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Abstract: This paper puts forward a new adaptive observer scheme for joint estimation of state and
multi-parameters for nonlinear dynamic systems. The adaptive observer uses chaos differential
evolution algorithm to improve global optimality of estimation in the case of multi-parameter and
system nonlinearity. Slide time window is used to realize real-time estimation. The simulation result
shows the effectiveness of the adaptive observer.

Keywords: adaptive observer; nonlinear dynamic system; differential evolution algorithm;
state and parameters estimation

1. Introduction

Parameter and state estimation has played a significant role in system identification, controller
designs, signal filtering and fault diagnosis for decades [1]. Accurate estimation of states and
parameters is essential for effective monitoring, control and identification in many fields, such as
chemical, biological and mechanical [2–8]. However, the majority of the system parameters and
state variables are difficult to measure and have to be inferred from the available online data and
the models relating the measurements. Further, unmeasured model parameters may slowly drift
from their nominal values over a period of time. Thus, it becomes necessary to track the changing
parameters/unmeasured states and use them for improving performances of monitoring, control and
real-time fault diagnosis [9].

The typical state-parameter estimation algorithms include the recursive methods and the iterative
methods [1]. Estimation and identification problems are equivalent to the state and parameter
estimation problems, respectively. The two problems have conventionally been viewed as two separate
problems [10]. To address them, one conventional strategy is to employ two step process–first identify
the process parameters in an offline settings, and then use the identified model for real-time state
estimation. The second one is to employ dual filters [11], where one filter is used for state estimation,
and another one for parameter estimation. In dual filters, the estimation and identification are achieved
through iterations between the two filters. The third one is to design adaptive observer which augment
the state space with the parameters for the joint estimation [12]. This formulates the estimation and
identification problems simultaneously under a single observer framework. Usually the problem of
joint state-parameter estimation is solved by recursive algorithms known as adaptive observers [10].
While the adaptive observers were originally developed in continuous system, the estimation and
identification are guaranteed to asymptotically converge to the true values only if the process is run
long enough. If the parameters change faster than the convergence rate, it is difficult to converge
within a shorter duration time. So observation with time constraints (non-asymptotic observation)
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become a more practical problem for both control theory and practice [13]. In term of the time varying
parameters estimation for nonlinear systems, it is usually very difficult to analyze the convergence and
stability of the observer [14]. Similarly, it is difficult to adjust the gain matrix of the adaptive observer
to obtain satisfactory convergence performance whether it is stable or time-varying [12].

Adaptive observer can be widely used to solve the state estimation problem of a nonlinear system.
However, existing methods generally perform state estimation based on the assumption that the
initial state is known and accurate. Nevertheless, in the actual industrial process, the initial state is
generally unknown or biased. Improper initial value of the state can lead to inaccuracy state estimation
result. In this paper, the problem of initial state uncertainty in state estimation of nonlinear systems
is considered.

Although a great deal of knowledge has been accumulated in the literature about adaptive
observer design for nonlinear systems, a customary approach is to linearise the nonlinear model
around the current states estimate, and then to apply linear systems techniques for states estimation
of nonlinear system. However, this strategy is only effective if linearization does not result in a large
mismatch between the linear model and the nonlinear behavior. In order to improve the estimation
performance, it is necessary to constrain the nonlinear system when designing the observer. As a result,
the analysis and design process is often very complex. To overcome this problem, Porter and Passino
propose a genetic adaptive observer [15]. In this paper a genetic algorithm(GA) was applied to estimate
the state vector of a possibly nonlinear system.They show how to construct the gain matrix of such an
observer using GA real-time evolution observer to minimize the output error. Apart from the relatively
simple design procedure, the authors did not provide the convergence conditions of the observer and
did not consider robustness issues with respect to model uncertainty. The convergence condition of
the observer was proposed by Witczak et al.[16]. In particular, the authors showed a technique for
increasing its convergence rate with genetic programming. In Reference [17], the authors presented
a robust observer design method, by which the optimal selection of observer operating points can
be realized in the presence of measurement noise and inaccurate knowledge of mathematical model
parameters. In Reference [18], a multiple model adaptive nonlinear observer was proposed and all
observer parameters are optimized using particle swarm optimization.

