
HAL Id: hal-03614426
https://laas.hal.science/hal-03614426

Submitted on 20 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kong: a Tool to Squash Concurrent Places
Nicolas Amat, Louis Chauvet

To cite this version:
Nicolas Amat, Louis Chauvet. Kong: a Tool to Squash Concurrent Places. 43rd International Confer-
ence on Application and Theory of Petri Nets and Concurrency (Petri Nets 2022), Jun 2022, Bergen,
Norway. �10.1007/978-3-031-06653-5_6�. �hal-03614426�

https://laas.hal.science/hal-03614426
https://hal.archives-ouvertes.fr

Kong: a Tool to Squash Concurrent Places

Nicolas Amat1 and Louis Chauvet1

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

Abstract. Kong, the Koncurrent places Grinder, is a tool designed to
compute the concurrency relation of a Petri net by taking advantage
of structural reductions. The specificity of Kong is to rely on a state
space abstraction, called polyhedral abstraction in previous works, that
involves a combination of structural reductions and linear arithmetic
constraints between the marking of places.

Keywords: Petri nets · Abstraction techniques · Reachability problems

1 Introduction

Kong, the Koncurrent places Grinder, is a recent formal verification tool for
Petri nets that can take advantage of structural reductions to accelerate the
verification of reachability properties. We made our code freely available under
the GPLv3 license and all the software, scripts and data used in this paper are
available on GitHub.

In a nutshell, Kong can compute a reduced Petri net, (N ′,m′), from an
initial one, (N,m), and prove properties about the initial net by exploring only
the state space of the reduced one. A difference with previous works on structural
reductions [4,15], is that our approach is not tailored to a particular class of
properties—such as safety or the absence of deadlocks—but could be applied to
more general problems. In this paper, we focus on a particular problem supported
by Kong, called the concurrent places problem.

The correctness of our tool relies on two main theoretical notions. First, a
new state space abstraction method, that we called polyhedral abstraction in [1],
which involves a combination of structural reductions and linear arithmetic con-
straints between the marking of places. Second, a new data structure, called
Token Flow Graph (TFG) in [2], that can be used to compute properties based
on a polyhedral abstraction. We give a short overview of these two notions in
this paper. Nonetheless, our main objective here is to describe the features im-
plemented in our tool.

The basic operation involved in our approach is to compute reductions of
the form (N,m) BE (N ′,m′) where: N is an initial Petri net (that we want to
analyse); N ′ is a residual net (hopefully simpler than N); and E is a system of
linear equations. The goal is to preserve enough information in E so that we can
rebuild the reachable markings of N knowing only those of N ′. We say in this
case that N and N ′ are E-equivalent. While there are many examples of the

benefits of structural reductions when model-checking Petri nets, the use of an
equation system (E) for tracing back the effect of reductions is new.

In our approach, the computation of structural reductions is delegated to a
separate tool. We mention two possibilities in this paper. First the tool Reduce,
which is a new addition to the Tina model-checking toolbox since version 3.7
(https://projects.laas.fr/tina). We also describe, with more details, a new open-
source framework called Shrink. This is a highly customizable tool, and also a
library, that we hope can be reused and improved in other contexts.

A TFG is a graph-like data structure that can be built from an E-equivalence
statement, (N,m) BE (N ′,m′), and that embodies the structure of the equations
occurring in E. Kong can build a TFG from sequences of reductions computed
using Shrink or Reduce, and use it to symbolically explore the state space of
the initial net.

We describe two applications of TFGs. The main application [2] is to compute
the concurrency relation of a Petri net; what is also known as the concurrent
places problem [8]. The goal is to enumerate all pairs of places that can be
marked together in some reachable marking. This problem has practical appli-
cations, for instance because of its use for decomposing a safe Petri net into the
product of concurrent processes [8,9]. It also provides an interesting example of
safety property that nicely extends the notion of dead places; meaning places
that can never be marked. To illustrate the versatility of our approach, we also
describe a new feature, implemented in Kong, for checking the reachability of a
given marking. Our method exploits the TFG to compute a reduced, projected
marking that needs to be found in the reduced net. This is a direct illustration of
the philosophy behind Kong, which is solving complex problems by first reduc-
ing a Petri net; then solving the problem in a “lower dimension”; before finally
transposing this solution to the initial net.

