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1 Introduction

In this paper, we address the preemptive flexible job-shop scheduling problem (pFJSSP).
We propose three exact methods to solve the pFJSSP with makespan minimization objec-
tive: a Mixed Integer Linear Programming (MILP) formulation, a Constraint Programming
(CP) formulation, and a Logic-Based Benders Decomposition (LBBD) algorithm.

The job-shop scheduling problem (JSSP) is one of the most studied NP-hard optimiza-
tion problems. It consists of a set of jobs and a set of machines. Each job has a sequence
of operations, each of which must be performed on a given machine. In order to satisfy
present market, the production environment becomes more and more complex and flexible.
The flexible job-shop problem(FJSSP) is an extension of the classical JSSP that allows an
operation to be processed on any machine from a set of eligible machines.

The FJSSP has received considerable attention and both metaheuristics and exact
methods have been developed to solve this problem (Brandimarte (1993), Shen et al.
(2018)). Moreover, preemption is another important parameter when dealing with schedul-
ing problems as it can have a positive impact on the objective function. The preemptive
job-shop scheduling problem (pJSSP) has received limited attention and most of literature
focus on approximation algorithms rather than exact methods. Among the exact meth-
ods, Le Pape and Baptiste (1998) develop a constraint programming approach, Ebadi and
Moslehi (2013) model the pJSSP with a disjunctive graph and develop a branch-and-bound
algorithm. To the best of our knowledge, only one study (Zhang and Yang (2016)) consid-
ers both preemption and flexibility for the JSSP. However, the problem addressed in this
work has special characteristics (flexible workdays and overlapping in operations) that are
not considered here.

Problem statement. An instance of the pFJSSP is defined as a set of n jobs J =
{1,...,n} and a set of machines M. Each job ¢ consists of a sequence of n; operations
O; = (i1,...,1n,). An operation O; ; € O; of a job i must be performed by one of the
machine from the set of eligible machines M; ; C M. Let p; j , denote the processing time
of operation O; ; that is processed on machine m € M; ;. Each machine can process at
most one operation at a time and preemption is allowed: the processing of operations can be
interrupted and resumed later without penalty. Although an operation can be interrupted,
it is assumed that it must be fully processed by one and the same machine.

2 Mathematical and Constraint programming models

Let us introduce a model that can be used as a mixed-integer program to solve the
pFJSSP. It is based on a time-indexed formulation proposed by Bowman (1959) to solve the



preemptive job-shop problem. We have adapted it to add the notion of resource flexibility.
Let H ={1,2,3,...,h} be the time horizon. The (binary) decision variables are defined as
follows:

— %;4m is equal to 1 if operation O; ; is processed on machine m;
— ¥, is equal to 1 if operation O; ; is in process at time t,

and the model:

min Cax (1)
s.t. Z Tijm = 1 VieJd, Oi,j €O, (2)
h meM; ;
Zym,t = Z Tijm X Dijm Vi€ T, Oy € O; (3)
h t=1 mEMi,j
Zyi,j,t/ S | max  pijm X (I=yij+1,e) Vi€ T, 015 € O:\{Oin,}, teH  (4)
=t mEMiG o,
szi7j7m Xyi,j,t S 1 vaM, tGH (5)
1€J j=1
Conaxe = (E+1) X > Ym0 VEEMH (6)
ieJ
Tijm € {0, 1} Vi e j, Oi,j S Oi, m € M,‘J (7)
Yijt € {0, 1} Vi e J, Oi,j € Oi7 teH (8)

Note that Constraints (5) are nonlinear, but can be easily linearized since variables z; ; m
and y; ;+ are binary, the previous mathematical model thus becoming a MILP model.

Moreover, we propose another formulation of the problem using Constraint Program-
ming. It is based on a formulation proposed by Polo-Mejia et al. (2020) to solve the Multi-
Skill Project Scheduling Problem with partial preemption. We have adapted it to solve the
pFJSSP. We introduce the following decision variables: I; ; represents the interval variable
between the start and the end of the processing of operation O; ;. Since activities can be
performed in multiple machines, we introduce an optional interval variable mode; ;,,, for
each possible combination of an operation O;; and a machine m. Each operation O; ; is
divided into p; jm parts of unit duration, the optional variable part; ; i m representing the
interval during which the k" part of the operation 0;,; is processed if it is executed on
machine m.

min Cmax (9)
st. Cpax > Iip,.end Yie J (10)
endBeforeStart(1; j,I; j+1) Vi€ T, O;; € O;\ {in,} (11)

endBe foreStart(part; j km,Parti j k+1,m)
Vie J, Oi,jEOi, TTLE./\/lZ‘J7 kEl,...7pi,j7m—1 (12)

span(mode; jm,part; jrm Yk € 1,....pijm) Vi€ T, O;; € O;, me M, (13)
alternative(I; j, mode; jm : Ym € M; ;) Vie J, O;; € O; (14)

presenceO f(mode; ; m) = presenceO f(part; j i.m)
VieJ, Oi; €0, me My, kel .. .pijm (15)

noOverlap(part; jpm Vi€ T, j€1,...,n, k€ 1,...,pijm) YmeM (16)



3 Logic-based Benders decomposition

A logic-based Benders decomposition approach (Hooker (2007)) is proposed to solve the
problem under consideration. It consists in dividing the problem into a machine assignment
master problem and a preemptive job-shop scheduling subproblem.

