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ABSTRACT
Autonomous systems are now deployed for many applications to
perform more and more complex tasks in open environments. To
manage complexity of their control software architecture, a current
trend is to use a 3-layers approach, with a decisional layer (able to
formulate decisions), a functional layer (low level control actions),
and between them a skill layer. This layer is dedicated to convert
high level plan objectives into low level atomic actions, sent to the
functional layer. In order to deal with failures that may happen
at runtime, detection mechanisms and reaction strategies may be
implemented in these layers, or even in external devices. However,
no generic technique is available to guarantee that all these mech-
anisms will be consistent. We present in this paper an approach
that focus on the skill layer, with a proposal of a generic skill fault
model used to design and analyze failure detection and reactions
mechanisms. This approach has been successfully applied to a real
drone application, and we present an extract of the resulting fault
analysis models.

CCS CONCEPTS
• Software and its engineering → Fault tree analysis; • Com-
puter systems organization → Reliability; Robotic compo-
nents.
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1 INTRODUCTION
One main challenge in developing autonomous systems is to de-
fine software architectures integrating low-level functions (e.g.,
control) and decisional-level features (e.g., task planner). A pop-
ular approach is to deploy layered architectures [12], and more
precisely 3-layers (functional, executive, and decisional layers) as
shown in Figure 1. The executive layer is an abstraction layer, usu-
ally in charge of splitting the high level tasks, commanded by the
decisional layer, into atomic actions that should be realized by the
functional layer. This intermediate layer checks if a commanded
task can be realized (according to the current system state), and
choose the appropriate termination mode when it is finished, to
let the decisional layer determine following actions according to
the mission objectives. This kind of architecture is particularly
suitable to manage mission reconfiguration at decisional level, as
done for example in [2] where back-up plans are selected by the
decisional layer in response to some hazardous events or failures.
However, it may become complex to manage all (or part of) failures
when the architecture exhibits a significant set of entities at the
executive and functional layer. Indeed, in such complex architec-
tures, the treatment of failures that may occur at runtime is usually
performed at different levels of abstraction (e.g., at the functional
level, or at the decisional level). In this context, it is thus difficult
for the developers to guarantee that all the failure detection and
treatment mechanisms will be consistent. Moreover, no systematic
analysis technique is proposed today to specify such mechanisms
and implement them in a 3-layer architecture.

We propose in this paper a methodology to analyze such a 3-layer
architecture facing a given set of potential failures. We assume that
the intermediate layer, or skill layer, relies on a model-based skill
description framework as proposed in [15]. For that we develop
a generic skill fault model, based on the fault tree analysis (FTA)
technique, extracted from our expertise on skill failures.We propose
to apply this skill fault model to each skill, in order to specify failure
detection and reaction strategies in an architecture design step. This
contribution provides a technique that is generic, model-based, and
that may be used for the skill design or verification steps.

The paper is structured as follows. Section 2 presents related
works on autonomous architectures with skill layers, and how fail-
ures are treated in such architectures. Then, section 3 introduces
more in details what is a skill, how it is modelled, implemented and
executed. The fault tree pattern of a skill which is the starting point
of the fault analysis is then presented in section 4. Consequently, we
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apply our methodology in section 5: we present in details the anal-
ysis of one skill. Finally we will discuss the proposed methodology
and propose future works in section 6.

2 SKILLS AND FAULTS IN AUTONOMOUS
ARCHITECTURES

As stated in the survey on deliberative systems [12], hierarchical
architectures are probably the most used in autonomous robotics.
These are usually composed of several layers, from hardware level
to decisional (or deliberative) level. While some architectures tend
to a two layer approach, one for elementary tasks (like sensing), and
another for decisional aspects (e.g., ORCCAD [4], CLARATY [22])
others propose to use a three layer architecture [1, 10, 13], as repre-
sented in Figure 1.

Physical Environment

Autonomous System

Decisional layer

Executive layer

Reactive/Functional layer

Hardware

Objectives

Figure 1: A three layer architecture for autonomy

In this latter case, the proposed software layers are:
Decisional layer is the highest abstracted level of the archi-

tecture, receiving objectives (from another system, or an
operator) and generating some plans according to an ab-
stract representation of the system and its environment;

Executive/skill layer checks that plans sent by the decisional
layer can be realized and converts them into primitive func-
tions for the functional under layer;

Functional layer is in charge of feedback control loops cou-
pling sensors to actuators, perception facilities and trajectory
computation.

