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Abstract: The location of the plane is key during the landing operation. A set of sensors provides data
to get the best estimation of plane localization. However, data can contain anomalies. To guarantee
correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated
or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and
correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction
model and has been evaluated using real and simulated anomalies in real landing signals. NADCA
detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the
degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated.
NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise,
NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of
coupling between signals. From a technical point of view, NADCA uses a new prediction method
and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect
and correct anomalies during the landing of an airplane, hence improving the information presented
to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other
contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and
an average root mean square error (RMSE) value of 2.10 for anomaly correction.

Keywords: anomaly detection; anomaly correction; deep learning; airplane landing

1. Introduction

Anomaly detection is about finding patterns that do not adhere to what is considered
normal behavior [1]. Abnormal events are a major problem as people’s lives can be at risk
and companies as well as public institutions can suffer serious losses.

Fraudulent activity in the banking sector, deforestation in the environmental sector,
cancer in the healthcare sector, fake news in the social media sector, hacker attacks in
cybersecurity, malfunctions in the manufacturing sector, traffic jams in the transportation
sector, etc. are some examples of anomalies. Some examples of anomaly detection in
different fields are presented in [2-6].

Commercial aircraft flights are a good example where anomaly detection is very im-
portant. Although fault tolerant architectures are in place, anomaly detection is paramount
to passivate faulty components. A faulty actuator can be switched to its sane redundant
counterpart. A faulty sensor can be put aside from the data fusion process [7]. In particular,
the location of an airplane is an essential piece of information during the landing process.
It is obtained from a set of sensors that present redundancies and whose values are fused.
Thus, each sensor involved in the data fusion must provide measures without anomalies.

Normally, the set of sensors consists of a global positioning system (GPS), an inertial
reference system (IRS), an instrument landing system (ILS), and a radio-altimeter (RA). Typ-
ically, these sensors work properly with a specific accuracy and specific fusion techniques
are applied to get a good estimate of the airplane’s location [7].

Sensors 2022, 22, 2334. https://doi.org/10.3390/s22062334

https:/ /www.mdpi.com/journal /sensors


https://doi.org/10.3390/s22062334
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0015-5566
https://doi.org/10.3390/s22062334
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062334?type=check_update&version=2

Sensors 2022, 22,2334

2 of 27

However, sensors can provide data with anomalies. Anomaly detection methods can
be applied to guarantee optimal quality of measures. When an anomaly is detected, either
the anomalous sensor is isolated or the detected anomaly is filtered.

This article presents a new algorithm named NADCA (Neural Algorithm for the Detection
and Correction of Anomalies) to detect and correct anomalies in time series. This algorithm is a
general-purpose algorithm, but it has been developed in the framework of a project in the field
of aeronautics to detect and correct sensor anomalies during airplane landing.

NADCA uses a predictive model based on deep learning. More precisely, NADCA is
based on a recurrent neural network (RNN) called Long Short-Term Memory (LSTM) [8].

Deep learning has been used with success for classification and prediction purposes [9].
In particular, different NN architectures have been successfully leveraged for time series
analysis [9]. Deep learning has the ability to automatically discover complex features
without having any domain knowledge. Consequently, NN is a good platform to solve the
time series anomaly detection problem.

LSTM is a good choice for the prediction task of time series because it can deal
with chronologically ordered sequences and can track long-term dependencies in these
sequences. Like most NN-based algorithms, LSTM relies on the assumption that training
and test data share similar statistics.

In [10], various deep learning models for anomaly detection, including prediction
methods, are investigated. Their suitability for a given data set is also analyzed. A more
recent review about deep anomaly detection is provided in [11]. This work reviews 12
diverse modeling perspectives on leveraging deep learning techniques for the detection of
anomalies. It also discusses how these methods address some notorious anomaly detection
challenges to demonstrate the importance of deep anomaly detection.

An anomaly detection technique based on LSTM is proposed in [12]. The model is
trained using normal data. Then, the prediction error distribution between measure and
prediction is computed. An error threshold allows to decide when the time series has a
normal or anomalous behavior. An LSTM-based encoder-decoder for multi-sensor anomaly
detection is presented in [13]. Another deep learning method to detect anomalies in time
series combining wavelet transform and NN is presented in [14]. In [15], LSTM is used for
detecting anomalies in flight data. A set of eleven canonical anomalies is tested.

A more recent work uses convolutional neural networks (CNNs) to detect anoma-
lies [16]. This approach allows to obtain a model that generalizes well without using a large
number of examples during the learning process. This is possible as CNNs achieve a good
parameter selection.

Autoencoders are NNs that learn to copy their input to their output. In [17], autoen-
coders are also used to detect anomalies.

Unlike the above deep learning methods, NADCA uses differences between consec-
utive measures to train a model. The model predicts a difference in each iteration. This
difference added to the corresponding measure produces the prediction of the next measure.
This approach is advantageous because the prediction does not depend on the accuracy
of the sensor and reduces non-stationary aspects of the original time series. Moreover,
the prediction of a single difference does not require a significant number of previous
measurements. This fact reduces the necessary number of examples during training.

Another original aspect resides in the design of NADCA. NADCA allows data to be
processed in a general way regardless of the degree of oscillation present in the sensor data.
That is interesting because NADCA only predicts a sample and uses a small number of
measures at each iteration.

The criterion for deciding whether a measure is an anomaly or not is also different.
The algorithm compares a prediction with the corresponding measure and uses a threshold
(U) to decide. The threshold can be fixed or adaptive depending on the nature of the data.
The prediction is always obtained from a smooth signal, i.e., the signal is smoothed when it
shows oscillations. A signal without oscillations is defined as a signal whose smoothed
signal is the same as the original signal (more explanations in Section 2.6).
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Predicting from a smooth signal makes the prediction error small and less than a
constant. This means that the algorithm is robust for the detection and correction of
anomalies regardless of the degree of oscillation of the signal.

When the signal has no oscillations, the threshold U is the maximum prediction error.
When the signal has oscillations, U is the maximum distance among the samples between the
smoothed signal and the raw values. In both cases, U is determined using a set of signals
without anomalies. This approach detects both fast-changing and slow-moving anomalies.

Regarding anomaly detection in sensors during landing, the work of [18] stands out.
In that thesis, the author provides a comparative analysis of several existing machine
learning techniques to detect anomalies. The faulty sensor is isolated once the anomaly has
been detected. The simulation of the sensors during landing is another important aspect of
this work. In this way, data are easily obtained to test the algorithms.

Beyond the analysis of [18], an original aspect of our work is the use of an algorithm
that allows the detection of anomalies together with their correction. Note that the NADCA
algorithm is especially designed to deal with anomalies during the landing phase where
airplanes normally do not have abrupt trajectory changes. During a sudden change of
trajectory, NADCA could detect anomalies in all the sensors.

A more recent paper studies the stability of aircraft lateral movement during the ILS
approach [19]. To estimate the lateral stability index, a gated recurrent unit (GRU) [20] is
used where GRU is a simplified version of LSTM.