The master problem is an assignment problem, each operation needs to be assigned
to a machine. The decision variable x; ;. is equal to 1 if operation O; ; is processed on
machine m. We propose the following MILP model:

min Chax (17)

Y ijm=1 VieJ, 0;;€0; (18)
meM Benders’ cuts (19)
Zigm € {0,1) (20)

However, at first iteration as there is no Benders cut, there is no link between assign-
ment variables x; ; ,, and the objective value Cinax. That is why we propose to include a
subproblem relaxation in the master problem. The subproblem relaxation is based on the
following three ideas:

1. The makespan is at least equal to the sum of the processing times of the operations of
the same job.

2. The makespan is at least equal to the sum of the processing times of the operations
assigned to the same machine.

3. Let consider a subset of operations assigned to the same machine. The makespan is at
least equal to the following quantity: the minimum release date of the subset plus the
sum of the processing times of the operations of the subset plus the minimum delivery
time of the job of the last processed operation of this subset.

At each iteration we obtain a feasible solution P, = {(¢, 7, m) | z; j.m = 1} of the master
problem which contains all assignments. Then, the subproblem consists in a pJSSP, which
can be solved by two different methods:

— a CP model similar to the one proposed for the pFJSSP, but for which the set of eligible
machines M; ; for each operation O; ; is reduced to the machine m assigned by the
master problem (i, j,m) € P";

— a Branch-and-Bound algorithm proposed by Ebadi and Moslehi (2013).

When the subproblem is solved, we obtain the optimal makespan C”__
assignment P". We can deduce the following cut:

Crax > Cﬁ]ax(l - Z (1- xi,j,m)) (21)

(4,4,m)eP

for a given

At each iteration, this cut is added to the master problem as a Benders cut, and the master
problem is resolved with this new constraint.

4 Numerical results and Conclusions

For computational tests, we use CPLEX for solving the MILP model and CP Optimizer
for the CP model. The computation time was limited to 10 minutes. We use classical
instances for the FJSSP3. Table 1 shows the results. The first column shows the benchmarks



Table 1. Number of pFJSSP instances proved to be optimal within 10 min CPU

Benchmark MILP CP LBBD (sp:CP) LBBD (sp:B&B)

Brandimarte (15) 0 5 9 9
Hurink edata (66) 1 2 9 24
Hurink rdata (66) 1 1 1 20
Hurink vdata (66) 1 2 7 25
DPPaulli (18) 0 0 0 0
ChambersBarnes (21) 0 0 0 0
Kacem (4) 3 3 4 4
Fattahi (20) 8 12 13 17

under study (and the number of instances they contain), the following ones the number of
instances solved to optimality using the methods described in the previous sections.
According to our computational experiments, CP method is superior to the MILP one
and solves more instances to optimality. On the other hand, we can see that the pFJSSP
benefits from the decomposition since LBBD methods are more efficient compared to the
others. More specifically, solving the subproblem using Branch-and-Bound (fifth column)
is faster than using CP (fourth column) and thus enables to solve a greater number of
instances. We also notice that for the most difficult benchmarks (DPPaulli and Chambers-
Barnes) no instance could be solved optimally by any of these methods within 10 minutes.

Conclusion. We have proposed three methods to solve the pFJSSP where the objective
is the minimisation of the makespan: a mathematical model, a constraint programming
model, and a logic-based Benders decomposition algorithm. Numerical results have shown
that the MILP becomes inefficient for difficult instances. Also, our logic-based Benders
decomposition outperforms mathematical programming and constraint programming to
find optimal solutions. Our current work consists in improving the solving methods, in
particular the decomposition ones to further increase the number of solved instances.

References

Brandimarte P., 1993, “Routing and scheduling in a flexible job shop by tabu search”, Annals of
Operations Research, Vol. 41, pp. 157-183.

Bowman E.H., 1959, “The schedule-sequencing problem”, Operations Research, Vol. 07, pp. 621-
624.

Ebadi A. and Moslehi G., 2013, “An optimal method for the preemptive job shop scheduling
problem”; Computers & Operations Research, Vol. 40, pp. 1314-1327.

Hooker J., 2007, “Planning and scheduling by logic-based Benders decomposition”, Operations
Research, Vol. 55, pp. 588-602.

Le Pape C. and Baptiste P., 1998, “Resource constraints for preemptive job-shop scheduling”,
Constraints: An international journal, Vol. 03, pp. 263-287.

Polo-Mejia O., Artigues C., Lopez P., and Basini V., 2020, “Mixed-integer/linear and constraint
programming approaches for activity scheduling in a nuclear research facility”, International
Journal of Production Research, Vol. 58, pp. 7149-7166.

Shen L., Dauzére-Pérés S. and Neufeld J. S., 2018, “Solving the flexible job shop scheduling problem
with sequence-dependent setup times”, Furopean Journal of Operational Research, Vol. 265,
pp- 503-516.

Zhang J. and Yang, J. 2016, “Flexible job-shop scheduling with flexible workdays, preemption,
overlapping in operations and satisfaction criteria: an industrial application”, International
Journal of Production Research, Vol. 54, pp. 4894-4918.

3 http://opus.ub.hsu-hh.de/volltexte/2012/2982/ — Last accessed October 2021