A current trend is to deploy the executive layer with a skill-based
approach, such as it is proposed in [2]. The skills correspond to
the robot’s functions or capabilities which are abstracted from the
functional layer. For instance, as presented later in Figure 4, skills
of an Unmanned Aerial Vehicle (UAV) may be Take-off, Goto (i.e.,
reach a position), Land, etc. Similar works have been proposed to
use a skill model to abstract high-level functions available in the
functional layer [5, 6, 19].

In such layered-architectures, most of the work regarding fault
detection and treatment is covered by the fault tolerance concept
coming from the dependability community [3]. It is basically com-
posed of an error detection mechanism and a recovery mechanism,

in order to keep the system in an acceptable state. Many works
focus on the functional level [7, 23], and perform timing or rea-
sonableness checks of functional software modules, and activate a
request towards the decisional layer in case of detection. It is then
up to the decisional layer to engage a reaction strategy. A similar
approach is deployed in [8] for the detection, but with a drastic
reaction to disconnect the decisional level in order to switch into
a tele-operated mode (i.e. the system is no longer autonomous).
These works are not based on explicit models, and are thus not so
generic to be applied in different contexts and technologies. On the
opposite, the work in [9] is based on formal models of the com-
ponents, and can automatically generate monitors, but is effective
at the functional level of an autonomous architecture. They are
actually very few works explicitly focusing on fault tolerance at
the decisional level like the one on redundant planning [16]. Some
contributions for fault tolerance at decisional level may also come
from the “execution monitoring” community [18, 20] or fault detec-
tion and diagnosis in robotics [14], but few are focusing on using a
model at the decisional level. Another direction is to develop inde-
pendent devices (external to the 3 layers) to monitor architecture
based on a safety model of the system (e.g., [17]). However, such
approaches use their own model, and not the ones available in the
autonomous architecture and used to deliberate and control the
system. Managing fault detection and recovery at the executive
layer is actually quite rare. For instance, in [21], the executive layer
is completely dedicated to the verification of requests between the
decisional and functional layer, but does not manipulate skills or
intermediate abstractions. Deploying a framework for analysing
faults propagation at skill level (or executive level) based on models
of the skills, including a fault model, is thus an original work.

3 BACKGROUND ON SKILL MODELS AND
IMPLEMENTATION

In this paper, we settle on the skill models proposed in [15], as the
proposed skill modeling language contains interesting features for
failure analysis (several terminal states, execution conditions, . . . )
In this section, we remind the important parts of the modeling and
implementation process necessary to present our contribution on
the skill fault model and the associated analysis process.

In the language proposed in [15], the top-level container is a
skill-set model: it contains a set of consistent resources and skills
model describing a part of the skill-based architecture. For instance,
in the use-case considered later, one skill-set describes all the fea-
tures related to the "motion management" of the UAV, while another
skill-set manages "perception" skills (mapping skills).

Resources are modeled as Finite State-Machines (FSMs) that
represent the status of actual devices, or logical states. For instance,
the current flight status of the UAV is modeled using the resource
presented in Listing 1; the status is initially unknown, and the
transitions are marked as extern, meaning that they can be triggered
by the functional layer (or the environment).

Every skill has the same execution model, also defined by a
common FSM, depicted in Figure 2. A client (typically implemented
in the decision layer) can start the skill execution, providing some
inputs at the same time. These inputs are checked by a user-defined
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1 resource flight_status {
2 initial UNKNOWN
3 extern UNKNOWN -> ROTORS_NOT_READY
4 extern UNKNOWN -> ON_GROUND
5 extern UNKNOWN -> IN_AIR
6 extern ROTORS_NOT_READY -> ON_GROUND
7 extern ON_GROUND -> ROTORS_NOT_READY
8 extern ON_GROUND -> IN_AIR
9 extern IN_AIR -> ON_GROUND
10 }

Listing 1: Model of the flight_status resource using the DSL
proposed in [15]

callback (checking for example actual robot capabilities or safety
limitations), and if considered invalid, the skill execution is rejected
(final state NV). Otherwise, some resource preconditions defined by
the skill model are checked (state CR). Again, if these conditions are
not met, the skill execution is rejected (final state NR). Otherwise,
the execution is effectively started (transition dispatch calling
another user-defined callback – Rg stands for Running). During the
execution, some modelled invariants must hold. If an invariant is
violated, the skill execution is interrupted and ends in the RI state.
The skill execution can also be interrupted by the client (interrupt
transition – Ig stands for Interrupting). Finally, the skill can end
on a set of possible terminal states, or results, represented by the
states𝑀𝑖 (when result post-conditions are satisfied) and𝑀𝑖 (when
post-conditions are not satisfied). Some of these results can actually
be interpreted as failure modes of the skill.