Concerning landing data, NADCA analyzes anomalies according to the X, Y, and Z
axes of the runway reference system. The values of the sensors according to these reference
axes can be coupled. When this occurs, the origin of the anomaly is unclear. However,
the existence of coupling is not a problem for NADCA. NADCA detects and corrects the
anomalies following the order X, Y, and Z. If an anomaly appears in any sensor coordinate,
it is corrected before analyzing the next coordinate, since the latter can be a function of the
first coordinate.

Each coordinate can be represented by a multichannel signal (a channel per sensor).
NADCA uses a unique predictive model per coordinate. The prediction is carried out in a
compact way, encouraging the sensors to help each other. The prediction on each sensor
is used to detect and correct each anomaly. Ref. [21] also considers multichannel signals
compactly but only to detect anomalies. It does not perform a correction of the anomaly;,
and it does not prevent possible coupling effects. In contrast to NADCA, the algorithm is
unsupervised and does not need training.

From a technical point of view, NADCA has two important innovations. As explained,
the algorithm compares a prediction with the corresponding measure and uses U to decide.
This is also the basic behavior of an algorithm to detect anomalies using a predictive model.
Anomalies that change abruptly, that is, in the time interval between two consecutive
samples, are easily detected. However, there are many anomalies that vary more slowly.
When this happens, anomaly detection algorithms that use this basic behavior fail. This
occurs since the prediction is calculated from the closest previous measurement. NADCA
solves this problem using a new strategy to calculate this prediction. It can even detect and
correct drift anomalies. On the other hand, NADCA can also work with signals regardless
of whether the signal has oscillations or not. A similar algorithm is applied for both types
of signals. However, for signals with oscillations, an additional step is necessary to obtain a
smoothed signal. The smoothed signal is created in real time and this is also a novel aspect.

To summarize, the advantages of our approach are as follows: it is suitable for working
with multiple time series, it provides a compact model for all sensors, detection and
correction of any anomaly is done at the same time, it is robust regardless of the degree
of oscillation of the signals, it detects both fast-changing and slow-moving anomalies, it
only needs a small number of measures at each iteration because it predicts one sample,
the characteristics of the anomaly (e.g., type, duration, etc.) can be selected and sensor
behavior can be analyzed, sensors with abnormal behavior do not need to be isolated
because NADCA produces corrected values, it does not depend on the accuracy of the
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sensor, it can cope with simultaneous anomalies on different sensors, it can be implemented
in real time, and it can detect the origin of any anomaly avoiding the coupling problem.

As far as we know, there is no other algorithm capable of detecting and correcting
anomalies with all these advantages, especially when the algorithm is applied during the
landing process.

This article is organized as follows. Section 2 reviews some basic concepts referring to
the aircraft landing phase and to the neuronal tools used by NADCA. Section 3 describes
the algorithm NADCA. Section 4 explains some elements of NADCA using real landings
while Section 5 shows some examples of anomaly detection and correction using NADCA.
Section 6 discusses the methodology and results. Finally, Section 7 concludes the article.

2. Background

This section reviews some important concepts for understanding NADCA, as well as
for understanding the aircraft landing application.

2.1. Admissible Work Interval for Detecting and Correcting Anomalies during Landing

A coordinate system is placed at the origin of the runway (see Figure 1). The plane
begins to land when it is almost aligned with the X axis of the runway. The landing ends
when the plane makes contact with the runway. The NADCA algorithm works in that
interval.

LANDING

-

Runway

X

Anomaly Detection and Correction Zone
Figure 1. Anomaly detection and correction zone during the landing of an airplane.

2.2. Sequence Prediction and Time Series

Supervised machine learning algorithms use a set of samples for the training process.
Each sample is an observation or measure.

Machine learning algorithms can be used for sequence prediction. Sequence prediction
involves predicting the next value for a given input sequence. In this case, the set of samples
is different because a sequence describes a set of ordered measures (for example, measures
ordered chronologically, i.e., times series). Consequently, the order of the samples used in
the algorithms must be respected.

In this article, time series from a set of sensors are used. The concepts of time series
and signal are used indistinctly. Predictions in times series are made with the help of a
LSTM network.

2.3. LSTM Network

An LSTM network is a kind of RNN [9]. It attempts to model sequence-dependent
behavior by feeding back the output of a NN layer at time f to the input of the same NN
layer at time t + 1. LSTM propagates the information learned at a time ¢ to the future. In
general, a classic RNN likes to remember everything. By contrast, LSTM saves relevant
information and forgets information that is not important.
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LSTM architectures are not unique. Depending on the type of problem, some architec-
tures perform better than others. Some architectures are as follows: vanilla, stacked, CNN,
encoder-decoder, etc. [22,23]. We selected a Stacked architecture in which LSTM layers are
stacked one on top of another into deep networks.

An LSTM network was used to create the predictive model of NADCA. This supervised
algorithm predicts acceptably if it has been trained with a significant number of examples.
Predictions are robust when the predictive model is used in time series with no oscillations.

2.4. Sensors, Signals, Location, and Coupling

During a landing, the complete set of signals with respect to the runway reference can
be described by three multichannel signals: [XCPS, XIRS] for the X coordinate, [YLS, YOPS,
YIRS] for the Y coordinate, and [Z/LS, ZRA, 7GPS | 7IRS] for the Z coordinate. Each signal is
denoted by the “CoordinateSe"s°™” symbol.

The airplane’s GPS provides latitude, longitude, and altitude. These values represent
the position of the airplane in geodesic coordinates (WGS84). The airplane location with
respect to the runway (X, YOPS, ZGP5) can be calculated by means of a coordinate system
conversion. In a similar way, the airplane location provided by the IRS with respect to the
runway (XIRS YIRS 7IRS ) can be calculated.

The radio altimeter measures the aircraft altitude (HR4), i.e., the vertical distance
between the aircraft and the ground. In order to get Z®4, one must apply a correction with
respect to the relief under the aircraft, using a terrain database:

ZRA = HRA + Htermin (1)

where Hy,ppqi, is the altitude of the terrain with respect to the runway threshold. The Hy,psip
value can be obtained using the X¢"> or XRS values.

The ILS is a ground-based system that emits signals along the vertical and lateral axis
so that the aircraft can follow a line of reference named the localizer (LOC) in the lateral
axis and the glideslope (GS) on the vertical axis. The ILS can be manipulated to obtain the
airplane’s position coordinates with respect to the runway (Y''5, ZILS). These values can be
calculated using Equations (2) and (3). These equations provide a good approximation to
the real values [18].

ILS Jroc xsx [ —X

yILS — i )

where L is the runway length (usually 3500 m), s is the LOC sensitivity (usually 0.7 m/pA) and
oroc is the LOC deviation in pA. The X value can be obtained using the XCPS or XIRS values.

ZS — |X 4 300| x tan(GPA + pcs) 3)

where GPA is the angle of reference (3°) and pgg is the noise of the GS. The X value can be
obtained using the X¢"S or X'RS values.

