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Near Optimal Decentralized Diagnosis via
Structural Analysis

G. Pérez-Zuñiga, E. Chanthery, L. Travé-Massuyès, J. Sotomayor-Moriano

Abstract—Health monitoring of current complex systems sig-
nificantly impacts the total cost of the system. Centralized fault
diagnosis architectures are sometimes prohibitive for large-scale
interconnected systems such as distribution systems, telecommu-
nication networks, water distribution networks or fluid power
systems. Confidentiality constraints are also an issue. This pa-
per presents a decentralized fault diagnosis method that only
requires the knowledge of local models and limited knowledge
of their neighboring subsystems. The method, implemented in
the Decentralized Diagnoser Design (D3) algorithm, is based on
structural analysis and can advantageously be applied to high
dimensional systems, linear or non-linear. Using the concept of
isolation on request, a hierarchy is built according to diagnostic
objectives. The resulting diagnoser is based on analytical redun-
dancy relations generated along the hierarchy. Their number
is optimized via binary integer linear programming while still
guaranteeing maximal diagnosability at each level. D3 proves
of lower time complexity than its centralized equivalent. It is
successfully applied to a non-linear combined cycle gas turbine
power plant.

Index Terms—Fault Detection and Isolation, Test selection,
Decentralized diagnosis, Structural analysis.

I. INTRODUCTION

CURRENT systems such as manufacturing processes, air-
craft, power plants, telecommunication networks, and

other distribution systems are often so complex that the
only way to manage their complexity is to proceed with a
decomposition into subsystems. Additionally, the industry is
usually not open to sharing complete information about its
systems, taking into account that usually multiple companies
converge, that is, there are confidentiality constraints between
subsystems. Monitoring the health status of such systems,
in particular detecting and isolating faults, requires specific
methods. This task, which is the focus of this paper, drives
repair and maintenance activities that are all together critical
in the system’s life cycle. Their impact on the total cost of the
system is quite significant.

Health monitoring of current complex systems significantly
impacts the total cost of the system. Centralized fault di-
agnosis architectures are sometimes prohibitive for large-
scale interconnected systems. To manage complexity, but also
confidentiality constraints between subsystems, one solution is
to use decentralized approaches.
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Fault Detection and Isolation (FDI) can be achieved lever-
aging the analytical redundancy provided by a system model.
The idea is to generate tests whose outputs, termed residuals,
reflect inconsistencies between a reference model prediction
and the actual system behavior. Such tests are designed using
analytical approaches, such as observers [1], parameter esti-
mation [2] or parity equations [3].

We adopt the parity equations approach and work with an-
alytical redundancy relations (ARRs). The system is modeled
by a set of ordinary differential equations. ARRs are generated
from the model by eliminating unmeasured variables, which
can be carried out in a pure analytical framework using
elimination theory [4], [5]. However, another way to proceed
is to first use structural analysis techniques to select sets of
equations that can lead to ARR generation.

Structural analysis makes use of a structural abstraction of
the model. Only the links between variables and equations are
modeled. Despite the apparent simplicity of the approach, it
provides a set of powerful tools, based on graph theory, to an-
alyze the system and deduce relevant information. Moreover,
it applies to both linear and non-linear systems [6]–[8].

The originality of this paper is to use structural analysis in a
decentralized framework, for decentralized FDI of continuous
systems. In this framework, one of the major assumptions is
that the system is decomposed into a given set of subsystems.
The decomposition results from taking into account functional,
geographical or confidentiality constraints. This assumption
arises from industrial requests aiming at protecting the data
about the subsystems they develop. This is true in many
application domains, like space, aeronautics, or power plants,
where several suppliers are involved in the design phase.

This paper brings the following contributions:
• An original Decentralized Diagnoser Design method im-

plemented in the D3 algorithm : using the concept of
isolation on request, this method consists in using first
the local models of subsystems. If isolability of all the
faults cannot be achieved, a higher level is investigated
to improve isolability. A hierarchy of levels is thus
built, driven by diagnostic goals. The advantages of this
design are twofold: on one hand, the architecture naturally
matches the system functional decomposition commonly
adopted in engineering processes. On the other hand, it
results in an anytime FDI algorithm. Indeed, if real time
constraints are severe, the algorithm may be stopped at
any level while still returning a consistent, although not
necessarily precise, diagnosis.

• An advantageous inter linkage of test generation and test
selection thanks to a binary integer linear programming
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(BILP) model [9] that achieves to minimize the number of
tests while maximizing fault isolability at each considered
level.

• A thorough theoretical and experimental analysis of the
properties of the D3 algorithm and its application to the
non-linear real case study of a gas turbine combined cycle
power plant.

The paper is organized as follows: section II presents related
work on decentralized diagnosis and structural analysis. In
section III, the main concepts of the structural approach are
summarized and Fault-Driven Minimal Structurally Overdeter-
mined (FMSO) sets are introduced. The link between ARRs
and FMSO sets is outlined and residual generation is ex-
plained. Section IV extends the concepts presented in the
previous section to the decentralized fault diagnosis frame-
work. Section V presents the algorithm D3 for the design
of the decentralized diagnoser that interlinks test generation
and test selection and proves its properties. The computational
efficiency of D3 is proved in practice, and a Gas Turbine
Combined-Cycle (GTCC) power plant is then used as a case
study in section VI. Finally, section VII concludes the paper.

II. RELATED WORK

Structural analysis is a general framework that can be used
to analyze complex, dynamic systems. It ignores the details of
parameter values to base the analysis on the structure of the
system by means of efficient graph-based tools [10].

It has been used for about two decades by the FDI commu-
nity to identify redundancy in the system model, independently
of their nonlinear nature [7], [11], [12]. If we refer to diagnosis
test selection, FlexDx [13], can be mentioned. However, all
these works frame the problem in a centralized framework.

It is a long time since decentralized control has been
approached in the literature [14]. Decentralized diagnosis has
also been the subject of many works for discrete event systems
[15]–[17] while decentralized fault diagnosis for continuous
systems has only being dealt recently. The authors of [18]–[20]
or more recently [21], [22] use decentralized state estimation
and observers, and are therefore far from the work presented
in this paper.

Like this paper, the authors of [23] address FDI with ARRs
and make use of a graph to obtain local diagnosers for each
subsystem and a global diagnoser for coordination. Although
some structural properties are considered with the graph, they
do not make use of structural diagnosis strictly speaking.

Among the papers that make use of structural analysis,
[24] proposes two distributed diagnosis approaches. The first
one computes tests in a centralized way, then uses a BILP
problem to optimize the choice of tests and the decompo-
sition into subsystems to minimize communication between
the subsystems. Other works like [25] present methods to
decompose process variables into different blocks automat-
ically to minimize communication between sub-systems but
without selecting tests accordingly. In [26], like in this paper,
the decomposition structure is assumed to be dictated by
functional or geographical constraints. Tests are generated lo-
cally and unknown variables shared by several subsystems are

eliminated when necessary while minimizing communication
between subsystems. In [27], the approach of [24] is compared
to the one of [26]. The comparison metric is the size of the
input matrices for the BILP problems in each approach. As
[26] proceeds directly with a distributed approach, the size of
the input matrices for the BILP problems is bigger.