S

NV

CR NR

RI
Rg

Figure 2: Skill FSM from [15]. Double circled states are ter-
minal states and rounded-boxes states have an entry effect.
Bold red labels correspond to transitions triggered from a
client. Italic green labels correspond to functions available
in the skill implementation part. Blue labels correspond to
automatic tests and effects.

Every skill can then be defined using the skills domain specific
language (DSL), that allows to specialize some parts of the skill
FSM. This is done by writting a skill-set model, using the skill DSL,
which allows to define for each skill:

• its inputs, that are further passed to the FSM in the start
transition;

• its resource preconditions: to be executed, the skill requires
that some resource states meet these preconditions;

• its resource invariants: during execution, the skill requires
that these conditions on resource states hold;

• some effects on resources, that will change the resource
states either at the beginning of the execution (during the
dispatch transition) or at the end of the execution (when
reaching one of the𝑀𝑖 states);

• the possible results of the skills, i.e. the set of𝑀𝑖 states.
This specification is called the skill model.

The UAV takeoff skill model is given in Listing 2. This skill

1 skill takeoff {
2 input {
3 height: float64 // validate can fail if h>h_geo_fence
4 speed: float64 // maximum ascending speed
5 }
6 effect {
7 take_control: axes_authority -> USED
8 release_control: axes_authority -> AVAILABLE
9 }
10 precondition {
11 sdk_authority: resource=(SDK_authority==AVAILABLE)
12 not_moving: resource=(axes_authority==AVAILABLE)
13 on_ground: resource=(flight_status==ON_GROUND)
14 home_valid: resource=(homepoint_status==VALID)
15 success take_control
16 }
17 invariant {
18 keep_sdk_authority: resource=(SDK_authority==AVAILABLE)

violation=release_control↩→
19 in_control: resource=(axes_authority==USED)
20 }
21 result {
22 AT_ALTITUDE: apply=release_control
23 BLOCKED: apply=release_control
24 ABORTED: apply=release_control
25 }
26 }

Listing 2: Model of the takeoff skill using the DSL proposed
in [15]

has two inputs (lines 2 to 5): the height to reach when taking off,
and the maximum allowed vertical speed. The takeoff precondi-
tions are: authorities must be available (SDK_authority is given by
the security tele-pilot – line 11 –, axes_authority by the skillset
manager – line 12), the UAV must be on ground (line 13) and the
home point must have been defined (line 14). In that case, the effect
applied on dispatch (line 15) is take_control, that asks to change
resource axes_authority to USED (line 7, to prevent other skills
to command simultaneous displacements). During the take off exe-
cution, two invariants must hold: the axes_authority must still
be "owned" by the takeoff skill (line 19), and the tele-pilot should
not have taken back the manual control (line 18). Finally, three pos-
sible results are specified, a nominal one, AT_ALTITUDE, when the
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target altitude is reached (line 22), and two failure results: BLOCKED
(line 23), triggered when the UAV cannot move up, and ABORTED
(line 24), triggered when the UAV moves hazardously, in which case
the maneuver is interrupted by the functional layer.

Then, a code generator produces a ROS node corresponding to
a skill manager, that implements the FSM of Figure 2 specialized
by the skill model of Listing 2. The FSM can then be further spe-
cialized by the user, who can implement methods in the generated
code corresponding to the following parts of the FSM (in green on
Figure 2):

• the validation function, that checks if the inputs are correct
(e.g., the target height of the take off must be positive and
below the maximal authorized altitude), and returns either
𝑣𝑎𝑙𝑖𝑑 (transition to CR) or 𝑣𝑎𝑙𝑖𝑑 (transition to NV);

• the dispatch function, that is responsible of effectively start-
ing the skill execution by sending commands to the func-
tional layer;

• the terminate functions, that must be called when receiving
the corresponding information from the functional layer.

These functions implemented by the user within the generated FSM
are called the skill implementation.

4 SKILL FAULT MODEL AND ANALYSIS
As presented before, the skill layer is a core component of the
architecture, and we explore in this study how some faults (internal
or external) may be detected and treated at this level. We base
our study on the fault/error/failure definitions from dependability
concepts [3]: when activated, a fault in a unit becomes an error, and
if it propagates to the boundary of the considered unit, it becomes
a failure. Here we consider a skill as a unit, and our basic idea is
to analyse all failure modes of a skill, with a deductive method, to
identify errors and then faults that led to each failure of the skills.