The GPS and IRS coordinates do not depend on the coordinates of other sensors.
However, ZR4, YILS 'and Z'5 depend on the GPS or IRS. NADCA avoids this coupling
because it detects and corrects anomalies following the order X, Y, and Z. An XGPS anomaly
(or X'RS anomaly) is detected and corrected before the corresponding values are used to
calculate ZRA, YILS and ZILS.

Figure 2 shows the Z coordinate of four simulated time series (ZGP S, ZIRS 7ILS and
ZRA) during the landing process. Unlike the Z coordinate of GPS and IRS, the Z coordinate
of ILS and RA is a signal with oscillations. A table, to the right of Figure 2, crosses the
coordinates (according to the runway reference system) and signal for each sensor. In
addition, the sensor coordinate cell indicates whether or not the signal has oscillations.
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1000
800
600
400
200

1500

1000

500

GPS IRS
\\ 1000] N\ Sensors
800 \
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°
2
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> 0
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Distance to the runway

<10% Distance to the runway »10*

Figure 2. Example of simulated time series of the Z coordinate during the landing process: Z°°,

ZIRS  7ILS ‘and ZRA. On the right side, a table relates each sensor to each coordinate. The sensor
coordinate cell shows whether or not the signal has oscillations. There is no signal if the cell is empty.

NADCA acts on each coordinate independently and takes into account whether the
signal has oscillations or not.

2.5. Predictive Models

NADCA works on each X, Y, and Z axis independently. Therefore, there are three
prediction models (PMX, PMY, and PM?), one for each axis. Each predictive model only
works with signals without oscillations. This means that for ILS and RA signals, a smoothed
signal is constructed in real time before being used by the predictive model. A letter L
is used to denote the corresponding smoothed signals. Working with smoothed signals
guarantees a low and stable prediction error.

Figure 3 shows a predictive model for the Z axis denoted PM?. It predicts using the
multichannel signal (z LS, 7z, RA 7GPS | 7IRS) ywhere Z; 115 and Z; R4 are the corresponding
smooth signals of Z''% and ZR4. PM? predicts a difference of consecutive measurements
from a set of differences obtained from some previous measurements. In this example, the
predictive model takes 15 measurements, or 14 differences for each sensor up to sample
i. Then, an LSTM compact architecture predicts a difference of measurements at time
i + 1 for each sensor. The prediction of the measurement at time i + 1 (Pﬁf’f”’) is equal to
the predicted difference (AISE”S‘”) plus the measurement at time i (Ml.se””’). Figure 3 also
shows the difference prediction and measure prediction for GPS where the letter Z is not
used for simplicity.

M.Sensor
i
Z6Ps Z6PS
S
PV : ZITLSS Z,;:Lgs M,.,,I ensor |
"z Z, Sensor — Sensor. Sensor
Zt““ ZtRA Pl+1 Ml +Ai
15 Time Steps
R —
Example: Difference Prediction Measure Prediction
PMVZ

[ (M umCP5-Mping16P5) evens (M 1CPS-MGPS) ] — [A,GFS] —— [pl_usps= MiGPS+AIGPS]

l NM: Number of previous measures. E.g.,, NM=15. |

Figure 3. PM? prediction. In the lower part, an example of measure prediction for the GPS is explained.
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Likewise, NADCA uses a PMY that acts on [YL ILS 'y GPS 'y IRS] and a PMX that acts
on [XCPS, XIRS] The PM? works with an LSTM network whose main architecture has 3
stacked layers with 300 cells per layer. Similar architectures are used for PMY and PMX.

2.6. Smoothing Data with the Savitzky—Golay Filter

The Savitzky-Golay filter (SG) [24] is a particular type of low-pass filter, well adapted
for data smoothing.

The SG filter removes high frequency noise from data. It has the advantage of pre-
serving the original shape and features of the signal better than other types of filtering
approaches, such as moving average techniques. The main idea behind this approach is to
make for each point a least-square fit with a polynomial of high order over an odd-sized
window centered at the point.

This filter is useful for obtaining a smoothed signal from a signal with oscillations and
is used for ILS and RA signals in our approach.

3. Neural Algorithm for the Detection and Correction of Anomalies (NADCA)
The main elements of NADCA are the following:

—  Sensor measurements (... M; 1, M;, M;1).
— Arreference P;,1 using a predictive model PM.
— A threshold Ue R™.

The basic version of NADCA (see Figure 4), named NADCA-B, is summarized in
Algorithm 1 as follows:

e = Measure (M)
* M; e = Measure Prediction (P)

L] Sensor Sensor — Sensor Sensor
. M.y » Piut =M; +14;

®e/ |* | Distance>U = Anomaly
Time Series e - Distance< U => No Anomaly

Sensor: GPS, IRS, ILS, RA.

Figure 4. Main elements and basic behavior of NADCA. The red dot at time i + 1 is the measure prediction.

Algorithm 1: NADCA-B algorithm.

If the distance (absolute difference) between M;,; and P;,; is > U then “Anomaly”
If “Anomaly” then “Anomaly Correction” using predictions.
else “No Anomaly”

In general, sensor data are non-stationary during landing. To work with stationary
data, differences between consecutive data values are calculated. In this way, the predictive
model predicts a difference A; at each iteration i instead of a raw measure value. This
prediction is hence independent of the sensor accuracy.

The difference A; is added to the measure M; to predict the measure at time i + 1.
The closer the value of this prediction P;;; is to the measure M;,, the better the pre-
diction. The predictive model predicts a difference A; from a set of previous differences
PD =[D;_np, - -. , Di—1] where ND is the number of differences used and D;_1=M; — M;_1.
The number of previous measures is denoted NM. For example, if NM = 15, then ND = 14.

NADCA-B is simple but not always effective in detecting and correcting any type
of anomaly. The maximum prediction error between P;,1 and M;,; must be small and
less than a constant, but NADCA-B does not always produce such prediction error. To
optimally detect and correct any anomaly, a generalization of NADCA-B is necessary.
This generalization is explained according to how NADCA-B is used in signals without
oscillations (NADCA-L) or in signals with oscillations (NADCA-O).
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3.1. NADCA-L: Generalization of NADCA-B for Signals without Oscillations

Figure 5 explains in detail how NADCA-L detects and corrects anomalies using a
generalization of NADCA-B.

e = Measure (M)

.. mSensor  * = Measure Prediction (P)
rell JF t
I LI i—N !
Sensor ®e 1 Sensor pSensor
M;Zg *.. ; t+1 o Piy1

* o o | ® ‘ Distance > U - Anomaly
| | e - Distance < U = No Anomaly

Time Series

Pff'fs"r = Mf_e,’(‘s"r +[Dji_g+ G 4.+ [A+ G +...+ [Aj_1+ C'] + [A;+C]
C,= MSEnsoT — pSensor with1 <n <K

Ci* = (Ci—K + et Ci—l)

x| =

Figure 5. NADCA-L: Generalization of NADCA-B for anomaly detection and correction in signals
without oscillations.

