d2, E) ⇐⇒ misc(d1, E) + λ ·Kd1 < misc(d2, E) + λ ·Kd2

⇐⇒ |E| · (1−misc(d1, E)) > |E| · (1− (misc(d2, E) + λ · (Kd2 − |δd1 |)))
⇐⇒ W d1

E > L(|δd1 |, d2, E) ut

Consider the prefix δ and the current best solution dc of the main loop. Let
d = (δd, q0) ∈ σ(δ). Using Proposition 4, we have d has a better objective value
than dc if and only if W d

E > L(|δd|, dc, E) ≥ L(|δ|, dc, E) because |δd| ≥ |δ|.
Therefore L(|δ|, dc, E) is a valid lower bound for the ILP, ensuring that rule list
d improves over the current best objective value.

Upper Bound Computation. We leverage two observations to compute a tight
value U(δ, E) such that ∀d ∈ σ(δ),W d

E ≤ U(δ, E). First, the examples captured
and misclassified by δ will always be misclassified for any d ∈ σ(δ). Second,
among the examples not captured by δ, some may conflict (i.e., have the same
features vector associated with different labels) and can never be simultane-
ously predicted correctly. This computation corresponds to the Equivalent Points
Bound of CORELS (described in details in Section 3.14 of [4]).

5 Experimental Study

The purpose of this section is two-fold. First, after describing our experimental
setup, we show the efficiency of the proposed pruning approaches using two
biased datasets and the four considered fairness metrics of Table 1. Afterwards,
we demonstrate the scalability of our method as well as its complementarity with
a new prefix permutation map, using a larger real-world dataset.

5.1 Experimental Protocol

We implement and solve the ILP models in C++ using the ILOG CPLEX 20.10

solver4, with an efficient memoisation mechanism. Sensitive features are used for
measuring and mitigating unfairness but are not used in the model’s construction
in order to prevent disparate treatment [27]. For each dataset, we generate 100
different training sets by randomly selecting 90% of the dataset’s instances, with
reported values being averaged over the 100 instances. Test values are measured
on the remaining 10% instances for each random split. All experiments are run

4 Source code of this enhanced version of the FairCORELS Python package is available
on https://github.com/ferryjul/fairCORELSV2. The use of the CPLEX solver is
possible but not mandatory, as our released code also embeds an open-source solver
(whose configuration has been tuned to handle our pruning problem efficiently). This
solver is Mistral-2.0 [17, 19], in its version used for the Minizinc Challenge 2020.
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on a computing grid over a set of homogeneous nodes using Intel Xeon E5-2683
v4 Broadwell @ 2.1GHz CPU.

We use three exploration heuristics: a best-first search ILP-Guided , a best-
first search guided by CORELS’s objective and a Breadth-First-Search (BFS). The
former inherently comes with an eager pruning. For the latter two, we compare
the original FairCORELS (no ILP pruning), as well as lazy and eager integrations
of our pruning approach. Then, we evaluate the seven exploration settings. How-
ever, results for the three best-first searches guided by CORELS’s objective are
omitted because they consistently provided worst performances (considering all
evaluated criteria) than the BFS with equivalent pruning integration. This can
be explained by the fact that this approach guides exploration towards accurate
solutions first, which conflicts with fairness in practice.

5.2 Evaluation of the Proposed ILP-based Pruning Approaches

To empirically assess the effectiveness of our proposed pruning on FairCORELS,
we perform experiments for the four metrics of Table 1 using two well-known
classification tasks of the literature with several fairness requirements. The first
task consists in predicting which individuals from the COMPAS dataset [5] will
re-offend within two years. We consider race (African-American/Caucasian) as
the sensitive feature. Features are binarized using one-hot encoding for categor-
ical ones and quantiles (with 5 bins) for numerical ones. Rules are generated as
single features without minimum support. The resulting preprocessed dataset
contains 18 rules and 6150 examples.

The second task consists in predicting whether individuals from the German
Credit dataset [11] have a good or bad credit score. We consider age (low/high) as
the sensitive feature, with both groups separated by the median value. Features
are binarized using one-hot encoding for categorical ones and quantiles (2 bins)
for numerical ones. Rules are generated as single features with minimum support
of 0.25 or conjunctions of two features with minimum support of 0.5. Gender-
related features were excluded. The resulting preprocessed dataset contains 49
rules and 1000 examples. For experiments on the COMPAS (respectively German
Credit) dataset, the maximum running time is set to 20 minutes (respectively
40 minutes). For each experiment, the maximum memory use is fixed to 4 Gb.
Due to the limited space available, we detail our evaluation for the Statistical
Parity metric. Results for all other metrics show similar trends.