4.1 Skill Fault Model
In that purpose, we propose a generic skill fault model, aiding the
designers to identify failure modes, detection means, and recovery
actions (actions to keep the system in an acceptable state regarding
the safety and mission objectives). This skill fault model is based
on fault tree analysis (FTA) [11]. FTA is a well-known risk analysis
technique, used for years in many domains (from nuclear power
plants to aeronautics). It is a top-down approach starting with an
undesirable event called a top event, and then determining how this
top event may be caused by individual or combined lower level
failures. In FTA, failures from different fields are combined. Logical
relations between them are represented by logic symbols (AND and
OR gates). In a fault tree analysis, the top event is a hazard that
must have been foreseen and thus identified previously. The leaves
of the fault tree are called basic events, and all events between the
top event and the leaves are called intermediate events. Each event
can be interpreted as a failure from the components viewpoint, or
as a fault or an error from the overall system viewpoint. We will
refer as skill failure for the top events. We then propose to use
such a fault tree to help the designers to identify failure causes, and
specify detection and recovery mechanisms. To make this analysis,
we propose a generic skill fault tree pattern to guide the designer
in this task.

Based on the concepts of skill model and skill implementa-
tion described in the previous section, we propose to decompose
the top event corresponding to the skill failure as depicted in Fig-
ure 3. A skill can then fail if:

• it cannot be started (node P002) due to invalid inputs (node
P010) or resource precondition issues (node P008);

• it is started but no effect is observed (node P007); this error
must then be detailed by the designer based on the relation
between each skill and the functional layer;

• the skill execution is interrupted (node P004), either due to
the violation of resource invariants (node P012) or to exter-
nal conditions (node P020), for which we propose standard
errors, linked to elements of the functional layer (nodes E024,
E025 and E026);

• the skill completes with an error (node P005), which can be
caused by external conditions (node P018), that again must
be detailed by the designer, or by resource constraints (node
P014).

This fault tree pattern, also called our skill fault model, is
aimed at being instantiated according to the skill under investiga-
tion. Some branches can then be irrelevant for a specific skill and
removed from the resulting tree. The skill fault model instantiated
and specialized for a specific skill is called the skill fault tree. We
can notice that all the events in this pattern are combined with OR
gates, which implies that if one of these events happens, the whole
skill execution will fail.

In this fault tree, a Detection Mechanism (DM) and a Failure
Mode (FM) are assigned to some nodes (from DM1 to DM7 and FM1
to FM7). Figure 3 exhibits for each DM/FM if it is supposed to be
covered by the skill model and by which mechanism (invariant, pre,
post, etc.), or if it is supposed to be handled in the skill implementa-
tion. For instance, FM1 is equivalent to state NR of Figure 2 and DM3
corresponds to the 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 transition. These DM and FM are to
be considered as guidelines: depending on the actual skills or the
actual considered failures, they can be changed or placed elsewhere
in the model.

4.2 Analysis Process
Based on the skill fault model presented in the previous section,
we have defined an analysis process that we systematically apply
to all the skills contained in a skill-set. This analysis process is
composed of several steps:

(1) Listing of all the events that may impact correct skill execu-
tion,

(2) Design of each skill fault tree based on the skill fault
model pattern (Figure 3), using the following steps:

(a) Connection of each event listed in (1) with each skill fault
tree,

(b) Determination of all relative failure modes (FMi) and po-
tential detection mechanisms (DMi) for each branch of the
fault tree;

(3) Verification, for each skill, that the skill fault tree is con-
sistent with the skill model and skill implementation:

(a) Checking that each DMi and FMi is covered by the skill
model or the skill implementation
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Figure 3: Skill Fault Model: Pxxx represent fault tree nodes linked to skill layer, Exxx represent fault tree nodes linked to
functional layer. 𝐷𝑀𝑖 and 𝐹𝑀𝑖 are respectively Detection Mechanisms and Failure Modes. Normal font DM/FM are supposed to
be managed in the skill FSM (e.g., FM1 corresponds to NR state of the skill FSM). Bold DM/FM are supposed to be managed
either in the skill implementation (e.g., DM2 has to be implemented in the valid function) or in the skill model (e.g., FM4 has to
be described as result mode in the skill model).

(b) Modification of the skill model or implementation to add
or correct a missing or incomplete DMi or FMi.