The second approach is a distributed algorithm that is
designed to minimize communication between the subsystems.
It assumes that the global model of the system is not available
and proceeds incrementally by augmenting the model sub-
system by subsystem until full isolability is achieved. The
approach uses Minimal Structurally Overdetermined (MSO)
sets that are all computed for each subsystem. In the worse
case, all the MSO sets are computed and the augmented system
is the whole system.

Our paper proceeds similarly but, as motivated in [26], it
does not use MSO sets but FMSO sets instead. These later
necessarily involve some faults in their support, and they are
much less numerous than MSO sets, which reduces signif-
icantly computation time. Although Minimal Test Equation
Support (MTES) can be a solution to develop more powerful
tests, FMSO sets are better suited to minimize communications
between subsystems [26].

The work presented in this paper can be seen as a con-
tinuation of [28], driven by the idea of isolation on request.
The algorithm proposed in this paper builds a diagnostic
architecture that allows the diagnoser to adapt to the fault
impacting the system at run time. It relies on the property
that was demonstrated in [28], i.e. the ARRs generated along
a hierarchical decentralized diagnosis architecture are just the
same as the ones generated in a centralized architecture when
the hierarchy is pushed up. Nevertheless, the proposed algo-
rithm brings a new perspective with respect to [28] by taking
into account inter-level restrictions and by taking benefit of
BILP optimization to select only the necessary and sufficient
tests (ARRs) at each level. On the other hand, although this
paper resumes some ideas of [29], it goes much further in the
analysis of the properties of the proposed algorithm and in its
application to a case study representative of a real process.

III. CONCEPTS FOR DIAGNOSIS

A. Analytical Redundancy Relations

The model Σ(z, x,f), or Σ for short, of a continuous system
takes the form of a set of differential or algebraic equa-
tions ek(z, x), k = 1, . . . , ne, that involve known variables
corresponding to sensored inputs and outputs represented by
vector z, unknown variables represented by vector x, and
variables that represent the possible faults that may act on
the system gathered in vector f. Such models can be obtained
from physical principles or derived from data using model
identification techniques. Identification can be carried out by
classical methods [30], but it can also be achieved by methods
from artificial intelligence. For a system seen as a black box,
methods based on neural networks or regression can be used.
Recent graph structure learning methods [31] seem particularly
promising for that purpose, as they allow to learn both the
structure and the parameters of the model.
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Residual generation relies on the analytical redundancy
embedded in the model. It results from the number and
location of sensors, hence from known variables. In the case of
analytical redundancy, variable elimination can be applied to
generate relations that involve measured variables only. These
relations are used as residual generators.

Definition 1 (Residual Generator for Σ(z, x,f)): A relation
of the form arr(z′, ż′, z̈′, ...) = r, with input z′ a subvector
of z and output r, a scalar signal named residual, is a residual
generator for the model Σ(z, x,f) if, for all z consistent with
Σ(z, x,f), it holds that lim

t→∞
r(t) = 0.

The relation arr(z′, ż′, z̈′, ...) = r is qualified as an Ana-
lytical Redundancy Relation (ARR). It allows one to check
whether the measured variables z are consistent with the
system model. ARRs can be designed so that each is sensitive
to a different subset of faults qualified as the fault support of
the ARR. When the residual is non-zero, it means that at least
one of the faults of the fault support has occurred.

There are many solutions to design residual generators
based on a model or a sub-model with redundancy. Linear
algebra based approaches can be used when the model is
linear [32]–[34]. [35] proposes residual generation with mixed
causality (integral and derivative). However, the complexity of
these solutions increases rapidly with problem size and quickly
becomes intractable.

The authors of [7] propose the sequential residual generation
that is very efficient and simple when the model is of low
differential index. The idea is to use graph theory and search
for a matching, i.e. a substitution path for eliminating unknown
variables in equations of the model. A relation including only
known variables with a non-empty fault support can be used
as residual generator.

In [11], SARR-Algorithm proposes the successive elimi-
nation of unknown variables in the equations that form the
structural model with the goal of obtaining the set of minimal
Structural ARRs (SARRs). Contrary to other solutions using
structural analysis, SARRs account for causality and point at
how the equations must be chained to generate an actual ARR.

Some considerations have to be taken into account when
trying to generate residuals from redundancy in the model. If
the model is perfect, all residue generators are of equivalent
quality to detect defects. However, uncertainty and model
noise deteriorate performance. It is indeed difficult to estimate
the derivatives of known signals in a noisy environment.
In [36], the author shows how to reduce the need to estimate
derivatives of known signals by putting the residual generator
in a state-space form. More recently, [37] proposes to use the
Random Forest technique to select residuals properly.

B. Structural Analysis for Diagnosis

Structural analysis can be applied to large-scale systems
described by numerous variables, both linear and non-linear,
and even for systems under uncertainty for which the analytical
model is not precisely known [10], [38].

1) Structural Model: A structural model is composed of
a set of constraints, each one associated to a component of
the system. The model generally represents nominal behavior,

hence the violation of one constraint indicates that the sys-
tem is faulty and points at the responsible component. The
structural model of the system Σ(z, x,f) can be obtained by
abstracting the functional relations of Σ(z, x,f). Let us define
the sets Z, X , and F as the set of known (or measured)
variables, unknown (or unmeasured) variables, and faults that
may impact the system, respectively of cardinal nz , nx, and
nf .

The structural model can be represented by a matrix qual-
ified as the incidence matrix, whose rows are associated to
equations and columns to variables. Its elements take the
value ”1” when the variable is involved in the equation
and ”0” otherwise. Equivalently, the structural model can be
represented by a bipartite graph G(Σ∪X ∪Z,A), where A is
a set of edges linking equations of Σ and variables of X and
Z. For the purpose of diagnosis and as explained later, this
graph can be reduced to G(Σ∪X,A), where A ⊆ A and A is
a set of edges such that a(i, j) ∈ A iff variable xi is involved
in equation ej .

As an illustrative example, consider a system composed of
6 equations e1 to e6 relative to the set of known variables Z =
{u, y1, y2}, the set of unknown variables X = {x1, x2, ẋ1, ẋ2}
and the set of faults F = {f1, f2, f3}.

(e1) ẋ1 = 0.7x1 + 0.2x2 (e2) ẋ2 = 0.5x2 + u+ f3
(e3) y1 = x1 + f1 (e4) y2 = x2 + f2
(e5) ẋ1 = dx1

dt (e6) ẋ2 = dx2

dt

Fig. 1 shows the bipartite graph relating to the illustrative
example.

Fig. 1: The bipartite graphs G(Σ ∪ X ∪ Z,A) and G(Σ ∪
X,A) obtained by removing gray edges and variables for the
illustrative example.

2) Diagnosis via Structural Redundancy: When used for
FDI purposes, the outputs of structural analysis are in the form
of subsets of equations endowed with redundancy. These can
be turned into diagnosis tests, i.e. ARRs or parity relations,
which are designed off-line [7]. Diagnosis tests are then
checked against observations on-line.