Outline. The rest of the paper is organized as follows. In Sect. 2, we detail
how to install and use Kong. Section 3 describes the architecture of Kong and
Shrink. We illustrate the workings of Kong on a concrete example, in Sect. 4.
Finally, we validate our tool by discussing the results of experiments performed
with nets used in the 2021 edition of the Model Checking Contest (MCC).

2 Commands, Basic Usage and Installation

Kong is an open-source tool made freely available on GitHub (https://github.
com/nicolasAmat/Kong). The code repository also provides all the material to
reproduce the experiments described in Sect. 5.

Dependencies. Kong is written in Python and requires a version 3.5 or higher.
It also requires the graphviz Python library in order to output a graphical
description of Token Flow Graphs (optional). Scripts and models included in
the repository are used for benchmarking and for continuous testing. Kong is
intended to be as understandable as possible; the code is heavily documented

2

https://projects.laas.fr/tina
https://github.com/nicolasAmat/Kong
https://github.com/nicolasAmat/Kong

and we provide many tracing and debugging options that can help understand
its inner workings.

We support two different tools to compute polyhedral abstractions, Reduce
and Shrink, that both use the same input and output formats. Reduce is a
tool developed inside the Tina toolbox [14], since version 3.7. It is currently
used by the Tina.Tedd and SMPT model-checkers, that both compete in
the Model Checking Contest (MCC) [3,13], albeit on different examinations.
Shrink is an open-source alternative, on which we focus in Sect. 3. Kong runs
Reduce if the executable is in the current PATH environment variable, but
automatically switches to Shrink otherwise. It is still possible to enforce the use
of Shrink by using the --shrink option. It is also possible to directly provide
a precomputed result of structural reductions with the option --reduced-net.

Concurrent and Dead Places. Kong is a CLI tool organized around sub-
commands to expose its different features. The tool provides several options that
are described in the documentation using --help. We give a brief description of
some of them in the following sections.

The main subcommands of Kong are conc and dead for, respectively, com-
puting the concurrent relation and the list of dead places in a net. When com-
puting a concurrency matrix, Kong relies on an external tool to compute the
concurrency matrix of the reduced net. This is currently done using cæsar.bdd,
part of the CADP toolbox [7,12], which is the state-of-the-art tool for the con-
current places problem [7,12].

Kong takes as inputs ordinary, safe Petri nets defined using either the Petri
Net Markup Language (PNML) [11], or the Nest-Unit Petri Net (NUPN) for-
mat [9]. (The file format is automatically detected from the file extension.) The
use of a NUPN decomposition, which provides information about the concurrent
structure of the net, can bring a significant performance improvement. The tool
was designed to be fully compatible with Petri net instances used in the MCC.
For instance, we can make use of NUPN information added to a PNML model
using its tool-specific extension mechanism.

Kong can be executed as a Python script or converted into a standalone
executable using cx_Freeze. Each subcommand only requires the path to the
input Petri net (with a .pnml or .nupn extension). Hence a typical call to Kong
is of the form ‘./kong.py conc model.pnml‘. We also provide two main op-
tions to limit the exploration performed by cæsar.bdd: --bdd-timeout to set a
time limit and --bdd-iterations to limit the number of iterations. Debugging
options are described in Sect. 4.

The concurrency relation of a Petri net, denoted C, is encoded as a symmetric
matrix of dimension |P |, where |P | is the number of places in the net. We also
use the name concurrency matrix. We use the notation C[p, q] = 1 when places
p, q can be marked together in a reachable state, and 0 otherwise. In some cases,
we may need to work with “partial relations”; for example when we impose a
time limit. We say that the concurrency matrix is incomplete in this case and
use the value ’·’ (a dot) for pairs of places where the relation is undecided.