Step (3) of the proposed process is an iterative procedure which
aims at modifying the skill model and the skill implementation
until all DMi and FMi identified by FTA are covered. Classically a
missing DMi can be fixed by 1) adding a resource and/or a resource
condition (invariant, pre, post) to the skill model, or 2) adding
in the skill implementation a call to a terminate function in
reaction of some events or data coming from the functional layer.
A missing FMi will generally lead to the addition of a new terminal
state𝑀𝑖 (and its appropriate management in the model and in the
implementation) or to the modification of resource post conditions.

This skill fault model and the corresponding analysis process
can be used in two different development processes. First, it can
be used to analyse an existing model and its implementation, in
order to validate what is already developed for a system. The FTA
based on the skill fault model can then lead to changes in the
model and implementation, as presented above and shown in the
next section on a specific use-case. Second, it can be used earlier
in the development process, before the actual development of a
skill. In that context, this prior analysis would give or complete the

specification of the skill model and what must be carried out in the
implementation.

5 CASE STUDY
In this section, we describe howwe apply themethodology based on
the generic skill fault model to analyse the skill-layer of a robotic
system. This system is an UAV performing an automatic inspection
of a building in BVLOS conditions (Beyond the Visual Line Of
Sight of the supervising tele-pilot), see [2] for details about this
scenario. The 3-layer software architecture of the UAV is depicted
in Figure 4. The skill-layer contains two skill-set managers, based
on the formalization proposed in [15].

To ensure the correctness of this skill-layer with respect to the
possible failures that could arise in the BVLOS scenario, we applied
the analysis process presented earlier in section 4.2 to all the skills
of this layer. As discussed before, all the skills were already modeled
and implemented before applying this process. In this section, we
will only present the analysis process applied to the takeoff skill,
and formulate recommendations to modify the skill model and
implementation in order to make it correct with respect to the FTA.
The complexity of the fault trees of the complete analysis is really
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Figure 4: 3-layer architecture from [2]

close to the complexity of the fault tree presented here, i.e. it is
manageable with light tooling.

5.1 Takeoff fault model
In this paper, we present the FTA applied to the takeoff skill, in
which we considered the set of possible events that can affect the
skill execution (step (1) of the analysis process presented in sec-
tion 4.2).

Figure 5 presents the takeoff fault tree, obtained from the
generic skill fault model once all the considered hazardous event
have been added. To build this tree, we first applied step (2a) of
the analysis process: for each node of the skill fault model, we
analysed which errors could lead to this failure and selected some
of them: battery failure (i.e., battery level too low), software errors,
engine failure, excessive payload, etc. Some errors can be linked to
several nodes, and then appear multiple times in the fault tree. For
instance, when the UAV is on ground, a battery failure leads to the
impossibility to take off because thrust is insufficient (Node E010),
while during the flight, a battery failure yields to an alarm, and the
tele-pilot should take control back (node E087).

Once all errors where considered and added at relevant places
in the fault tree, we inspected the existing skill model and imple-
mentation and positioned the corresponding 𝐷𝑀𝑖 and 𝐹𝑀𝑖 on the
fault tree (step (2b) of the analysis process).

5.2 Takeoff recommendations and
improvements

The next step is then to identify inconsistencies or unmanaged
events in the fault tree of Figure 5 (step (3a)) and then to modify
the skill model or skill implementation to fix these inconsistencies
(step (3b)).

A first observation is that considered errors can propagate up
to top of the fault tree, i.e. lead to a skill failure, without being
handled by a DM/FM mechanism. From this observation, we iden-
tified missing detection mechanisms and failure modes, which are
represented in yellow in Figure 5. One of the modification we have

made to solve some of these inconsistencies was to improve the
implementation of the valid function.

Another observation was that some errors of different nature
could lead to the same failure modes of the skill, but with different
detection mechanisms. For instance, we consider that wind can
make the UAV drift w.r.t its objective point. Drifting conditions
(node E089) are detected by tracking the performance of the control
law (in the functional layer), by a function (large_track_error)
denoted DM5b. This function, part of the skill implementation,
triggers FM5 (terminal state ABORTED). This terminal state is also
used in other parts of the Takeoff fault tree, but are related to other
errors. This situation may make the failure mode ambiguous, and
therefore make unclear the kind of reactions the decisional layer
should implement. In that specific case for instance, FM5 activated
when the UAV is on ground or in air may have different meanings,
that have very different risk consequences on the UAV.