This generalization means that the prediction at i + 1 can be approximated in different
ways.

If Pfﬁsor = Mise”SO’ + A; is a good approximation of the real measure at time i+1, the
following approximation PS¢ = M7e"s0" 4 A; 1 + A; also offers a small prediction error.
In general, Pff{’s‘” = Ml.sf’}fw + Aj_g + -+ A; where K is a positive integer indexing an

initial measure (I M= Mff’}f‘”). A more precise equation is as follows:

ST — IM 4 (AC); g+ + (AC);_, + -+ + (AC),_; + (A + C)) 4)

where (AC);_, = Ai_y +C;, Cf = %(Ciik+-+-+Ci1), Gy = MEEOT — PSenser js g
prediction error for A, and 7 is an integer.

The C; parameter represents a correction by the average of the prediction error on
the K last time points. It works well for fast-changing anomalies (e.g., noise). However,
slow-moving anomalies such as drift might not be well detected.

For a potential slow-moving anomaly, C; is increased as i increases. The following
equation shows that a drift-like anomaly starts at sample i-N if:

{Cne=Cuen) > 0} 5)

where 1 < nc < N and N < K. The value of N is fixed, e.g., N = 15. Anew C;* = C;_y is
selected and is used to detect a potential slow-moving anomaly.

In general, C;* is close to or equal to C;" when there is no anomaly or when there
is a fast-changing anomaly. For a slow-moving anomaly, the value of C;/* is fixed using
Equation (5) to detect the anomaly in the following iterations. Equation (4) allows to
calculate P, (for simplicity, the exponent “sensor” has been omitted) using C;. A new
Pr, could also be obtained using C;* instead of C;" in (4).

If the following condition is true

IMit1 — Piq|> U (6)
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then there is an anomaly (mainly a fast-moving anomaly). However, a slow-moving
anomaly is detected if

|Ml'+1 — Py |+|Pi+1 - P{$1| > U, that is, |Mi+1 — Py |—§-|C;’< — Cz**| > U. 7)

Equation (7) is necessary since C;* and C; can move away at some point and however,
this does not mean that a slow-moving anomaly is starting.

Pﬁf’fsor is a reference for NADCA-L at each iteration. The set of all predicted values
{Pisffs”r} can be denoted by Ref>"*".

In addition, NADCA-L also uses Equation (4) for correcting an anomaly in real time
once it has been detected. If the anomaly has a short duration, Equation (4) is good enough
to make the correction. For a long duration anomaly, a small deviation might appear. In
this case, given an anomaly starting at sample i, the following equation could be used to

improve quality of the correction:
Pi=P+ o xM 8

where j is a sample within the anomaly and M = j — i. The parameter « can be determined
experimentally (see Section 5.1).
The NADCA-L method is summarized in Algorithm 2 as follows:

Algorithm 2: NADCA-L algorithm.

Given a sample 7, U, a set of NM measures [M;_np1—1 ... M;], aset of K predictions [A;_ ...
A;_1] and prediction errors [C;_g ... C;_1] for the set of measures [M;_g ... M;_1] and M;;1:
1. Calculate the set of differences PD using the NM measures.

2. Calculate A; using PM and PD.

3. Calculate C} and C;*.

4. Calculate Pf’f’fsor and Pl.sﬂls‘”** using (4).

5. Calculate disl :‘Mfﬂ”’ — Pfﬁm and dis2 = Misj’{s"r — Pff’fs‘”\—k\cz‘ - Cr
6.If disl < U and dis2 < U then “No anomaly” ati + 1. Save (A;, C;) for the next iteration.
Updating K <—K+1 allows the same IM to be used for the next iteration.

7. If dis1 > U then “fast-changing anomaly” at i + 1. Correct the anomaly at i + 1 changing M; 4
to Pi1. Save (A;, C;) for the next iteration. Updating K <—K+1 allows the same IM to be used for
the next iteration.

8. If dis2 > U and dis1 < U then “slow-moving anomaly” at i + 1. Correct the anomaly at i + 1
changing M; 1 to P; 1. Save (A;, C;) for the next iteration. Updating K <—K+1 allows the same IM
to be used for the next iteration.

NADCA-L works in real time. This means that steps 14 described above are calculated
during the time difference between two consecutive samples (sampling period). Once

Misj’{s‘” is known, steps 5-8 allow to decide if there is anomaly or not (see Figure 6).

msensor 2" Steps5,6,7,8
| !
° L J

Steps 1,2,3,4
Figure 6. Steps of NADCA-L.

3.2. NADCA-O: Generalization of NADCA-B for Signals with Oscillations

Figure 7 explains in detail how NADCA-O detects and corrects anomalies in signals
with oscillations.



Sensors 2022, 22, 2334 10 of 27

e = Measure (M)
e = Measure Prediction (P

Sensor L
ir1 o+ Piy1

Smoothed
Signal (L) |

Smoothed Signal (L) n

Ph =ME g+ [AE o+ G+ # [AL + G +.+ [AE, + 61+ [AF + G

'* | Distance > U+ Anomaly
' - Distance < U > No Anomaly

Savitzky—Golay filter C,=MEL,, —PLt,,  avecl<n<K

«_ 1
G = E(Ci—K+ =+ Giy)

Figure 7. NADCA-O: Generalization of NADCA for anomaly detection and correction in signals
with oscillations.

In general, the predictive model applied to the raw data of a non-stationary oscillating
signal does not have a small prediction error less than a constant. This characteristic is
not good for detecting and correcting anomalies in a robust way. One solution is to find a
smooth signal (L) from the raw data. Each prediction on this smoothed signal constitutes a
reference to determine if there is an anomaly or not. As the smooth signal does not present
oscillations, the prediction error is small and less than a constant (e.g., in Section 4.3.1,
prediction errors are calculated. GPS and IRS envelopes are constant lines).

NADCA-O contains two steps: the determination of L in real time and the NADCA-L algorithm.

A SG filter is used to determine L in real time. The SG filter is a general approach
where the smooth signal depends only on the sensor data.

Given a set of NT measures [M;_nT_1 ... M;], the SG filter can be applied to obtain the
corresponding smooth measures [MF .., ... MF}]. Typically, this process takes place offline.
The SG filter uses a sliding window of, for example, about NS = 100 measurements (NS < NT).

We want to apply the SG filter on a signal in real time where in the first iteration there are
only NM samples (e.g., NM = 15) and for the next iterations, one sample per iteration is added.
In general, the NM value is inferior to NS. To apply the SG filter in real time where only NM
measurements are available in the first iteration, two changes are required. First, synthetic
samples are added by repeating the set [M; ... Myp] until the selected NS value is reached.
After some iterations, synthetic samples are not necessary, and for each sample i, the measures
[Mi_nm=1 ... M;] are the last measures of the set [M;_y7_1 ... M;]. Second, at i, the SG
filter is applied using the set of measures [M}F ;... MF ; M;] to get MF. Consequently,
with both changes, the real-time SG filter result is of good quality, similar to an offline result.