Figure 1(a) displays the proportion of instances solved to optimality as a
function of the fairness requirement (which gets harder as 1− ε increases) to il-
lustrate the joint action of CORELS’ bounds and the proposed ILP-based pruning.
For low fairness requirements, all evaluated methods reach optimality, thanks to
the action of CORELS’ bounds. However, these bounds are less effective for strong
fairness requirements, and without the ILP pruning, optimality can hardly be
reached. Conversely, the higher the value of 1− ε, the larger the pruning of the
search space. Hence, optimality is reached most of the time when performing
an eager pruning (eager BFS or ILP-Guided). This joint effect is particularly
visible with the lazy BFS approach on the COMPAS dataset.
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(a) Proportion of instances solved to optimality as a function of 1− ε.
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(c) Solving time as a function of the objective function quality normalized score.

Fig. 1. Experimental results (left: COMPAS, right: German Credit).

Figures 1(b) and 1(c) are generated using high fairness requirements (unfair-
ness tolerances ranging between 0.005 and 0.02). Figure 1(b) presents the solving
time as a function of the proportion of instances solved to optimality (lower is
better). It shows a clear dominance of the proposed pruning approaches. For
COMPAS, the original FairCORELS does not prove optimality to any of the
instances, whereas all pruning methodologies prove optimality to all instances.
For German Credit, similar trends are observed. Overall, the eager approach ap-
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Table 2. Learning quality evaluation (ε ∈ [0.005, 0.05]): Proportion of instances for
which each method led to the best train (resp. test) accuracy, and average violation of
the fairness constraint at test time.

Dataset UNF
BFS Original BFS Lazy BFS Eager ILP Guided

Train
Acc

Test
Acc

Unf
viol.

Train
Acc

Test
Acc

Unf
viol.

Train
Acc

Test
Acc

Unf
viol.

Train
Acc

Test
Acc

Unf
viol.

COMPAS
dataset

SP .951 .971 .009 1 .98 .009 1 .981 .009 1 .98 .009
PE .927 .956 .033 1 .977 .034 1 .977 .034 1 .977 .034

EOpp .941 .961 .03 1 .98 .031 1 .983 .031 1 .983 .031
EO .897 .934 .035 .997 .974 .036 1 .976 .036 1 .974 .036

German
Credit
dataset

SP .567 .799 .045 .994 .77 .045 .999 .783 .045 .996 .779 .045
PE .967 .914 .138 1 .914 .137 1 .914 .138 .997 .927 .138

EOpp .683 .816 .056 .99 .799 .055 1 .806 .055 .991 .829 .054
EO .52 .759 .158 .979 .751 .161 .997 .741 .16 1 .771 .159

pears more suitable to prove optimality, as it keeps the size of the queue as small
as possible. For experiments with German Credit, the ILP-Guided approach ef-
fectively speeds up convergence and proof of optimality by guiding exploration
towards fair and accurate solutions. This is not the case when using COMPAS,
but the approach is still able to reach the best solutions, thanks to the performed
pruning. Figure 1(c) shows the learning time as a function of the objective func-
tion quality (normalized objective score proposed in [18]). The proposed pruning
allows finding better solutions within the time and memory limits after a slow
start. Indeed, the pruning slows the beginning of the exploration, but pays off,
given enough time, by effectively limiting the growth of the priority queue. The
lazy approach is faster than the eager one at the beginning of the exploration.
However, this trend is inverted given sufficient time. Again, the ILP-Guided ap-
proach speeds up convergence on German Credit, but worsens it on COMPAS.

Finally, the reported results illustrate the efficiency of the proposed pruning
approaches to speed up the exploration of the prefix tree. The lazy approach less
slows exploration at the beginning, but the eager approach gives better results
given sufficient time. The ILP-Guided strategy showed an ability to speed up
convergence, but its performances depend on the problem at hand.

Test results are reported in Table 2, and suggest that building optimal models
does not result in worsening accuracy nor fairness generalization.