These situations have been tackled by adding to the model some
post conditions about termination modes. Using this simple mecha-
nism, it is possible to clearly identify the failure modes of the skill
over nominal termination modes. As a consequence, if the post
conditions are correctly specified, failures modes correspond to𝑀𝑖

termination states, when𝑀𝑖 are most of time success final modes.

A last observation was about same DMs used at different places
of the fault tree. For instance, DM1a is present in the skill model
precondition and treated by the skill FSM, but is was also treated by
DM1b in the valid function. The analysis allowed to find redundant
checks and we choose to keep the one done by preconditions as
the skill model can be used by the decisional layer.

Based on other observations and recommendations, we have
further improved the skill model and implementation. Based on
these modifications, the Takeoff fault tree has been updated, and the
same analysis (identify inconsistencies, making recommendations,
modifying the skill) has been performed again until we have a
satisfying fault tree model. The resulting takeoff skill model is
given in Listing 3.
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Figure 5: Takeoff fault tree

6 CONCLUSION
In this paper, we have proposed an analysis process to validate
the skill-layer of an autonomous system architecture. This process
relies on the Fault Tree Analysis methodology. To perform this FTA
and benefit from the formalization of the several skills of this skill-
layer, we have first proposed a skill fault model. The proposed
FTA then uses this skill fault model as a pattern to perform the
analysis of each individual skill of the architecture.

The FTA process applied to each skill is then basically composed
of three steps: specialization of the skill fault model for this particu-
lar skill, identification of failure modes and detection mechanisms,
and verification of the consistency of the resulting tree. This leads
to the definition of recommendations to update or improve either
the skill model or the skill implementation.

We have applied this FTA process to the skill-layer of an au-
tonomous UAV performing an inspection mission in BVLOS condi-
tions. We have shown the application of the process to the takeoff
skill, by building the skill fault tree, and then identifying inconsis-
tencies and modifying the takeoff skill model and implementation.

We are convinced that applying this process to our architecture
leads to a more systematic and rigorous definition of our skill-layer,
and also tomore precise fault management mechanisms. This would
also help the design of the decision layer.

We investigate two future work directions. First, we are applying
the same process for the skill layer of new robotic systems that
has not been developed, then using the FTA process as a way to
specify the skill model and what must be implemented with respect
to failure management.

Second, we would like to use the FTA of a skill (either already
developed or just specified) in order to derive test cases to have a
more complete validation approach. These test cases will then be
used to verify that the actual execution is compliant with the fault
tree model that has been made only by looking at the model or the
implementation source code.

We also identified several limitations for this approach. First,
our skill fault model need to be refined while applied to other case
studies. For now, we have a set of skills dedicated to drone control,
but we expect that the fault model will be efficient for autonomous
mobile robots for instance. Second, the reaction strategies (after
detection and switch the skill into a failure mode) are not part of our
fault trees and we believe that integrating them would bring a more
consistent design of revovery mechanisms. Third, it is possible that
some failures may be not detected at the skill layer, and even trig
some hazardous situations. We still need to explore what other
mechanisms (e.g., external safety monitors) could be designed to
complete our approach. Finally, it will be important to treat the
situations when several detections are activated at the same time.
In such situation, the strategy may be implemented in the skill, or
event in a dedicated skill. This aspects needs to be investigate to be
part of our proposal.
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1 skill takeoff {
2 input {
3 height: float64 // validate can fail if h>h_geo_fence
4 speed: float64 // maximum ascending speed
5 }
6 effect {
7 take_control: axes_authority -> USED
8 release_control: axes_authority -> AVAILABLE
9 reset {}
10 }
11 precondition {
12 sdk_authority: resource=(SDK_authority==AVAILABLE)
13 not_moving: resource=(axes_authority==AVAILABLE)
14 on_ground: resource=(flight_status==ON_GROUND)
15 home_valid: resource=(homepoint_status==VALID)
16 battery_good: resource=(battery==GOOD)
17 success take_control
18 }
19 invariant {
20 keep_sdk_authority: resource=(SDK_authority==AVAILABLE)

violation=release_control↩→
21 in_control: resource=(axes_authority==USED)

violation=reset↩→
22 }
23 result {
24 AT_ALTITUDE: post=(flight_status==IN_AIR)

apply=release_control↩→
25 BLOCKED: post=(flight_status==IN_AIR)

apply=release_control↩→
26 INTERRUPTED: post=(flight_status==ON_GROUND)

apply=release_control↩→
27 DRIFTED: post=(flight_status==IN_AIR)

apply=release_control↩→
28 }
29 }

Listing 3: Model of the takeoff skill updated after the analy-
sis
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