The research shows that the intelligent optimization algorithm has excellent performance for
solving multivariable systems. But the above researches mainly focus on the optimization of the
gain matrix of the traditional adaptive observer. In Reference [19], the authors utilized the GA
searching ability to determine unobtainable state variables in the control system and constructed
an adaptive GA observer to estimate a parameter. However, this study does not involve robust
estimation of multi-dimensional time-varying parameters. In Reference [20], a neural network-based
adaptive observer is designed to estimate the states of de-icing robot, but the initial state deviation is
not considered

When the input and output of the system are known, the parameters and states to be identified
can be considered as solving the inverse optimization problem. In general, the optimization task is
complicated by the existence of non-linear objective functions with multiple local minima [21]. For a
dynamic nonlinear system, accurate estimation of multidimensional states and parameters is a complex
optimization problem. The DE (Differential evolutionary) algorithm emerged as a very competitive
form of evolutionary computing more than a decade ago [21]. It is a calculation strategy that use
mechanisms inspired by biological evolution, such as reproduction, mutation and recombination.
Therefore, DE has some intelligent characteristics, including self-organizing, self-adaptive and
self-learning features. It is often used to tackle complex optimization problems. In this paper, a class
of nonlinear systems with uncertain time-varying parameters and uncertain initial state are studied.
Differential evolutionary algorithms (DE) is introduced for dynamic state and parameter estimation.
The results obtained are applied to a three tanks systems, and simulation results are presented to
demonstrate the effectiveness and feasibility of the developed results.



Appl. Sci. 2020, 10, 5857 3 of 20

The main contribution includes—the unmeasurable parameters and states within the nonlinear
system can be estimated by an novel adaptive observer by creating an augmented states vector [x p]T .
A novel adaptive observer based on intelligent optimization algorithm is built. Parameter estimation
and state tracking are considered as an optimal problem and the fitness function is constructed by
maximizing the correlation coefficient or minimizing the Euclide distance between the real output and
the estimated output. Through iterative optimization of DE algorithm, the initial value of state and
parameters of the dynamic system can be estimated correctly, so as to reconstruct the output trajectory
of the system and the unknown states. In order to avoid the accumulation of estimation errors, an initial
condition correction is carried out for each time window, so the observer has a certain robustness.

This paper is organized as follows—the considered problem is formulated in Section 2. Section 3
derives the parameter identification model of the systems.Section 4 presents a adaptive observer based
on chastic DE for parameter and state estimation. Section 5 provides an illustrative example to illustrate
the performance of the proposed observer. Finally, Concluding remarks are made in Section 6.

2. Problem Statement

Let us consider a nonlinear parameter varying system:

S :

{
ẋ = f (x, θ, u, t)
y = Cx + d(t),

(1)

where: x ∈ Rl , θ ∈ Rp, u ∈ Rm and y ∈ Rn denote the system state, parameter, input and output
vector respectively. d(t) is a independent and identically distributed Gaussian noises with covariance
matrices Q. The θ is unknown time varying parameter. The term f (x, θ, u, t) is known as nonlinear
functions with appropriate dimensions.

Assumption 1. The function f (x, θ, u, t) is globally Lipschitz in x and u.

Assumption 2. The uncertain time varying parameter θ(t) satisfy

|θ(t)− θo| ≤ Γ (2)

where θ0 is known parameter nominal values, Γ is known constant vector. Here, the assumed nonlinear system S
is linear on parameters. If the process parameter nominal value θo is known, the nominal model of the system is

So :

{
ẋ = f (x, θo, u, t)
y = Cx.

(3)

The goal of this paper is twofold:

• Design a dynamic observer that estimate the state and parameter of the noiseless system (1) in a
finite time or in a fixed time, under the assumption that the initial state is unknown.

• The observer must be robust (in an input-to-state sense) with respect to measurement noise d(t).

3. Simultaneous Estimation Scheme for Parameter and State

3.1. Observability Of System

Is a reliable observer available for the system (1) based on the past values of y(t) and u(t)?
This problem leads to the concept of observability [22–25].
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In the system (1), inputs u(t) are also called excitation of the system. Admissible inputs u(.) are
assumed to be taken in some measurable and bounded functions set U (t). Let χu(t, x0) denotes the
system solution at time t, with initial condition x0 at time t = 0, and control u(t).