5.3 Scalability and Complementarity with the Permutation Map

As discussed in Section 3, a prefix permutation map speeds up the CORELS algo-
rithm by leveraging symmetries but cannot be used within FairCORELS without
compromising optimality. We modify it to enforce a weaker symmetry-breaking
mechanism while maintaining the guarantee of optimality. More precisely, the
proposed new prefix permutation map (PMAP) considers that two prefixes of
equal length are equivalent if and only if they have exactly the same confusion
matrix and their rules imply the same antecedents. It pushes a new prefix to the
priority queue Q (Line 12) only if Q contains no equivalent prefix.
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Fig. 2. Results of our experiments on the Adult Income dataset.

To evaluate the scalability of our pruning approaches, we consider Adult
Income [11], a larger dataset that gathers records of individuals from the 1994
U.S. census. We consider the task of predicting whether an individual earns more
than 50, 000$ per year, with gender (male/female) being the sensitive attribute.
Categorical attributes are one-hot encoded and numerical ones are discretized
using quantiles (3 bins). The resulting dataset contains 48, 842 examples and 47
rules (attributes or their negation), with a minimum support of 0.05. We consider
only the Statistical Parity metric, as the three others do not conflict strongly
with accuracy in this setting as observed in Figure 1(a) of [1]. Experiments are
performed with and without the new PMAP. The maximum running time is
set to two hours, with a maximum memory use of 8 Gb. Results for the ILP-
Guided approach are excluded as they show no clear improvement over the eager
pruning, suggesting that the guidance was not beneficial overall.

Results are summarized in Figure 2. The left plot of Figure 2(a) shows the
proportion of instances solved to optimality, for ε ∈ [0.005, 0.02]. For these strong
fairness requirements, the approaches not using the new PMAP were never able
to prove optimality (as can be seen in the right plot) and are not represented.
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Table 3. Learning quality evaluation (Adult Income dataset, ε ∈ [0.005, 0.1])

BFS Original BFS Lazy BFS Eager

ε Map Type
Train
Acc

Test
Acc

Test
Unf viol.

Train
Acc

Test
Acc

Test
Unf viol.

Train
Acc

Test
Acc

Test
Unf viol.

All
No PMAP .938 .942 -.004 .963 .966 -.004 .964 .967 -.004

PMAP .966 .97 -.004 .998 .987 -.004 1 .989 -.004

< 0.02
No PMAP .815 .835 .0 .89 .907 .001 .892 .91 .001

PMAP .897 .91 .001 .993 .96 .001 1 .968 .001

The complementarity with our pruning approach is particularly visible, with the
methods using both the PMAP and the ILP pruning having the best perfor-
mances, both in terms of objective function quality (Figure 2(b), left plot) and
proof of optimality. This is also observed in terms of memory use in Figure 2(b)
(right plot). Indeed, the PMAP considerably reduces the size of the queue, lever-
aging the prefix tree symmetries. However, its effect is weakened for strong fair-
ness constraints. The use of the ILP pruning mitigates this trend and for very
strong fairness requirements, the eager pruning alone proposes lower memory
consumption than the PMAP alone, to reach the same solutions. Finally, learn-
ing quality results are provided in Table 3 and confirm these observations. More
precisely, they consistently show that the approaches improving train accuracy
also improve test accuracy, without impacting fairness violation.

6 Conclusion

We propose effective ILP models leveraging accuracy and fairness jointly to prune
the search space of FairCORELS. Our large experimental study shows clear ben-
efits of our approach to speed-up the learning algorithm on well-known datasets
from the literature. This gain is illustrated on three dimensions: achieving better
training objective function values (without loss of the learning quality), using less
memory footprint (i.e., reduced cache size) and certifying optimality in limited
amounts of time and memory. Combined with a proposed simple data structure,
the ILP pruning approaches allow the learning of optimal rule lists under fairness
constraints for datasets of realistic size.

Thanks to the declarative nature of our pruning approach, our framework is
flexible and can simultaneously handle multiple fairness criteria for any number
of sensitive groups. Indeed, each group’s confusion matrix is modelled using two
variables in our ILP. Considering more than two groups would require declaring
additional variables, along with desired constraints using these variables.

Overall, our work illustrates the fact that statistical fairness and accuracy,
when considered jointly, can be leveraged to reduce the scope of acceptable solu-
tions efficiently. In the future, it would be interesting to pursue this line of work
by considering other learning algorithms and machine learning requirements.

Guiding the exploration by leveraging on the ILP models (as attempted with
the ILP-Guided approach) also seems to be a promising direction.
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