With NADCA-O, the threshold U is the maximum distance between the prediction
of the smooth signal PI»LJrl and the measurement of the original signal ij’{sor. The value
of U is determined by selecting the maximum value for each sample from a set of normal
landings. In general, U is not constant for all samples.

The NADCA-O is summarized in Algorithm 3 as follows:

Algorithm 3: NADCA-O algorithm.

Given a sample i, U, NT, a set of measures [M;_np—1 ... M;] and M;;q:

1. Calculate [Ml}LiNTi1 ... MiL] using NT measures and the SG filter. If [MI-L7NT71 . MiLf1] is
known, use the SG filter over the set [MI-L_NT_1 e MiL—1' M;].

2. Calculate the set of differences PD using a set of NM measures [MiE NM—1 - MiL].

3. Calculate AiL using PM and PD.

4. Use NADCA-L where PiL_~_1 replaces Pisﬂ’”’.
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NADCA-O works in real time. It means that steps 1-3 described above are calculated
during the time difference between two consecutive samples. Once ij’}sor is known, step
4 allows to decide if there is anomaly or not.

4. NADCA for Real Landings

A set of 36 landings from the same airport was selected. Each landing had the following
signals: [ZILS, ZRA 7GPS 7IRS ] for the Z coordinate, [YILS , YGPS, YIRS] for the Y coordinate,
and [XCPS, XIRS] for the X coordinate. The approach phase was filtered for each landing.
These 36 landings form a real data set.

The data were useful to carry out the learning and validation process for the predictive
model creation and to determine decision thresholds U that were used to decide if there
was an anomaly or not. There was a predictive model for each coordinate. Likewise, each
sensor had its U threshold for each coordinate.

The algorithm NADCA-L was used for XGPS XIRS 'yIRS 7GPS and 7IRS The algorithm
NADCA-O was used for Y&PS, YILS 7ILS and 7ZRA where L was created from the SG filter.

Section 4.1 shows some figures to visualize the sensor values of a real landing. These
values are represented with the help of the runway coordinate system according to the X,
Y, and Z axis.

4.1. Example of Real Landing
4.1.1. Z Axis

Figures 8 and 9 show the GPS, IRS, ILS, and RA values of a real landing according
to the Z axis. In Figure 9, the ILS" and RAL values are represented by a black line. Those
values are the corresponding smoothed signals of ILS and RA using the SG filter.

GPS for Z coordinate IRS for Z coordinate

500 500
450 450
400 400
350 350
300 300
250 250
200 200
150 150
100 100
50 50

0 o

—10,000 -5000 (o} —10,000 -5000 o
Distance to the runway Distance to the runway

Figure 8. GPS and IRS for the Z coordinate (real values of a landing).

ILS for Z coordinate RA for Z coordinate
500 450
450 400
400 s 350
350
300
300
250
250 P
nsa 200 |
200 RAA
150
150
100 1oor
50 SO r
0 o
—10,000 —5000 o —10,000 —5000 o
Distance to the runway Distance to the runway

Figure 9. ILS, ILSL, RA, and RAL for the Z coordinate (real values of a landing).
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4.1.2. Y Axis

Figure 10 shows the GPS, IRS, and ILS values of a real landing according to the Y axis.
The GPS values are not exactly the expected values of a GPS sensor. Normally, a GPS sensor
should give similar values to the GPS" signal. Consequently, a GPS" is required to process
this pseudo-GPS (P_GPS) data. The GPS! and ILS® values are represented by a black line.
Those values are the corresponding smoothed signals of P_GPS and ILS using the SG filter.

30
25
20
15

10

-15 " L L
—16,000 -14,000 -12,000 -10,000 —8000 -6000 -4000 -2000 0 2000

Distance to the runway
Figure 10. IRS, GPS, GPSE,ILS, and ILST for the Y coordinate (real values of a landing).

4.1.3. X Axis

Figure 11 shows a portion of IRS values as a function of GPS values of a real landing
according to the X axis. This portion is not a perfect line at a 45 degree angle. In general,
this angle increases as the plane approaches the runway.

IRS as a function of GPS

-1800
p
Y,
4
-2000 /
/
,'I
fIJ
A
@ 22001 S
rd
Vd
Y,
-2400 | /7
‘/"
,
60|
e
-2800\ “ . i " i i i
-2600 -2400 -2200  -2000  -1800  -1600  ~-1400

GPS: Distance to the runway
Figure 11. IRS portion as a function of GPS (real values for the X coordinate).

4.2. Predictive Model Using Real Landings

In this section, three predictive models (PMZ%, PMY, and PMX) for real data according
to the X, Y, and Z axes are analyzed. Each predictive model only works with signals
without oscillations. In this way, the convergence of the learning process is better and the
anomaly detection process is more robust. On the other hand, data preparation is more
laborious because signals with oscillations are smoothed using the SG filter.

Each predictive model was created using 30,554 examples for training and 15,050
examples for validation.

4.2.1. Z Axis

Figure 12 represents PMZ. This model uses the data from GPS, IRS, ILSE, and RAL.
PM? is a stacked LSTM model. For clarity, the Z coordinate has been omitted in the figure.
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Mi Pi+1 ’ Mi+1
GPS GPS
IRS IRS
4 Features — ILSt ILSt
RA* RA*

15 Time Steps

Figure 12. PMZ (real values).

Each example used to create PM? contains ND + 1 consecutive differences where
the last difference is the target that the model should predict from a set of NM previous
measurements (NM = 15). This set of examples was split into two parts. This was a train-
validation split. The first part was used to create the LSTM model. The remaining examples
were used to evaluate the model.

The selected LSTM network architecture has three LSTM layers and 300 cells per
layer. Using this architecture, the learning process adapts the weights of network. To do
this, a backpropagation algorithm was used together with the set of learning examples.
This algorithm, in addition to the number of layers and cells per layer, requires some
hyperparameters to be defined. Specifically, the optimization algorithm (used to train the
network) is Adam’s algorithm and the loss function (used to evaluate the network that is
minimized by the optimization algorithm) is mean squared error (mse). The number of
epochs (an epoch is one pass through all samples in the training dataset and updating the
network weights) is 70. The batch size (a batch is one pass through a subset of samples in
the training dataset after which the network weights are updated) is 32. The activation
function is Relu (an activation is required to allow the neural network the ability to model
non-linear processes).

The network can be trained using the learning examples and simultaneously, it can also
be evaluated with the help of the validation examples. This evaluation provides an estimate
of the performance of the network at making predictions for unseen data in the future.

A positive evaluation means a good fit between the learning and validation sets. A good
fit is a case where the performance of the model is good on both the training and validation
sets. This can be evaluated from a plot (loss as a function of the number of epochs) where the
train and validation losses decrease and stabilize around the same point. With this result,
behaviors such as overfitting and underfitting are avoided. Figure 13 shows the training and
validation loss meeting. The convergence of the curves is fast and stable. Similar results can
be obtained using different sets of examples for a train-validation split.