3

Our output format for the concurrency matrix is taken from cæsar.bdd.
We can output our results using a compressed format, based on a run-length
encoding (RLE) of the rows of C. For the sake of readability, it is possible to
disable this encoding using option --no-rle. It is also possible to print the place
ordering with option --place-names.

A call to ‘kong.py conc‘ delegates the computation of the concur-
rent relation on the reduced net to the tool cæsar.bdd. It can also take
as input a precomputed concurrency matrix of the reduced net, using op-
tion --reduced-matrix. Likewise, the dead subcommand provides option
--reduced-vector if we have a precomputed list of dead places for the reduced
net.

Marking Reachability. The reach subcommand provides a procedures to
check if a given marking is reachable. Like previously, this command relies on
an external tool to check if a marking is reachable in the reduced net. To this
end, we use Sift, which is an explicit-state model-checker for Petri nets from
the Tina toolbox, that can check reachability properties on the fly.

The tool takes as input a Petri net—not necessarily safe, ordinary or
bounded— described either in the PNML or the NET format. (NET is the
specification format of the Tina toolbox). The target marking is defined using
a simple textual format, as a space-separated list of place identifiers with their
multiplicities, of the form p*k, where p is a place and k is a positive integer.
By default, places that are not listed contain no tokens. The path to the file
describing the target marking is given using option --marking.

3 Architecture of Kong

Our tool is basically composed of three modules: kong.py the front-end program
in charge of parsing command-line options; pt.py a Petri net parser; and tfg.py
the data structure and computational module based on Token Flow Graphs. We
illustrate the architecture of Kong in Fig. 1, where we describe the different steps
involved during a typical computation. The first step is to reduce the input Petri
net, say (N,m), using the Shrink tool. Shrink outputs a reduced net (N ′,m′)
and a system of linear equations E. We display in Fig. 2 a sequence of structural
reductions, with their equations, computed using Shrink. By construction, the
result of this first stage is guaranteed to be a polyhedral abstraction.

Then we build a Token Flow Graph, JEK, from the set of linear equations in
E. The TFG is a Directed Acyclic Graph (DAG), capturing the specific structure
of the equations in E, that allows us to reason about the reachable markings by
playing a token game on this graph.

At this stage, we must distinguish two possible cases. First, the net could be
fully reduced, meaning the resulting net is “empty”; it has no remaining places.
In this case, the set of markings of (N,m) is exactly the solutions of the linear
system E. Hence the TFG is enough to compute the concurrency matrix using an
algorithm that we call dimensionality reduction, or to decide if a given marking

4

Net Reduction (N ′,m′) and E(N,m)

TFG Construction

E

JEK

Dimensionality
Reduction

Projection

JEK

C(N,m)

C(N ′,m′)

m2 or ⊥

m1

Shrink

Kong

Fig. 1: Kong’s architecture.

is reachable. Otherwise, we have a non-trivial reduced net, in which case we need
to compute the concurrency matrix of (N ′,m′) or to check the reachability of
the projection of our marking of interest.

The first module of our pipeline relies on two Rust libraries, based on a
common crate called pnets, that defines functions for parsing, manipulating
and reducing Petri nets. This code is freely available on GitHub (https://github.
com/Fomys/pnets), under the MIT license.

Petri Nets Library. The pnets library is the core for parsing and manipu-
lating Petri nets. It supports both standard and timed Petri nets. Internally,
Petri nets are stored using adjacency lists, ensuring a low memory footprint and
fast iterations over connected places and transitions. The toolbox includes two
sublibraries for parsing nets: pnets_pnml and pnets_tina, respectively for the
PNML and NET formats.

Structural Reduction Library. The pnets_shrink library implements re-
ductions rules described in [5,6]. It implements a large subset of the reductions
included in Reduce, such as (definitions refers to the ones in [6]): T - Redundant
transitions (def. 1), P - Redundant places (def. 2), SCA - Simple chain agglomer-
ation (def. 5), SLA - Simple loop agglomeration (def. 6), and SSP - Source-sink
pair (def. 10).