Redundancy in a system of the form Σ(z, x,f) can be
brought to light by the well-known Dulmage-Mendelsohn
(DM) canonical decomposition [7], [39], [40]. It partitions the
system into three subsystems:

• Σ+ has more equations than unknown variables and is
named the structurally overdetermined (SO) subsystem,

• Σ0 is the structurally just determined subsystem,
• Σ− has more unknown variables than equations and is

named the structurally underdetermined subsystem.
In the following, the systems that are considered are well-

defined systems, which means that Σ = Σ+. This is the case
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of the illustrative example.
Definition 2 (Structural redundancy): The structural redun-

dancy ρ
Σ′ of a set of equations Σ′ ⊆ Σ is defined as the

difference between the number of equations and the number
of unknown variables.

If a set of equations is structurally redundant (ρΣ′ > 0), it
means that ARRs, i.e. residual generators, can be built using
the equations in this set. Thus, structural analysis provides the
means to find subsets of equations with structural redundancy.
Once the subsets found, one of the solutions proposed in the
previous section can be used to obtain residual generators.

If a set of equation Σ is such that Σ = Σ+ and no proper
subset of Σ is overdetermined, the concept of minimally struc-
turally overdetermined (MSO) [12] is used. In the illustrative
system, the set Σ1 = {e1, e2, e3, e5, e6} is an MSO set and
its structural redundancy is ρΣ1 = 1. An MSO set gives
naturally rise to one residual generator because it has structural
redundancy 1.

However, only MSO sets impacted by faults are interesting
for diagnosis. This is why we refer to the concept of fault
support.

Definition 3 (Fault support): The set FΣ′ of faults that are
involved in the equations of a subset Σ′ ⊆ Σ is defined as the
fault support of Σ′.

In the following, we distinguish MSO sets of Σ(z, x,f)
whose fault support is empty, qualified as Clear Minimal
Structurally Overdetermined (CMSO) sets, and MSO sets
whose fault support is not empty, qualified as Fault-Driven
Minimal Structurally Overdetermined (FMSO) sets [29].

In the illustrative example, the MSO set Σ1 =
{e1, e2, e3, e5, e6} is an FMSO set and its fault support is
FΣ1

= {f1, f3}. There are no CMSO sets.
An FMSO set φ identifies a just overdeterminated subset of

|φ| equations of the model, among which one is redundant.
This means that all the unknown variables can be determined
using |φ|−1 equations, and that an ARR can be generated by
substituting in the |φ|th equation. We illustrate the process of
generating an ARR from an FMSO set below [6].

For the illustrative example, let us consider the FMSO set
Σ1 = {e1, e2, e3, e5, e6}. Every unknown variable can be
associated to one equation that is interpreted as a mechanism
to determine it. For instance:

• e3 determines x1 : x1 = y1
• e5 determines ẋ1 : ẋ1 = dx1

dt ⇒ ẋ1 = ẏ1
• e1 determines x2 : x2 = 1

0.2 ẋ1 − 0.7
0.2x1 ⇒ x2 = 1

0.2 ẏ1 −
0.7
0.2y1

• e6 determines ẋ2 : ẋ2 = dx2

dt ⇒ ẋ2 = 1
0.2 ÿ1 −

0.7
0.2 ẏ1

Finally, the ARR is obtained with the redundant equation
e2 as follows:

ẋ2 = 0.5x2 + u ⇒ 1
0.2 ÿ1 −

0.7
0.2 ẏ1 = 0.5

0.2 ẏ1 −
0.5×0.7

0.2 y1 + u
⇒ 5ÿ1 − 6ẏ1 + 1.75y1 − u = 0

FMSO sets are also useful in defining the concepts of
detectable fault and isolable fault.

Definition 4 (Detectable fault): A fault f ∈ F is detectable
in the system Σ(z, x,f) if there exists an FMSO set φ ∈ Φ
such that f ∈ Fφ.

Definition 5 (Isolable fault): Given two detectable faults f
and f ′ of F , f ̸= f ′, f is isolable from f ′ if there exists an
FMSO set φ ∈ Φ such that f ∈ Fφ and f ′ ̸∈ Fφ.

In the illustrative example, the faults f1, f2, and f3
are detectable: f1 ∈ FΣ1

and f3 ∈ FΣ1
, where Σ1 =

{e1, e2, e3, e5, e6} has been shown to be an FMSO set, f2 ∈
FΣ2 , where Σ2 = {e2, e4, e6} is also an FMSO set. f1 and f3
are isolable from f2 because f2 ̸∈ FΣ1

while f1 ∈ FΣ1
and

f3 ∈ FΣ1
.

Definition 6 (Ambiguity set and Isolability degree): The
ambiguity set A(Σ) of a system Σ is the set of sets of not
isolable faults. The system isolability degree I(Σ) is defined
as the cardinal of its ambiguity set, i.e. I(Σ) = |A(Σ)|.

According to Definition 6, the system isolability degree
I(Σ) is at most equal to nf , which is met when all the faults
are isolable. The system isolability degree I(Σ) defines an
upper bound for the isolability degree that can be obtained
with a diagnosis algorithm.

IV. DECENTRALIZED DIAGNOSIS

A. Fault Diagnosis in a Decentralized Framework

The aim of this work is to propose a decentralized diagnoser
design method. One of the assumptions is that the system
is decomposable into sub-systems determined by functional,
geographical or confidential constraints guided by engineering
requirements. Each subsystem may represent the implementa-
tion of a primary function. The decomposition itself is not in
the scope of this work but this can be a problem in its own
right [41], [42].

Fig. 2 illustrates an example of a decentralized architecture
with 3 sub-systems at the lowest level and 2 levels in the
supervisory hierarchy. In the decomposition, each subsystem
has its own local diagnoser. If isolability of all faults cannot
be achieved at some level, higher level sub-systems can be
considered with their own diagnosers. This can be applied
recursively, so that this type of architecture is fully scalable.

More generally, the decentralized structure of Σ(z, x,f) is
defined as a hierarchical organization over several levels as
illustrated in Fig. 3. Σ1,i, i = 1, . . . , n1 represent sub-systems
of the lowest level. Πj,i sets are equation sets that are only
available at level j, for confidentiality reasons or because they
are too far away or costly to access. Σj,i represents the ith

subsystem at level j, with i = 1, ..., nj and j = 1, ...,m,
obtained by lumping some of the equations of some sub-
systems of the level just beneath and the equations of Πj,i.
Note that, by construction, nj < nj−1,∀j = 2, ...,m.

In extension, Σj,i, j = 1, ...,m and i = 1, ..., nj , is denoted
Σj,i(zj,i, xj,i,fj,i), where zj,i, xj,i and fj,i are the vectors of
known variables, unknown variables and faults, respectively.
The sets of unknown variables, known variables, and faults are
denoted Xj,i, Zj,i, and Fj,i, respectively. These are the subsets
of variables of X , Z, and F involved in the subsystem Σj,i.

Parameter nm of the highest level m is required to be equal
to 1, i.e. level m is restricted to one single subsystem. Parame-
ter n1 is given by the imposed decomposition. The hierarchy,
i.e. the number of levels m and the number of subsystems
nj , j = 1, . . . ,m in each level j > 1, are constrained by
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Fig. 2: A decentralized diagnosis architecture with 3 subsys-
tems.

allowed and forbidden inter-level communication as formally
defined below.

Definition 7 (Inter-level communication): The inter-level
communication is given by a set of m − 1 bipartite graphs
Sj
j−1(N

j
j−1,L

j
j−1), j = 2, . . . ,m, such that Nj

j−1 = Nj−1 ∪
Nj , where:

• Nj = {nj,i, i = 1, . . . , nj} is a set of nodes correspond-
ing to the subsystems Σj,i, i = 1, . . . , nj , of level j, and
Nj−1 is defined similarly.