<1073

m— \/alidation

— Train

Loss

0 10 20 30 40 50 60 70
Epoch

Figure 13. Evaluation curve for the Z coordinate using real landing values.
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4.2.2.Y Axis

Figure 14 represents PMY. This model used the data from GPS’, IRS, and ILSL. For
clarity, the Y coordinate has been omitted in the figure. PMY is a stacked LSTM model. It
has 3 layers of 300 cells each. The number of previous measurements is 15.

Mi P i+17 Mi+1
|
| GPst . GPS-
3 Features | [IRS IRS
ILS* LSt

15 Time Steps
Figure 14. PMY (real values).

The convergence of the curves is fast and stable (see Figure 15).

<1073

— Validation

— Train

Loss

0.5 \

0 20 40 60 80 100 120
Epoch

Figure 15. Evaluation curve for the Y coordinate using real landing values.

4.2.3. X Axis

Figure 16 represents PMX. This model uses the data from GPS and IRS. For clarity, the
X coordinate is omitted in the figure.

Pi+1 ’ Mi+1

GPS
IRS

2 Features - GPS

50 Time Steps

Figure 16. Predictive model for the X coordinate (real values).

PMX is a stacked LSTM model. It has 3 layers of 440 cells each. The number of previous
measurements is 50. The number of previous measures as well as the number of cells per layer
were increased to achieve a better fit between the learning and validation sets (see Figure 17).

The validation and learning graphs crossed and slightly diverged from epoch 32. From
this epoch, overfitting appeared. To avoid this, the PMX for epoch 32 was selected.

This PMX is not the best possible model. This means that this model gives a prediction
error greater than an optimal solution. A higher number of real landings (i.e., more
examples) should prevent overfitting and provide a better PMX.
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Figure 17. Evaluation curve for the X coordinate using real landing values.

As discussed in Section 4.3.3, this PMX provided a prediction error acceptable for the
IRS. However, the prediction error is important for GPS data. Consequently, this model
was only used to detect anomalies in X'k

NADCA was primarily tested on the Z and Y axes because they are more diverse and
contain more complicated signals than the X axis. The X axis only contains signals without
oscillations. However, the Z and Y axes have signals with and without oscillations. In
addition, the signals without oscillations have non-standard behavior.

4.3. Thresholding Using Real Landings

This subsection explains the U thresholds for each sensor and coordinate. U represents
a prediction error when the time series does not show oscillations. U represents a maximum
error for each sample between a smooth signal L and the corresponding raw values when

the time series shows oscillations. Each threshold is denoted as Ugﬁ’;i%n ate”

4.3.1. Z Axis

Prediction errors are calculated using PM? and data without anomalies.
Figure 18 shows the prediction error for Z¢PS and Z'RS. Ref?-6PS and Ref?-GPS

represent Pli—lcp S and Pl%r—lms value sets (for the Z coordinate), respectively. These values

are altitudes.

Prediction Error for GPS Prediction Error for IRS
1.5 01— ]
S ~ 5 0.08
w W
5 § 006 |
= S 0.04 L
g Q .
o o .
: .
600 400 200 0 600 400 200 0
RefZ-GPs RefZ_Rs

Figure 18. Envelopes for GPS and IRS using real values.

The Z'RS threshold can be set to UéRS = 0.06. This result is good to detect anomalies.
On the other hand, the Z6FS threshold can be set to ng S = 1.2. This threshold is also small
and acceptable to detect anomalies. However, US"® is higher than ULRS. This means that
ZCPS data may have minor anomalies.

For ILS, UéLS is the envelope of the maximum error between Re f Z_ILS and ZILS where

Ref?-ILS is the set of predicted values using Z' Lst (see Figure 19).
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Figure 19. Envelope for ILS using real values.

For RA, UB4 is determined with the help of two envelopes, one envelope for positive differ-
ences and another for negative ones. Each envelope corresponds to the maximum error between

Ref?-RA and ZRA, where Ref#-R4 is the set of predicted values using ZRA (see Figure 20).

Maximum difference (<0) between Z* and Refz-*4 Maximum difference (=0) between Z** and Refz-R*
100 100
90 90
80 80
70 __ 70
=3
60 =60
@
50 e 50
<
a0 Kﬁ a0
30 30
20 20
10 10
] 0
800 500 400 300 200 100 0 800 700 600 500 400 300 200 100 0
RefZ-RA RefZRA

Figure 20. An envelope for the positive differences and another for the negative ones using real RA values.

43.2.Y Axis

Prediction errors are calculated using PMY and data without anomalies. The thresholds
for P_GPS and IRS are a constant. UEP 5 = 14 is the envelope of the maximum error

between RefY-5PS and YOS where RefY-CPS is the set of predicted values using Y¢S k
Y RS is the only signal without oscillations. The maximum prediction error determines a
threshold UZP® = 0.35.

For ILS, UL is the envelope of the maximum error between RefY-!LS and YIS where

RefY-ILS is the set of predicted values using Y/ Lst (see Figure 21).
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Figure 21. Envelope for ILS using real values for the Y coordinate.

4.3.3. X Axis

Prediction errors are calculated using PMX and data without anomalies. The thresh-
olds for GPS and IRS are a constant because these are signals without oscillations. The
maximum prediction error for IRS determines a threshold U&RS = 0.35. It is good to detect
anomalies. However, the maximum prediction error for GPS sets a threshold ng S=14,
too high to detect anomalies. The chosen PMX is not the best possible model.

5. Examples of Anomaly Detection and Correction

In this section, real and simulated anomalies in real landing signals are detected and
corrected using NADCA. For anomalies of long duration, Equation (7) was used. Section 5.1
explains how the parameter « of Equation (8) was determined.

5.1. Determination of the Parameter «

The parameter o of Equation (8) can be determined using a relationship between «
and C;. This relationship was found experimentally using a set of different examples with
anomalies. For each example, the best « and its corresponding C; are selected. Figure 22
shows the result obtained for the GPS Z-coordinate.

0.04
0035
0.03
0.025
0.02
= 0015 |
001 |

0.005

-0.005 |

-0.01 : :
0 0.01 0.02 0.03 0.04 0.05
CorC”

Figure 22. Relationship between oc and C* (or C**).
5.2. Real Anomalies

This subsection presents two real anomalies that were detected and corrected by NADCA.

5.2.1. Scale Factor Anomaly

This anomaly affected Z&S values for one landing. It is a small scale factor anomaly
that was detected and corrected using NADCA-L (see Figure 23).
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Figure 23. Anomaly detected and corrected using NADCA-L. The small anomaly appears in red.

5.2.2. Noise Anomaly

This anomaly appeared at Y/L5. It can be interpreted as noise. This anomaly was

detected and corrected using NADCA-O (see Figure 24).

Y-Coordinate, Noise in ILS
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]J "ﬂ' A JW(*rwﬂrl‘e"J’ﬁl‘fu’liﬁ*'ﬂ.\n“l'ﬁ“rk" I“ w'“u‘w‘\‘w‘w.y"‘"*J'”u"“‘."‘v&"‘»«m\ﬁrA
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Figure 24. Anomaly detected and corrected using NADCA-O.