Standalone Reduction Tool. Shrink is a standalone program, integrated
with Kong, and built with the pnets crate. It can be installed using cargo, the
Rust package manager, by running ‘cargo install pnets_shrink‘, or built
from sources available in the GitHub repository.

Shrink can parse nets defined in the PNML or NET formats, and use the
NET format for its output. Use option -i to indicate the path to the input net,
and -o to redirect the reduced net. It is possible to use - for replacing paths by

5

https://github.com/Fomys/pnets
https://github.com/Fomys/pnets

the standard input or output. Another option, --equation, can be used to print
the reduction equations as comments in the output net (lines starting by #).

Shrink is quite modular, different options permit to enable subsets of re-
duction rules from the pnets_shrink library. For instance, --redundant enables
the T, P and SSP rules, and compact the SCA and SLA ones. Furthermore, a loop
iteration limit over the net can be set using the option --max-iter <MAX_ITER>.

4 Concrete Example

The simplest way to illustrate the usage of Kong is to look at a concrete exam-
ple. This is also a good opportunity to show the debugging options provided by
our tool. Assume (N,m) is the net in top left position in Fig 2.

Net Reduction. Structural reduction is performed iteratively, until no new
reductions are possible. We display, Fig. 2, a sequence of four reductions that
leads to the result computed with Shrink; the marked net at the bottom-right.
Each row is an example of reduction, and its associated equation. First, it is
always safe to remove a redundant place, e.g. a place with the same pre and
post conditions than another one. This is the case with places p4, p5. Redundant
places can sometimes be found by looking at the structure of the net, but we
can use more elaborate methods to find redundant places by solving an integer
linear programming problem [16]. After the removal of p5, we obtain the equation
p4 = p5, and we are left with the residual net at the left part of row 2. In this case,
we can use an agglomeration rule, which states that we can fuse places inside a
“deterministic sequence” of transitions. For instance to simplify places p1 and p2
into a new place, a12. Similar situations, where we can aggregate several places
together, can be found by searching patterns in the net. After this step, we find a
new opportunity to reduce a redundant place, based on the structural invariant
a12 = p3 + p4. We conclude by agglomerating places p3 and p4 into a new place,
a13.

At the end of these reductions, we obtain the reduced net, (N ′,m′), with
only 3 places instead of 6. We also obtain a system of four linear equations
E , (p5 = p4), (a12 = p1 + p2), (a12 = p3 + p4), (a13 = p3 + p4).

Kong provides an option, --save-reduced-net, to save the reduced net into
a specific file. Additionally, we can print the reduction equations with the option
--show-equations.

TFG Construction. Kong can build the TFG associated with the linear sys-
tem E; see Fig. 3. It is possible to output a graphical version of the TFG using
option --draw-graph. The TFG is a DAG where the vertices are the places of
the input and reduced net, in addition to the free variables from E. The set of
roots (nodes with no predecessor) is exactly the set of places of the reduced net
N ′. Arcs in the TFG are used to depict the relation induced by equations in E.

A TFG includes two different kinds of arcs. Arcs for redundancy equations,
q→•p, to represent equations of the form p = q (or p = q+r+. . .), corresponding

6

p0

p1 p2

p3

p4

p5

p6

t0

t1

t2

t3

t4

Bp5=p4

p0

p1 p2

p3

p4

p6

t0

t1

t5

t6

t4

p0

p1 p2

p3

p4

p6

t0

t1

t5

t6

t4

Ba12=p1+p2

a12

p0

p3

p4

p6

t7

t5

t8

t4

1

a12

p0

p3

p4

p6

t7

t5

t8

t4

Ba12=p3+p4

p0

p3

p4

p6

t9

t5

t10

t4

1

p0

p3

p4

p6

t9

t5

t10

t4

Ba13=p3+p4

p0

a13

p6

t13

t12t11

Fig. 2: Example of sequence of four reductions leading from the net N to N ′.

to redundant places. In this case, we say that place p is removed by arc q→• p,
because the marking of q may influence the marking of p, but not necessarily
the other way round.