• Lj
j−1 = {lν,ξ, ν = 1, . . . , nj−1, ξ = 1, . . . , nj} is a set of

edges such that the edge lν,ξ between node nν ∈ Nj−1

and nξ ∈ Nj exists if communication is possible between
subsystem Σj−1,ν at level j − 1 and subsystem Σj,ξ at
level j.

Definition 8 (Local variable): A variable of a subsystem
Σj,i is said to be local if it is only involved in the equations
of Σj,i. The set of local variables of Σj,i is denoted by X l

j,i.

X l
j,i = Xj,i\(

⋃
k=1,...,m
l=1,...,nk

(Xj,i ∩Xk,l)) with (k, l) ̸= (j, i)
(1)

Let us decompose the illustrative system in two subsystems
Σ1,1 = {e1, e3, e5} and Σ1,2 = {e2, e4, e6}, then local
variables are given by X l

1,1 = {x1, ẋ1} and X l
1,2 = {ẋ2}.

Definition 9 (Shared Variable): A variable of Σj,i is said to
be shared if it is involved in the equations of Σj,i and at least in
the equations of another subsystem Σj′,i′ with (j, i) ̸= (j′, i′).
The set of shared variables of subsystem Σj,i is denoted Xs

j,i

and
Xs

j,i = Xj,i\X l
j,i (2)

Xs represents the set of shared variables of Σ.

Fig. 3: General decentralized architecture.

In the illustrative system, there is one shared variable only
so that Xs

1,1 = Xs
1,2 = Xs = {x2}.

B. FMSO Sets for Decentralized Diagnosis

The concepts of FMSO sets and CMSO are extended to the
decentralized context.

Definition 10 (Global FMSO set): An FMSO set φ of
Σ(z, x,f) is called a global FMSO set. The set of global
FMSO sets is denoted by Φ.

Considering the illustrative system, Φ = {φ1, φ2, φ3},
where φ1 = {e2, e4, e6}, φ2 = {e1, e3, e4, e5} and φ3 =
{e1, e2, e3, e5, e6}.

Definition 11 (Local FMSO set): φ is a local FMSO set
of Σj,i(zj,i, xj,i,fj,i) if φ is an FMSO set of Σ(z, x,f) and
if its unknown variables can all be eliminated locally, i.e.
with equations of Σj,i. The set of local FMSO sets of Σj,i

is denoted by Φl
j,i. The set of all local FMSO sets is denoted

by Φl =
⋃

j=1,...,m
i=1,...,nj

Φl
j,i.

Two important things have to be noticed: 1) a local FMSO
set may involve shared variables if they can be eliminated
locally; 2) a local FMSO set for any subsystem Σj,i is also
an FMSO set of Σ, hence, a global FMSO set.

In the illustrative system, Φl
1,1 = {∅}, Φl

1,2 = {φ1 =
{e2, e4, e6}}. As mentioned above, note that the local FMSO
set φ1 is also a global FMSO set.

If shared variables cannot be eliminated locally, they need
equations of other subsystems to be substituted. This leads to
the definition of shared FMSO sets for a subsystem Σj,i.

Definition 12 (Shared FMSO set): If φ is an FMSO set
of Σ̃j,i(z̃j,i, x̃j,i, f̃j,i), where z̃j,i is the vector of variables in
Z̃j,i = Zj,i∪Xs

j,i, x̃j,i is the vector of variables in X̃j,i = X l
j,i,

and f̃j,i = fj,i, then φ is a shared FMSO set of subsystem
Σj,i(zj,i, xj,i,fj,i). The set of shared FMSO sets for Σj,i is



6

denoted by Φs
j,i. The set of all shared FMSO sets is denoted

by Φs =
⋃

j=1,...,m
i=1,...,nj

Φs
j,i.

From the above definition, a shared FMSO set φ for sub-
system Σj,i(zj,i, xj,i,fj,i) is such that φ ⊆ Σj,i, Xφ ⊆ X l

j,i,
Zφ ∩Xs

j,i ̸= ∅, and Zφ ⊆ (Zj,i ∪Xs
j,i).

For subsystem Σ1,1 of system (III-B1), Z̃1,1 = Z1,1 ∪
Xs

1,1 = {y1, x2} and Φs
1,1 = {φ4 = {e1, e3, e5}}. For

subsystem Σ1,2, Z̃1,2 = Z1,2 ∪ Xs
1,2 = {y2, u, x2} and

Φs
1,2 = {φ5 = {e4}, φ6 = {e2, e6}}.
CMSO sets can also be extended in a decentralized frame-

work as local CMSO sets and shared CMSO sets, as done for
FMSO sets. The set of local (shared) CMSO sets of Σj,i is
denoted by Ψl

j,i (Ψs
j,i) and the set of all local (shared) CMSO

sets by Ψl (Ψs) [29].

V. DECENTRALIZED DIAGNOSIS DESIGN ALGORITHM

This section presents the Decentralized Diagnoser Design
algorithm D3 for designing a decentralized diagnoser optimiz-
ing the number of FMSO sets while providing fault isolability
guarantees.

A. Algorithm for Decentralized Diagnoser Design
The D3 algorithm runs offline. It delivers a near-optimal

distribution of ARRs on a hierarchy of subsystems. The user
chooses a target isolability degree as a percentage of the
number of faults, i.e. %nf . Given the system isolability degree
I(Σ), which may be known by the user or not, the maximal
isolability degree I∗(Σ) is defined as:

I∗(Σ) = min(I(Σ), It(Σ)) (3)

The D3 Algorithm.

1: E0,1 = ∅, I0(Σ) = 0, j = 1, i = 1 ▷ Init part
2: while (j ≤ m) && (Ij−1(Σ) < I∗(Σ)) do ▷ Main loop
3: while i < nj do
4: Υj,i ← ComputeUpsilon(j, i)
5: Σj,i ← Πj,i ∪Υj,i

6: Φl
j,i ← ComputeLocFMSOOf(Σj,i)

7: Φl
j,i

∗ ← SelectOptLocFMSO(Φl
j,i)

8: ARRj,i ← ComputeARR(Φl
j,i

∗)
9: i = i+ 1

10: end while
11: Ij(Σ)← ComputeID(j)
12: j = j + 1, i = 1
13: end while

In the initialization part of the D3 algorithm (line 1), E0,1

and I0(Σ) are initial conditions for an artificial level 0 that
allows us to apply the recursive operations for the following
levels. Indexes j and i are initialized to 1. j represents the
level in the decentralized architecture, while i numbers the
subsystems in a given level. Two loops consider subsystems
from i = 1 to i = nj at each level j from 1 up to possibly m.

The inter-level communication is taken into account at each
level j = 2, . . . ,m by Υj,i, where:

Υj,i =
⋃

ν/lν,i∈Lj
j−1

Ej−1,ν (4)

Ej−1,ν = {e ∈ Φs
j−1,ν ∪Ψs

j−1,ν} (5)

In other words, for levels j = 2, . . . ,m, Υj,i contains
the equations involved in shared FMSO and CMSO of all
subsystems of level j − 1 whose connection is allowed with
subsystem Σj,i and that share variables. This is performed
by function ComputeUpsilon(j,i) on line 4. Note that
Υ1,i = ∅. The subsystem Σj,i is then formed (line 5) by
unioning Υj,i and Πj,i that brings additional information only
available at level j.