5.3. Simulated Anomalies

This subsection presents some simulated anomalies that appear in different land-
ings. Unlike real anomalies, simulated anomalies are evaluated using two parameters:

F-score [25] and root mean square error (RMSE) [26].

F-score compares the binary plot of the detected anomaly (DBP) and the “True” binary
plot (TBP) that represents where the anomaly was generated. The value varies between 0 and
1. The best result is 1. It is useful to evaluate anomaly detection in a simple way by a number.

Assume that an anomaly appears in the time interval [T1, T2]. RMSE calculates the
error between the original signal without anomaly and the signal with anomaly correction
in the interval [T1, T2]. It is useful to evaluate anomaly correction, especially in signals

without oscillations.
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5.3.1. Example 1: Landing with Bias in Z&"S and Noise in Y5

Figure 25 shows two anomalies on a specific landing. The bias anomaly in Z&S is a
simulated anomaly. The noise anomaly in Y’ is a small real anomaly.

ILS: Y coordinate with anomaly

GPS: Z coordinate with anomaly 10
600r R N ] or il ’9 .&WW w Wiy Ao 1
400F . Ll
I~ '
. -10r 1
200t \\\ 1 (|
0 BN 20
Binary plot of the detected anomaly Binary plot of the detected anomaly
1" 1t -
051 1 051 1
0 0
GPS: Z coordinate with anomaly correction 1 ILS: Y coordinate with anomaly correction
600 -
400t o
200 -10F
-14.000 -12,000 -10,000 -8000 -6000 -4000 -2000 O 2000 —'12 g,ooo —12iooo —10[000 —8(;00 —ecl)oo -4000 —2c;oo c; 2000
Distance to the runway Distance fo the runway
Figure 25. Bias and small noise anomalies detected and corrected on a specific landing using NADCA.
Table 1 shows the result for each signal of this landing using NADCA. There is a small
anomaly in Y'S. However, this anomaly was not artificially generated. Consequently,
RMSE and F-Score calculation are not possible. There is an anomaly in Z°PS. This anomaly
was artificially generated. The F-score is 1 because NADCA perfectly detects the anomaly.
The RMSE is 0.57. This value is small. There are no anomalies in X¢PS, XIRS yGPS yIRS
ZIRS ' 7ILS op 7RA and consequently, the value of F-score and RMSE is N/A.
Table 1. Result for each signal after using NADCA.
XGPS xIRS yGPS YIRS yILS 7GPS ZIRS ZILS ZRA
Anomaly  No No No No Yes Yes No No No
F-score N/A N/A N/A N/A N/A 1 N/A N/A N/A
RMSE N/A N/A N/A N/A N/A 0.57 N/A N/A N/A

5.3.2. Example 2: Landing with Noise in 7GPs

Figure 26 shows a simulated noise anomaly on Z7.

Table 2 shows the result for each signal of the landing using NADCA. There is an
anomaly in Z¢PS. The F-score (see Table 2) is 0.99 because TBP is determined prior to
detection without discontinuities and DBP has a no anomalous sample anomaly. That
sample intersects the NADCA correction. The binary plot of the detected anomaly shows
that sample.
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Figure 26. Noise anomaly detected and corrected on a specific landing using NADCA.
Table 2. Result for each signal after using NADCA.
XGPS xIRS yGPS yIRS yILS 7GPS 7IRS ZILS ZRA
Anomaly  No No No No No Yes No No No
F-score N/A N/A N/A N/A N/A 0.99 N/A N/A N/A
RMSE N/A N/A N/A N/A N/A 0.52 N/A N/A N/A
The RMSE is 0.52. This value is small. There are no anomalies in X6, XIRS yGPS,
YIRS YILS | 7IRS '7ILS or 7RA and consequently, the value of F-score and RMSE is N/A.
5.3.3. Example 3: Landing with a Noisy Bias in Z&FS
Figure 27 shows an example of a simulated noisy bias anomaly on Z5. The F-score
(see Table 3) is 1. In this example, the correction has to be precise in order to connect with
the end of the anomaly.
Table 3. Result for each signal after using NADCA.
XGPS xIRS yGPS YIRS yILS 7GPS ZIRS ZILS ZRA
Anomaly  No No No No No Yes No No No
F-score N/A N/A N/A N/A N/A 0.99 N/A N/A N/A
RMSE N/A N/A N/A N/A N/A 0.43 N/A N/A N/A
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Figure 27. Noisy bias anomaly detected and corrected on a specific landing using NADCA.
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5.3.4. Example 4: Landing with Drift in Z&"S

Figure 28 shows an example of a simulated drift anomaly on Z6S. The F-score
(see Table 4) is 0.87. This value is lower than 1 because the anomaly was detected 80
samples after the starting point of the anomaly. That is, the anomaly has a slow-moving
variation and anomaly detection only occurs when Equation (7) is satisfied. The correction
with a RMSE = 0.43 is of good quality.
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Figure 28. Drift anomaly detected and corrected on a specific landing using NADCA.
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Table 4. Result for each signal after using NADCA.

XGPS XIRS YGPS YIRS yILS 7GPS ZIRS 7ILS ZRA
Anomaly  No No No No No Yes No No No
F-score N/A N/A N/A N/A N/A 0.87 N/A N/A N/A
RMSE N/A N/A N/A N/A N/A 0.43 N/A N/A N/A

5.3.5. Example 5: Landing with Anomaly in Y&

Figure 29 shows an example of a simulated noisy bias anomaly on Y. The RMSE is
0.86 (see Table 5). The RMSE was calculated using the anomaly correction and the corre-
sponding portion of the smoothed signal of the signal without anomaly. This calculation is
different from the RMSE of a signal without oscillations. Thanks to the oscillations, other
corrections are possible. Consequently, a higher RMSE value could also be an acceptable
correction. The F-score is 1.

GPS: Y coordinate with anomaly

ol L

0 VL LA A ey 0y — Sy o Ao B o S i S N Py — el Wy sy — ey — i

Binary plot of the detected anomaly

0
-14,000 -12,000 -10,000 -8000 -6000 -4000 -2000 0
Distance to the runway

Figure 29. Drift anomaly detected and corrected on a specific landing using NADCA.

Table 5. Result for each signal after using NADCA.