The second kind of arcs, a ◦→ p, is for agglomeration equations. It represents
equations of the form a = p+ q, generated when we agglomerate several places
into a new one. In this case, we expect that if we can reach a marking with k
tokens in a, then we can certainly reach a marking with k1 tokens in p and k2
tokens in q when k = k1+k2. Hence information flows in reverse order compared
to the case of redundancy equations. This is why, in this case, we say that places
p and q are removed. We also say that node a is inserted ; it does not appear in
N but may appear as a new place in N ′. We can have more than two places in
an agglomeration.

We can use the TFG to reason about the reachable markings of a net by
playing a “token game” on this DAG. Basically, we can put tokens on the roots

7

generated equations
R |- p5 = p4
A |- a12 = p1 + p2
R |- a12 = p3 + p4
A |- a13 = p3 + p4 a12

p1 p2

p5

p3 p4

a13p0 p6

Fig. 3: Equations generated from net N , in Fig.2, and associated TFG JEK.

of the graph (given a marking of N ′) then propagate them downwards while
respecting the constraints dictated by the →• and ◦→ arcs. The result observed
on the ◦→-leaf nodes (the places of N) is guaranteed to be reachable in (N,m).

Concurrent Places Algorithm. With subcommand conc, the final stage is
to compute the concurrency matrix of the input net, C(N,m), from the one of the
reduced net, C(N ′,m′). Currently, Kong uses cæsar.bdd to compute C(N ′,m′).
But we could adapt Kong to use any other tool that can compute the con-
currency relation, such as [17]. It is possible to output this matrix with option
--show-reduced-matrix (resp. --show-reduced-vector if we use subcommand
dead).

We can give an intuition for our Dimensionality Reduction algorithm using
our example. For instance, we have that place a13, in the reduced net N ′ of
Fig. 2, is non-dead (because we can fire t9). As a consequence, all the successors
nodes of a13 in the TFG (that are also places in N) must also be non-dead,
meaning C[pi, pi] = 1 for all i in 1..5. Also, we can deduce that p4 is concurrent
to p5 (meaning C[p4, p5] = 1), because of the redundancy p5 = p4, and p1, p2 are
concurrent to p3, p4, p5. A detailed description of our algorithm can be found in
[2].

Marking Reachability Decision. With subcommand reach, the final step is
to project the marking of interest into a new marking defined on the reduced
net, and to check its reachability in the reduced net (N ′,m′).

We illustrate this procedure by taking two concrete examples on the marked
net N given in Fig. 2 (first row, left). Assume we want to check if marking
m1 , (p0 = 0 , p1 = 1 , p2 = 1 , p3 = 1 , p4 = 1 , p5 = 1 , p6 = 0) is reachable
in (N,m). This marking can be mapped to a unique marking of N ′, namely
m2 , (p0 = 0 , p6 = 0 , a13 = 2). (Use option --show-projected-marking to
output this marking.) Deciding if markingm1 is reachable in (N,m) is equivalent
to deciding if m2 , (p0 = 0 , a2 = 2 , p6 = 0) is reachable in (N ′,m′) (which

8

it is not). Observe that m1 would be reachable if the initial marking m was
(p0 = 2, p6 = 1) and the other places empty.

The “marking projection” algorithm can also directly return with a contra-
diction (⊥), meaning that the target marking cannot be reached. Assume we
want to check the reachability of a marking m′

1 such that m′
1(p4) = 2 and

m′
1(p1) = m′

1(p2) = 0. It is not possible to project this marking into N ′ while
respecting the constraint given in the TFG. In this case, we directly obtain that
m′

1 is not reachable in (N,m).

5 Performance

We used the database of models provided by the Model Checking Contest [3,13]
to study the performances of Kong. For the computation of concurrent matrices,
among the 562 safe and ordinary instances used in the MCC’2021, we kept only
the ones with reduction opportunities; which amount to 424 nets in total. And
we selected 426 instances (among 1 411) to evaluate the marking reachability
procedure, for which we generated 5 queries that are markings found using a
“random walk” on the state space of the net. We used Reduce to compute
net reductions, we computed the concurrency matrices on the reduced net with
cæsar.bdd, version 3.6, part of CADP version 2022-b "Kista", published in
February 2022 and and used Sift to check the reachability of the projected
marking.