Local1 FMSO sets for Σj,i are then computed
with function LocalFMSOOf() (line 6). Function
SelectOptLocFMSO() selects the best local FMSO sets
among the local FMSO sets by solving a BILP problem as
described in Subsection V-B (line 7). The set ARRj,i (line 8)
represents the set of ARRs derived from the selected FMSO
sets Φl ∗

i,j and is computed with function ComputeARR().
Finally, function ComputeID() computes the isolability
degree Ij(Σ) at the current level (line 11). The condition of
the loop checks whether if the isolability degree is still lower
than the targeted isolability degree I∗(Σ) (line 2). If this is
the case, a higher level of the hierarchy is explored. D3 stops
either when the targeted isolability degree I∗(Σ) is achieved
or when the maximal number of levels m has been reached.

B. Optimal Selection of Local FSMO sets

For each subsystem Σj,i, D3 solves a BILP problem [43]
during the ComputeLocFMSOOf() function. This function
selects the best local FMSO sets among all the computed
local FMSO sets Φl

j,i of Σj,i. The selection criterion aims
at maximizing the isolability degree while minimizing the
number of chosen local FMSO sets.

Let zφi be a boolean variable that is equal to 1 if the
local FSMO set φi is selected, 0 otherwise. Let fklφi be a
boolean variable equal to 1 if the fault fk is isolable from
the fault fl by using the local FMSO set φi. Let ekl be a
variable that indicates that the fault fk is isolable from the
fault fl when it is equal to 1 and the inverse when it is
equal to 0. The ekl variables are introduced in the objective
function and the problem becomes a bi-objective optimization
problem weighted by a parameter α. α represents a weighting
between the maximization of the isolability degree and the
minimization of the number of chosen local FMSO sets. The
BILP model is as follows:

max(α
∑

ekl
(fk,fl)∈Fj,i

− (α− 1)
∑

zφi

φi∈Φl
j,i

) (6)

Subject to:
∑

φi∈Φl
j,i

fklφi
zφi

≥ ekl (7)

zφi
∈ {0, 1} for φi ∈ Φl

j,i, (k, l) ∈ Fj,i, k ≤ l (8)

α ∈ [0, 1], 0 ≤ ekl ≤ 1 (9)

1Note that ”local” refers to a subsystem according to Definition 11, however
this subsystem can be created at any level of the hierarchy.
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Equation (6) is the objective function of the BILP problem.
The constraint (7) is used to guarantee the maximum possible
isolation for subsystem Σj,i.

Let us notice that efficiency dictates to limit the number
of binary variables 2, hence the ekl’s are coded as continuous
variables in the program. In practice, the fact that the left-hand
side of inequality (7) is binary forces the value of ekl to be
binary. Indeed, when equal to 0, ekl is forced to 0 and when
equal to 1, ekl is forced to 1 by the maximization objective (6).

C. Algorithm Properties

This section analyzes the properties and complexity of the
D3 algorithm.

1) Prerequisites:
• Considered systems are well-defined systems, i.e., Σ =
Σ+.

• Proposition 3 of [29]: in a distributed architecture for
which the system Σ is decomposed into a set of sub-
systems that can exchange information, the set of global
FMSO sets is given by the union of local FMSO sets
and compound FMSO sets, where compound FMSO sets
are FMSO sets that include shared FMSO sets. Note that
a distributed architecture can be viewed as a two levels
hierarchy, in which the subsystems define level 1 and the
information exchange defines level 2.

2) Properties:
Theorem 1: The D3 algorithm guarantees maximal isola-

bility degree if: (P ) the inter-level communication is such
that there exists a link lν,ξ from any subsystem Σj−1,ν , ν ∈
{1, . . . , nj−1}, with shared variables of level j − 1 to some
subsystem Σj,ξ, ξ ∈ {1, . . . , nj}, of level j in Lj

j−1, j =
1, . . . ,m.

Proof 1: If property (P ) is satisfied, any shared FMSO set
φ of a given subsystem Σj−1,ν , ν ∈ {1, . . . , nj−1}, of level
j−1 is part of some subsystem Σj,ξ, ξ ∈ {1, . . . , nj}, of level
j. There are two cases:

• Case 1: Σj,ξ has inherited from shared FMSO sets of
other sub-systems Σj,β ̸=ξ so that φ is involved in a local
FMSO set for Σj,ξ.

• Case 2: the condition of the previous item is not true
and φ remains as a shared FMSO set for Σj,ξ and by
property (P ), it is part of some sub-system of level
j + 1. Now, property (P ) implies that there exists a
level ℓ ≤ m in the hierarchy for which the subsystems
Σm,ν , ν ∈ {1, . . . , nℓ} do not share variables and do not
hence involve shared FMSO sets. This implies that a local
FMSO set that includes φ is generated at some level
k ∈ {j+1, . . . , ℓ} of the hierarchy (this is guaranteed by
Σ = Σ+).

Case 1 and Case 2 imply that all shared FMSO sets are
retrieved to generate local FMSO sets at some level j ∈
{2, . . . , ℓ}. In the decentralized hierarchy used by D3, local
FMSO sets generated at a given level j can be viewed as com-
pound FMSO sets (as defined in Proposition 3 of [29]) with
respect to shared FMSO sets of some lower level. Recursive

2Note that in recent solvers, it may not be more efficient.

application of Proposition 3 of [29] to every two subsequent
levels of the D3 hierarchy hence implies that the set of global
FMSO sets is given by the set of local FMSO sets generated
over the ℓ first levels of the D3 hierarchy. Consequently, all
global FMSO sets can be generated by D3, which guarantees
maximal isolability I∗(Σ) when I∗(Σ) = I(Σ) ≤ It(Σ).
If I∗(Σ) = It(Σ) < I(Σ), D3 may stop before developing
levels up to ℓ, guarantying however maximal isolability.■

Lemma 1: If the inter-level communication satisfies property
(P ) and It(Σ) ≥ I(Σ), the set of local FMSO sets generated
by D3 over all levels of the hierarchy is the set of global
FMSO sets of system Σ, i.e., Φl = Φ.

Proof 2: This lemma is a direct consequence of Theo-
rem 1.■

Theorem 2: The D3 algorithm computes a near-optimal
set of analytical residual generators that guarantee maximal
fault isolability if the inter-level communication satisfies prop-
erty (P ).

Proof 3: By Theorem 1 and Lemma 1, the set of all
local FMSO sets generated by D3 over the levels 1 to ℓ of
the hierarchy guarantee maximal fault isolability. Function
SelectOptimalLocalFMSO() of D3 makes a selection
among local FMSO sets while preserving achievable isolability
at the level of each subsystem. Although the solution of the
BILP problem is proved optimal and so is the selected set of
local FMSO sets for each subsystem, the union of these sets
may overestimate the optimal solution for the whole system
Σ, hence the D3 algorithm is near-optimal.■

Theorem 3: The D3 algorithm has lower time complexity
than its centralized equivalent if and only if the highest level ℓ
of the developed hierarchy has more than one subsystem, i.e.,
nℓ > 1.