XGPS xIRS yGPS yIRS yILS 7GPS 7IRS ZILS ZRA
Anomaly  No No Yes No No No No No No
F-score N/A N/A 1 N/A N/A N/A N/A N/A N/A
RMSE N/A N/A 0.86 N/A N/A N/A N/A N/A N/A

5.3.6. Example 6: Coupling with Anomaly in X'®S

Figure 30 shows, on the left side, a simple example of coupling between X'RS and Y'* for
a simulated anomaly in X'RS. The YIS values are calculated using Equation (2) where X = XK.
A simulated anomaly appears in both X'R% and Y25, A small coupling between X'RS and ZR4 is
also present. The Hy,,;, value of Equation (1) was obtained using XIRS values.
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Figure 30. On the left side, coupling problem between X'RS and Y''S for a drift anomaly on X'RS. On
the right side, the anomaly detection and correction on XIRS,

NADCA works following the order X, Y, and Z. It detects and corrects the anomaly in
and consequently the anomaly does not appear in Y*5 and ZR4. If NADCA correctly
detects the anomaly in X'RS, then there is no coupling problem and NADCA knows that the
source of the anomaly is in X'R®. The right side of Figure 30 shows the anomaly detection
and correction on XRS5

NADCA can also work after each sample has been generated for each signal, even
if there is a coupling problem. Anomalies in X'R®, YIS, and ZR4 could be detected and
corrected. However, the source of the anomaly would not be clear.

Table 6 shows a F-score of 0.99 due to a non-anomalous sample and a RMSE = 0.61.

XIRS

Table 6. Result for each signal after using NADCA.

XGPS XIRS YGPS YIRS yILS 7ZGPS ZIRS ZILS ZRA
Anomaly  No Yes No No No No No No No
F-score N/A 0.99 N/A N/A N/A N/A N/A N/A N/A
RMSE N/A 0.61 N/A N/A N/A N/A N/A N/A N/A
5.3.7. Example 7: Landing with Anomaly in Y5
Figure 31 shows an example of a simulated drift anomaly on Y°PS. The RMSE is 2.9
(see Table 7). The RMSE was calculated using the anomaly correction and the corresponding
portion of the smoothed signal of the signal without anomaly.
Table 7. Result for each signal after using NADCA.
XGPS XIRS YGPS YIRS YILS ZGPS 7IRS ZILS ZRA
Anomaly  No No Yes No No No No No No
F-score N/A N/A 0.84 N/A N/A N/A N/A N/A N/A
RMSE N/A N/A 29 N/A N/A N/A N/A N/A N/A
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Figure 31. Drift anomaly detected and corrected on a specific landing using NADCA.

The F-score is 0.86. This value is not 1 because NADCA can only detect the anomaly
when the anomalous values leave the zone of normal oscillations.

Equation (5) is not the only criterion used to start analyzing a possible slow-moving
anomaly. For signals with oscillations, such as the YGPS  consecutive raw data differences
might be a better criterion than using the C; parameter.

5.3.8. NADCA Overall Assessment

NADCA was evaluated using a set of 80 simulated sensor anomalies during landing. An
average F-score value of 0.97 was obtained in relation to the detection of anomalies and an
average root mean square error (RMSE) value of 2.10 regarding the correction of anomalies.

The average F-score value is very high. It does not reach the value 1 because, mainly,
NADCA consumes some samples before detecting slow moving anomalies. The average
RMSE value is acceptable. This could be lower considering, for example, a higher ND
number (see Section 3 where ND = 14). However, a low ND is preferable. In this way,
NADCA can start working as soon as possible. This is important since there are landings
that do not last a long time.

Other strategies for correction could have been considered, for example, using algo-
rithms described in [27]. However, preference has been given to using the same predic-
tion algorithm that simultaneously allows both detecting and correcting anomalies with
acceptable quality.

6. Discussion

NADCA is an algorithm for the detection and correction of anomalies in time series.
The algorithm differentiates between time series with oscillations and without oscillations.

Three versions of NADCA have been described. NADCA-B is only useful for detecting
some obvious anomalies, NADCA-L detects and corrects anomalies in signals without
oscillations, and NADCA-O detects and corrects anomalies in signals with oscillations.
NADCA-B can be seen as a particular case of NADCA-L. Furthermore, NADCA-L is a
special case of NADCA-O.

NADCA is robust because the predictions are made on smoothed signals. When a
time series has oscillations, the algorithm creates a smooth signal by using the SG filter. A
smoothed signal guarantees a small prediction error less than a constant.
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NADCA has been used for both simulated and real anomalies on real landings.

NADCA is applied following the order of the coordinates X, Y, and Z. In this way,
if an anomaly appears in any sensor coordinate, it is corrected before analyzing the next
coordinate since the latter can be a function of the previous coordinate. Consequently,
coupling problems are avoided.

Regarding the thresholds that derive from a prediction error, we can compare US> =
1.2 and UéRS = 0.06. One would expect them to be similar, which is not the case. This may
originate from some samples in Z¢" that could be small anomalies. However, they may
not be relevant.

The predictive model for the X axis is not the best to predict the behavior of X5, This
comes from the fact that the model only combines two sensors and the number of landings
used to create the model is small. On the other hand, for the Y and Z axes, despite the small
number of landings, the models generalize well for the selected airport. This is so because
each model uses more sensors in a compact way.

NADCA was developed primarily to detect and correct anomalies during the landing
phase. During this phase, the plane does not make abrupt changes and therefore, NADCA
detects anomalies related to the sensors” operation. However, an abrupt change in the
trajectory of the aircraft would generate changes in the sensor signals that would be
considered anomalous. These changes usually happen during the approximation phase
that has not been considered in this work.

It is uncertain whether each predictive model could correctly predict the behavior of
the sensors for landings in another airport. This does not have to be the case, and therefore,
it is left for future work to consider new landing data from various airports in order to
create a predictive model that generalizes to any airport.

7. Conclusions

NADCA is a new algorithm for anomaly detection and correction in time series. The
algorithm is robust because it differentiates between oscillating and non-oscillating time
series and always makes predictions on smooth signals.

NADCA uses a predictive model based on an LSTM neural architecture. The pre-
dictions provide a reference. The difference between this reference and the raw values is
compared with a specific threshold U to decide whether or not there is an anomaly. NADCA
was tested in time series that describe the landing phase of an airplane with promising
results. This algorithm guarantees the quality of measures during landing. Generalization
to several airports could be considered if additional data sets from various airports were
made available. Importantly, NADCA is a general-purpose algorithm that could also be
used in other contexts. Future work will consider applying NADCA for applications in
other domains.

The following points summarize the main conclusions of this paper:

1.  NADCA is a new algorithm for anomaly detection and correction. Detection and
correction are performed simultaneously.

2. NADCA uses a new prediction strategy to detect and correct both fast-changing and
slow-moving anomalies.

3. NADCA distinguishes between signals with oscillations and without oscillations.
The algorithm is similar for both types of signals, however, signals with oscillations
require an additional step. This step consists of obtaining a smoothed signal in real
time.

4. NADCA works in real time. It uses information from sensors in a compact way and
only needs to predict one sample at each iteration.

5. NADCA evaluation has given an average F-score value of 0.97 for detection and an
average RMSE value of 2.1 for correction.

6.  The different examples in this article show the simultaneous detection and correc-
tion of both fast changing anomalies (e.g., Figure 27) and slow-moving anomalies
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(e.g., Figure 28). NADCA can deal with simultaneous anomalies in different sensors
(e.g., Figure 25). Figure 30 shows how NADCA avoids the coupling problem.
7. Once the anomaly is detected, the corresponding sensor does not need to be isolated.
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