To understand the impact of reductions on the computation time, we com-
pare cæsar.bdd and Sift alone, on the initial net, and Kong + Reduce +
cæsar.bdd or Sift on the reduced net. We display our results in the charts
of Fig. 4, which gives the number of feasible instances, for each tool, when we
change the timeout value. (To reproduce the experiments follow the instructions
from the README file in the benchmark/ directory of the repository.)

Fig. 4: Minimal timeout to compute a given number of instances: (left) concur-
rency matrices, (right) reachable markings.

9

We observe that net reductions have a clear impact on the speed-up and that
we can compute more instances with reductions than without: 229 matrices for
Kong against 176 for cæsar.bdd alone, with a timeout of 15min. The same
observations holds for the reachability procedure: 901 queries solved for Kong
against 667 for Sift alone, with a timeout of 5min. Furthermore concerning the
tool Reduce, we obtained on safe instances a mean reduction ratio—that is the
quotient between how many places can be removed and the number of places in
the initial net—of 40% (median of 26%), computed in an average time of 0.7 s
(median of 0.2 s).

6 Future Work

Both Kong and Shrink are destined to evolve. For instance, we want to experi-
ment with more challenging problems using Kong and the TFG data-structure.
We are particularly interested in answering reachability queries expressed using
a boolean combination of constraints over place markings. Another interest-
ing problem would be to support the verification of Generalized Mutual Ex-
clusion Constraints, like in [10], that requires checking invariants involving a
weighted sums over the marking of places, of the form

∑
p∈P wp.m(p) 6 k, with

w1, . . . , wn, k constants in Z.
We also want to explore new reduction rules using our polyhedral abstraction

framework Shrink. We already developed new reduction rules for specific models
from the MCC, such as Election2020 and ViralEpidemic, and plan to look at
more specific examples of reduction rules.

To conclude, we are convinced that there is still a lot of work to be done
to compute polyhedral abstractions, and to apply them on useful and complex
problems.

Acknowledgements. We would like to thank Bernard Berthomieu and Silvano
Dal Zilio for their help on the development of our reduction library, and Pierre
Bouvier for his remarks that helped improve the quality of Kong.

10

References

1. Amat, N., Berthomieu, B., Dal Zilio, S.: On the combination of polyhedral abstrac-
tion and SMT-based model checking for Petri nets. In: International Conference
on Application and Theory of Petri Nets and Concurrency (Petri Nets). LNCS,
vol. 12734. Springer (2021). https://doi.org/10.1007/978-3-030-76983-3_9

2. Amat, N., Dal Zilio, S., Le Botlan, D.: Accelerating the Computation of Dead and
Concurrent Places using Reductions. In: 27th International SPIN Symposium on
Model Checking of Software. LNCS, vol. 12864. Springer, Aarhus, Denmark (2021).
https://doi.org/10.1007/978-3-030-84629-9_3

3. Amparore, E., Berthomieu, B., Ciardo, G., Dal Zilio, S., Gallà, F., Hillah, L.M.,
Hulin-Hubard, F., Jensen, P.G., Jezequel, L., Kordon, F., Le Botlan, D., Liebke,
T., Meijer, J., Miner, A., Paviot-Adet, E., Srba, J., Thierry-Mieg, Y., van Dijk, T.,
Wolf, K.: Presentation of the 9th edition of the model checking contest. In: Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS,
vol. 11429. Springer (2019). https://doi.org/10.1007/978-3-662-58381-4_9

4. Berthelot, G.: Transformations and Decompositions of Nets. In: Petri Nets:
Central Models and their Properties. LNCS, vol. 254. Springer (1987).
https://doi.org/10.1007/978-3-540-47919-2_13

5. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Petri net reductions for counting mark-
ings. In: International Symposium on Model Checking Software (SPIN). LNCS, vol.
10869. Springer (2018). https://doi.org/10.1007/978-3-319-94111-0_4

6. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from re-
duction equations. International Journal on Software Tools for Technology Transfer
22 (2019). https://doi.org/10.1007/s10009-019-00519-1

7. Bouvier, P., Garavel, H.: Efficient algorithms for three reachability problems
in safe Petri nets. In: International Conference on Application and Theory of
Petri Nets and Concurrency (Petri Nets). LNCS, vol. 12734. Springer (2021).
https://doi.org/10.1007/978-3-030-76983-3_17

8. Bouvier, P., Garavel, H., Ponce-de León, H.: Automatic decomposition of Petri
nets into automata networks – a synthetic account. In: International Conference
on Application and Theory of Petri Nets and Concurrency (Petri Nets). LNCS,
vol. 12152. Springer (2020). https://doi.org/10.1007/978-3-030-51831-8_1

9. Garavel, H.: Nested-unit Petri nets. Journal of Logical and Algebraic Methods in
Programming 104 (2019). https://doi.org/10.1016/j.jlamp.2018.11.005

10. Giua, A., DiCesare, F., Silva, M.: Generalized mutual exclusion contraints on nets
with uncontrollable transitions. In: IEEE International Conference on Systems,
Man, and Cybernetics. IEEE (1992). https://doi.org/10.1109/ICSMC.1992.271666

11. Hillah, L.M., Kordon, F., Petrucci, L., Treves, N.: PNML framework: an extendable
reference implementation of the Petri Net Markup Language. In: International
Conference on Application and Theory of Petri Nets and Concurrency (Petri Nets).
LNCS, Springer (2010). https://doi.org/10.1007/978-3-642-13675-7_20

12. INRIA: CADP. https://cadp.inria.fr/ (2020)
13. Kordon, F., Bouvier, P., Garavel, H., Hillah, L.M., Hulin-Hubard, F., Amat., N.,

Amparore, E., Berthomieu, B., Biswal, S., Donatelli, D., Galla, F., , Dal Zilio, S.,
Jensen, P., He, C., Le Botlan, D., Li, S., , Srba, J., Thierry-Mieg, ., Walner, A.,
Wolf, K.: Complete Results for the 2020 Edition of the Model Checking Contest.
http://mcc.lip6.fr/2021/results.php (2021)

14. LAAS-CNRS: Tina Toolbox. http://projects.laas.fr/tina (2020)

11

https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.1007/978-3-662-58381-4_9
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/978-3-319-94111-0_4
https://doi.org/10.1007/s10009-019-00519-1
https://doi.org/10.1007/978-3-030-76983-3_17
https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1016/j.jlamp.2018.11.005
https://doi.org/10.1109/ICSMC.1992.271666
https://doi.org/10.1007/978-3-642-13675-7_20
https://cadp.inria.fr/
http://projects.laas.fr/tina

15. Murata, T., Koh, J.: Reduction and expansion of live and safe marked
graphs. IEEE Transactions on Circuits and Systems 27(1) (1980).
https://doi.org/10.1109/TCS.1980.1084711

16. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Advanced Course on
Petri Nets. Springer (1996). https://doi.org/10.1007/3-540-65306-6_19

17. Wiśniewski, R., Wiśniewska, M., Jarnut, M.: C-exact hypergraphs in concurrency
and sequentiality analyses of cyber-physical systems specified by safe Petri nets.
IEEE Access 7 (2019). https://doi.org/10.1109/ACCESS.2019.2893284

12

https://doi.org/10.1109/TCS.1980.1084711
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1109/ACCESS.2019.2893284

	Kong: a Tool to Squash Concurrent Places
	Introduction
	Commands, Basic Usage and Installation
	Dependencies.
	Concurrent and Dead Places.
	Marking Reachability.

	Architecture of Kong
	Petri Nets Library.
	Structural Reduction Library.
	Standalone Reduction Tool.

	Concrete Example
	Net Reduction.
	TFG Construction.
	Concurrent Places Algorithm.
	Marking Reachability Decision.

	Performance
	Future Work
	Acknowledgements.