Proof 4: Given a system Σ with ne equations and fixed
order of structural redundancy ρ, the computation of FMSO
sets has been proven to have order of nρ+1.5

e time complexity
and the number of FMSO sets to be bounded by ρ.nρ−1

e [44].
BILP is known to be polynomial when the constraint matrix
is totally unimodular. This is the case in the BILP formulation
of FMSO set selection. The time complexity of an FMSO set
selection step based on BILP is thus negligible compared to
that of FMSO sets computation.

Let ρ∗ denote the highest structural redundancy over all
subsystems of the developed hierarchy:

ρ∗ = max
j=1,...,ℓ
i=1,...,nj

ρΣj,i (10)

The computation of local FMSO sets as thus order of
nρ∗+1.5
e time complexity and the number of local FMSO sets

is bounded by ρ∗.nρ∗−1
e . Moreover, as shown above, the BILP

algorithm time complexity is negligible compared to that of
local FMSO sets computation. Thus, each while loop of the
D3 algorithm has order of nρ∗+1.5

e time complexity. The loop
is calculated m.n1 times at worst, hence, D3 has order of
nρ∗+1.5
e time complexity.
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Let us now prove by contradiction that if nℓ > 1, then any
subsystem of the hierarchy has lower structural redundancy
than the system Σ as a whole. Let Σ1 be a subsystem of
structural redundancy ρΣ1

. Let us assume that recombining Σ1

with a subsystem Σ2 results in Σ = Σ1 ∪ Σ2 with structural
redundancy ρΣ ≤ ρΣ1

. Σ2 must involve at least one equation
e and the constraint ρΣ ≤ ρΣ1

implies that e must involve at
least one variable that is not shared with Σ1. This is impossible
because Σ would then include a just determined part, which
is in contradiction with the fact that the global system is
overdetermined (such that Σ = Σ+), so ρΣ1

< ρΣ. This is
easily generalized for any proper subsystem of Σ.

The condition nℓ > 1, i.e. there are more than one subsys-
tem in the highest level of the hierarchy, guarantees that the
whole system is never recomposed and that D3 only handles
proper subsystems of Σ. Consequently, the time complexity
of the D3 algorithm is lower than the time complexity of its
centralized equivalent.■

D. Implementation of D3 and online Decentralized Diagnoser

The implementation of the diagnoser designed by the D3

algorithm is based on the notion of local fault signature matrix
of the subsystems, defined as follows.

Definition 13 (Local Fault Signature Matrix of a subsystem):
Let a set Rj,i composed of nr

j,i ARRs and Fj,i the set of
considered nf

j,i faults for the subsystem Σj,i. The signature of
a fault f ∈ Fj,i is a binary vector FSj,i(f) = [τ1, τ2, ...τnr

j,i
]T

where τk, k = 1...nr
j,i, is computed from Rj,i × Fj,i −→

{0, 1} so that τk = 1, if arrk ∈ Rj,i is affected by f , and τk =
0 otherwise. The signatures of all the faults in Fj,i put together
constitute the Local Fault Signature Matrix, denoted Sl

j,i of
subsystem Σj,i, i.e. Sl

j,i = [FSj,i(f1), . . . , FSj,i(fnf
j,i
)]T .

The diagnoser is computed offline as a hierarchical residual
generator bank based on the local FMSO sets computed for
each subsystem at each level. In accordance with the isolation
on request concept [28], the computations are only carried out
at a higher level if there exist faults that remain not isolable at
the current level and the maximal isolability degree I∗(Σ) is
not achieved. This check is done with the local fault signature
matrix of the subsystems. Measurements of known variables
are used online to evaluate residuals up along the levels until
a fault is actually detected.

VI. EXPERIMENTS

A. Computational Efficiency and Scalability in Practice

In order to experimentally show the computational effi-
ciency of D3 and its scalability, the algorithm is applied to
serially connected water tanks. Setups of 4, 6, 8 and 10 tanks
are tested.

The 4 tanks system model, initially presented in [24],
is composed of 20 equations with 8 known variables, 14
unknown variables and 6 faults (see [29] for details). The
construction of setups with more tanks is done by adding two
tank patterns. Fig. 4 illustrates the 10 tanks setup, where T1

to T10 represent the 10 tanks, u1 to u5 and y1 to y18 are the
known variables. Setups with 4, 6 or 8 tanks are a subpart of
this setup.

Fig. 4: Serially connected water tanks

Fig. 5: Decentralized architecture diagnoser proposed for the
tank system.

The hierarchical organization of the diagnoser proposed by
D3 for all setups is shown in Fig. 5. The D3 algorithm and its
centralized equivalent are applied to each setup. The execution
time results reported in Table I leave no doubt about the gain
recorded by D3 as well as its scaling up.

TABLE I: Execution times for the centralized algorithm and
D3 algorithm

Setup 4 tanks 6 tanks 8 tanks 10 tanks

Number of tests 165 5977 33040 1296249

Centralized case 44.00 ms 637.03 ms 4965.28 ms 3984 s

Decentralized case 16.00 ms 28.05 ms 47.41 ms 59.81 ms

Local diagnosers:
Σ1,1 to Σ1,10 < 1ms < 1ms < 1ms < 1ms

Σ2,1 9.00 ms 11.02 ms 13.01 ms 12.35 ms
Σ2,2 7.06 ms 8.03 ms 10.01 ms 11.01 ms
Σ2,3 9.03 ms 11.26 ms 12.24 ms
Σ2,4 13.14 ms 10.43 ms
Σ2,5 13.78 ms

B. Case Study: Gas Turbine Combined Cycle power plant

The method is applied to a gas turbine combined cycle
power plant. A combined cycle power plant includes a gas
turbine and a steam turbine. The remaining heat from the gas
turbine is sent by a steam turbine that generates additional
energy, producing up to 50% more electricity with the same
amount of fuel than a conventional single-cycle plant. The
nominal operation of a combined cycle power plant is more
complex than than that of a conventional single cycle and
therefore is more exposed to faults. First, natural gas is
burned in a combustion chamber and passed through a gas
turbine connected to an alternator. Hot gases are used to heat
water and convert it into steam in a heat recovery unit. This
steam is passed through a second turbine connected to another
alternator, so that both generate electricity. One of the main
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components of a gas turbine combined cycle power plant is
the gas turbine generator system, which in turn is composed
of the following components: compressor, electric generator,
combustion chamber, gas turbine and heat recovery as shown
in Fig. 7.

Gas turbine installations are ubiquitous in industry so their
monitoring and diagnosis meets industrial standards (cf. ISO
19860:2005 [45]). Most installations are equipped with a trend
monitoring system [46]. This equipment acquires operating
data describing the condition of the gas-turbine installation
that are used for the computation of short-term and long-
term trends for selected parameters in mainly four areas:
thermodynamics, vibrations, bearing lubrication, and control
[47]. Without calling into question the usefulness of trend
monitoring systems, model-based approaches applied to gas
turbines have shown their interest in many works by tak-
ing advantage of the analytical redundancy provided by the
model [48], [49]. Beyond monitoring the trends of isolated
parameters, they make it possible to take into account the
underlying relationships and existing interactions, which is
highly beneficial for automatic diagnostics. This is why it is
interesting to illustrate the performance of D3 on a gas turbine
generator.

The non-linear mathematical model of the gas
turbine generator system used in this paper is based on
thermodynamics, mass and energy conservation, fluid flow
and heat transfer. The assumptions of this model are:
ideal gas behavior, isentropic compression and linear flow
characteristics for all control valves. The whole model
Σ(z, x,f) is composed of 37 equations e1 to e37 that relate
20 known variables Z = {z1, . . . , z20} and 29 unknown
variables X = {x1, . . . , x29}. The set of target faults is
F = {f1, . . . , f5} of cardinal nf=5, where f1 is a fault in
the air pressure sensor at compressor discharge, f2 is a fault
in the position of the compressor inlet guide valves, f3 is
a fault in the position of the combustion chamber gas fuel
valve, f4 is a fault in the heat recovery pressure sensor and
f5 is a fault in the position of the combustion chamber gas
valve. The full description of the model is given in [50]. A
natural decomposition of the system provides the following
five physically separated subsystems:

Compressor subsystem: Σ1,1

Σ1,1 = {e1, e2, e3, e4, e5, e6, e7}, F1,1 = {f1, f2}
X1,1 = {x1, x3, x5, x6, x8, x9, x10, x28}
Z1,1 = {z1, z2, z3, z4, z5, z6, z7, z17}

Combustion Chamber subsystem: Σ1,2

Σ1,2 = {e9, e11, e12, e13, e14, e15, e16, e17}, F1,2 = {f3}
X1,2 = {x1, x2, x6, x7, x10, x12, ..., x15, x28}
Z1,2 = {z1, z6, z8, z18}

Gas Turbine subsystem: Σ1,3

Σ1,3 = {e18, e19, e20, e21, e22, e23, e24, e25} , F1,3 = {}
X1,3 = {x1, x4, x6, x8, x10, x11, x12, x15, ..., x19, x29}
Z1,3 = {z1, z2, z6, z10, z11, z12, z13}

Electric Generator subsystem: Σ1,4

Σ1,4 = {e26, e27, e28}, F1,4 = {}
X1,4 = {x20, x21}
Z1,4 = {z2, z13}

Heat Recovery subsystem: Σ1,5

Σ1,5 = {e29, e30, e31, e32, e33, e34, e35}, F1,5 = {f4, f5}
X1,5 = {x15, x23, x24, x25, x26, x27}
Z1,5 = {z10, z11, z14, z15, z16, z19}

Besides, the functional decomposition considers the exis-
tence of restricted information not directly available for the
subsystems in the first level and therefore only available in the
upper hierarchical level 2. Restricted information has different
sources, e.g. owner confidentiality, large distance between
subsystems or difficult access. For level 2, it is denoted by
Π2,1 and Π2,2. The corresponding additional sets of equations
for forming subsystems Σ2,1 and Σ2,2 are Π2,1 = {e8, e10}
and Π2,2 = {e36, e37}, respectively.

Based on the system model and restricted information, the
hierarchical organization of the diagnoser proposed for the gas
turbine generator system is shown in Fig. 6. It includes 8
subsystems distributed in 3 levels, the 3rd level being the last
possible level, i.e. m=3.

Fig. 6: Decentralized architecture diagnoser proposed for the
gas turbine generator system.

C. Global FMSO Sets Calculation
As a way to validate the method, we determine the system

fault isolability I(Σ) by calculating the set of global FMSO
sets Φ assuming that the entire model is available.

TABLE II: Gas turbine generator system: Global FMSO sets

A(Σ) [f1],[f2],[f3],[f4],[f5] I(Σ) 5 |Φ| 59

As shown in Table II, all faults can be detected and isolated.
Hence, the system isolability degree, which bounds isolability,
is I(Σ) = nf = 5.

D. Decentralized Diagnoser Design
In this section, the operational algorithm for decentralized

diagnosis design D3 is applied with a targeted isolability
degree equal to the system isolability degree, i.e. I∗(Σ) =
I(Σ) = nf = 5.
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1) Shared variables: As a previous step to apply the
proposed algorithm, the set of shared variables (cf. definition
9) is determined.

Xs = {x1, x6, x8, x10, x12, x15, x28} (11)

Xs is composed of 7 variables as shown in Fig. 7. Then,
Xs is used to calculate shared FMSO / CMSO sets for each
subsystem.

ELECTRIC

GENERATOR

1,4�

COMPR

�

COMBUSTIO

CHAMBER

1,2�

GAS 

TURBINE

1,3�

Fig. 7: Decentralized architecture for the gas turbine generator
system.

2) Local FMSO sets at level 1: These are computed for
Σ1,1, Σ1,2, Σ1,3, Σ1,4 and Σ1,5 of level 1. None FMSO set
is found for Σ1,1, Σ1,3 and Σ1,4. Therefore, no fault can be
detected locally for these subsystems.

For both subsystems Σ1,2 and Σ1,5 of level 1, only one
FMSO set is found. Hence, the found FMSO sets Φl

1,2 and
Φl

1,5 are selected without need to solve the BILP problems,
allowing detectability for faults f3 and f4 locally in Σ1,2 and
Σ1,5 respectively.

TABLE III: Selected Local FMSO Sets and isolability degree
at level 1

Σ1,2

F1,2 {f3} A(Σ1,2) {{f3}} I(Σ1,2) 1

Local FMSO sets selected Φl ∗
1,2 = {φ1}, φ1 = {e16, e17}

Σ1,5

F1,5 {f4, f5} A(Σ1,5) {{f4},{f5}} I(Σ1,5) 2

Local FMSO sets selected Φl ∗
1,5 = {φ2},

φ2 = {e29, e30, e31, e32, e33, e34}

Isolability degree at level 1

A1(Σ) {{f1f2, f5},{f3},{f4}} I1(Σ) 3

At this stage, if f3 or f4 occur, they are diagnosed at level
1, without need of further analysis. However, not all system
faults can be diagnosed at level 1.

The D3 algorithm checks if the targeted isolability degree
is achieved at level 1, which is not the case, since we have
I1(Σ) = 3 < I∗(Σ) = 5 (cf. Table III). The higher level 2 is
thus explored as shown in Fig. 6.

TABLE IV: Shared FMSO and CMSO sets at level 1

Subsystem Σ1,1

Shared FMSO sets Φs
1,1 = {φ3, φ4, φ5}, φ3 = {e2, e5, e6},

φ4 = {e2, e3}, φ5 = {e7}
Shared CMSO sets Ψs

1,1 = {ψ1, ψ2, ψ3}
ψ1 = {e4}, ψ2 = {e3, e5, e6}, ψ3 = {e1}

Subsystem Σ1,2

Shared FMSO sets Φs
1,2 = {φ6}, φ6 = {e16, e17}

Shared CMSO sets Ψs
1,2 = {ψ4, ψ5, ψ6}, ψ4 = {e12, e13,

e14, e15}, ψ5 = {e9}, ψ6 = {e11}
Subsystem Σ1,3

Shared CMSO sets Ψs
1,3 = {ψ7, ψ8, ψ9, ψ10, ψ11, ψ12, ψ13, ψ14}

ψ7 = {e18}, ψ8 = {e19}, ψ9 = {e20},
ψ10 = {e21}, ψ11 = {e22}, ψ12 = {e23},
ψ13 = {e24}, ψ14 = {e25}

Subsystem Σ1,4

Shared CMSO sets Ψs
1,4 = {ψ15, ψ16, ψ17}

ψ15 = {e26}, ψ16 = {e27}, ψ17 = {e28}
Subsystem Σ1,5

Shared FMSO sets Φs
1,5 = {φ7, φ8, φ9, φ10},φ7 = {e30, e31, e32,

e33, e34}, φ8 = {e29, e31, e34},
φ9 = {e29, e30, e31, e32, e33}, φ10 = {e35}

Shared CMSO sets Ψs
1,5 = {ψ8}, ψ18 = {e29, e30, e32, e33, e34}

3) Building level 2: Because faults f1 and f2 are not
yet isolable, D3 builds subsystem Σ2,1 at level 2. Similarly,
because fault f5 is not yet isolable, D3 builds subsystem Σ2,2.
These 2 new subsystems are built on demand, following the
isolation on request concept.

To form Σ2,1 and Σ2,2, function ComputeUpsilon() is
first used to retrieve the shared FMSO / CMSO sets Υ2,1 and
Υ2,2 of the children systems of level 1 Σ1,1, Σ1,2, Σ1,3, Σ1,4

and Σ1,5. Note that subsystems Σ1,3 and Σ1,4 are not impacted
by any fault, leading to CMSO sets only (cf. Table IV).
Υ2,1 and Υ2,2 are then lumped together with the additional
information Π2,1 and Π2,2 (see architecture of Fig. 6) to
obtain:

Σ2,1 = {e1, e2, ..., e7, e9, e11, ..., e17} ∪ {e8, e10} (12)
Σ2,2 = {e18, e19, ..., e25, ..., e29, ..., e35} ∪ {e36, e37} (13)

4) Local FMSO sets at level 2: Three local FMSO sets are
found for subsystem Σ2,1. Solving a BILP program returns
an optimal selection of two FMSO sets for this subsystem,
guaranteeing isolation of faults f1 and f2. On the other hand,
one local FMSO set is found for subsystem Σ2,2, guaranteeing
isolation of faults f4 and f5 (cf. Table V).

At this stage, the maximal isolability degree is achieved
since I2(Σ) = I∗(Σ) = 5. D3 hence stops, having developed
ℓ = 2 levels. For this system, ℓ = 2 < m = 3 and it has
not been necessary to build up level 3, which is shown in
transparency in Fig. 6.

E. Online Decentralized Diagnoser

The D3 algorithm delivers a near-optimal distribution of
ARRs on a hierarchy of subsystems that guarantees maximal
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TABLE V: Subsystems Σ2,1 and Σ2,2: Selected Local FMSO
Sets

Σ2,1

A(Σ2,1) {{f1}, {f2}, {f3}} I(Σ2,1) 3

Local FMSO sets selected Φl ∗
2,1 = {φ211, φ212}, φ211 = {e7,

e8}, φ212 = {e1, e2, e5, e6,
e9, e10, e11, e12, e13, e14, e15}

Σ2,2

A(Σ2,2) {{f4}, {f5}} I(Σ2,2) 2

Local FMSO sets selected Φl ∗
2,2 = {φ221}, φ221 = {e35, e37}

Isolability degree at level 2

A2(Σ) {{f1}, {f2},{f3},{f4},{f5}} I2(Σ)5

fault isolability. The analytical redundancy relations are com-
puted from the selected FMSO sets according to Tables III
and V. The decentralized diagnoser has two levels formed by
residuals arr1 for subsystem Σ1,2, and arr2 for subsystem
Σ1,5 at level 1, and by residuals arr3 and arr4 for subsystem
Σ2,1, and arr5 for subsystem Σ2,2 at level 2. Table VI
reports the obtained signature matrix that indicates maximal
isolability.

TABLE VI: Decentralized signature matrix for the gas turbine
generator System

f1 f2 f3 f4 f5

Level 1 arr1 ∈ ARR1,2 X
arr2 ∈ ARR1,5 X

Level 2 arr3 ∈ ARR2,1 X
arr4 ∈ ARR2,1 X
arr5 ∈ ARR2,2 X

A faulty case has been chosen to exemplify the method.
Using a simulator of the GTCC, f3 has been injected at 600s
during 25s. Fig. 8 shows the set of residuals when fault f3
occurs. As can be seen, this fault is detected at level 1 by
residue arr1 while all other residuals remain constant 3.

The algorithms for optimal selection of FMSO sets were
implemented in Python and executed on a PC with a 1.6GHz
processor. The execution times were measured in milliseconds,
comparing the global diagnoser architecture that requires 4 out
of 59 FMSO sets to achieve maximal isolability (cf. Section
VI-C Table II) and the decentralized diagnoser architecture of
D3 that requires 5 FMSO sets in two levels (cf. Section VI-D,
Tables III and V), which confirms the near-optimality result
of Theorem 2. Results are presented in Table VII and show
that the decentralized diagnoser architecture is faster than the
global diagnoser architecture, which confirms the theoretical
time complexity result of Theorem 3.

VII. CONCLUSION

Systems submitted to confidentiality constraints, geograph-
ically distributed or with limited access to some information
require specific diagnosis architectures. This paper proposes a

3If there were any, constants have been ignored in the expression of the
ARRs.
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Fig. 8: Residuals for fault f3 showing the fault at 600s by
residual arr1, while all other residuals remain constant3

TABLE VII: Execution times for global and decentralized
architectures

Architecture Execution Time number of FMSO Selected

Global diagnoser 121.088 ms 4

Decentralized diagnoser 44.096 ms 5

Local diagnosers:
Σ1,1 to Σ1,5 1.021 ms 2
Σ2,1 to Σ2,2 43.075 ms 3

design method for decentralized diagnosis architectures named
D3 that meet this requirement.

D3 computes recursively, by developing just the necessary
levels, the set of residual generators guaranteeing maximal
isolability. It has been theoretically proved of lower time
complexity than its centralized equivalent.

The industrial case study of a Gas Turbine Combined Cycle
Power Plant has been used to demonstrate the validity and
performances of the decentralized diagnoser design approach.

The main advantages of the proposed decentralized archi-
tecture are that local diagnosers are designed according to
the traditional function-by-function design organization, that
subsystem models do not need to be exposed and that fault
isolation is guided by the concept of isolation on request.

In future work, there is interest in investigating the double
problem of choosing the system decomposition and diagnosis
tests while minimizing inter-subsystem communication and
maximizing diagnosability. A preliminary proposal along these
lines is presented in [51]. Additionally, the impact of different
inter-level communication constraints on the diagnosis results
should be analyzed.
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Gustavo Pérez-Zuñiga received the Ph.D. degree in
Control Engineering from the Institut National des
Sciences Appliquées (INSA), Toulouse, France, in
2017. He received the master degree in Control and
Automation Engineering from Pontifical Catholic
University of Peru, Lima, Peru in 2008. Currently,
he is Featured Researcher and Associate Professor
in the Engineering Department of the the Pontifical
Catholic University of Peru. His current research
interests include fault diagnosis and advanced con-
trol for large-scale complex and robotics systems

with special focus on data-based and model-based methods. Dr. Pérez-
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l’Espace—SupAero, Toulouse, France, in 2005.
She received the Habilitation à diriger des
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