Definition 1. Indistinguishability
A pair (x0, x̃0) will be said to be indistinguishable by u if ∀t ≥ 0, h(χu(t, x0)) ≡ h(χu(t, x̃0)). The pair

is just said to be indistinguishable, if it is so for any u.

Definition 2. Observability
The system (1) is observable if it does not have any indistinguishable pair of states [26]. Observability is

the necessary condition of a system to obtain an available observer. If a system is not observable, one can not
obtain the reliable estimate of the initial state x(0). While depending the initial state x(0) the system solution
χu(t, x0) under the input u(t) can be estimated. It means the availability of the observer.

The observability defined here does not exclude the possible existence of inputs for which some
states are indistinguishable. In other word this defined observability depends on the excitation and
it is not an uniform observability, it is not enough to design an reliable observer unless the action
of inputs is taken into account. The observability independent of the input, that is, the uniform
observability requires strong conditions on the system structure. However, in this paper, we assume
that the considered systems are observable with their normal working excitation and the observability
under the normal working excitation ensures the available of the observer. We will not further
discuss the problem of observability of nonlinear systems for which the interested reader is referred
to Reference [27].

3.2. Observer Structure Based on Optimization Theory

The design of observer implies the fulfilment of the observability condition that the unmeasured
states can be inferred(or estimated) based on the available measured outputs. In this paper, it is
assumed that the system (1) is observable with their normal working excitation u(t) and the system
parameters are slow time variable.

In order to esimate the states and unknown parameters, a way to solve state and parameter
estimation is to consider the parameters as the extended state variables with zero dynamic [3] in a time
window T, that is,

x̂(t) =

[
x
θ

]
, θ̇ = 0, (4)

Thus the representation (1) is rewritten as:

˙̂x(t) = g(x̂(t), u(t))

ŷ(t) = Cx̂(t), (5)

where:

g =

[
f
0

]
(6)

The estimated state x̂(t) of observer (5) is given by the following integral with initial state x(0).

x̂(t) =
∫ T

0
g(x̂(t), u(t))dt

ŷ(t) = Cx̂(t). (7)
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If x(0) is determined in a unique continuous system, then x(t) can be calculated immediately
according to (7). As a result, the estimating of the initial values of state allows us to estimate the
current values of the unobtained state variables. However, in practical engineering applications,
the integral of g(x̂(t), u(t)) is difficult to be solved accurately. Therefore, the optimization method
is considered to be used to obtain the approximate solution of multi-dimensional state estimation.
Before we construct the optimization objective function, the generalized vector deviation is defined
as follows

Definition 3. Generalized Vector Deviation Let V be a non-empty vector set, for any elements X, Y ∈ V , if the
real value of d(X,Y) satisfies:

(i) d(X, Y) = 0, iff X = Y;
(ii) |d(X, Y)| = |d(Y, X)|; then d(., .) is a generalized vector deviation on V .

The selection of the formulation of the sample vector generalized vector deviation should have
a clear engineering physical meaning, so that the value of the generalized vector deviation should
reflect the closeness degree of the vectors in engineering sense, so as to reflect the closeness degree of
the pre-estimate initial state x̄0(i, g) and the actual initial state x0.

In order to achieve the optimal state estimation, in this work, the object function F(d(Ŷ, Y))
describing the closeness of observer output vector Ŷ to the real output vector Y is designed
which satisfies:

F(d(Ŷ, Y)) ≥ 0, F(d(Ŷ, Y)) = 0 i f f d(Ŷ, Y) = 0, (8)

where, d(Ŷ, Y) is the generalized vector deviation between the vector Ŷ and the vector Y which is
defined in the definition (3). d(Ŷ, Y) = 0 means Ŷ = Y.

Let vector Y = Y(x0), vector Ŷ = Y(x̂0), then the object function is:

fob(x̂0) = F(d(Y(x̂0), Y(x0))). (9)

The constraint condition for this optimization problem(9) is a polyhedron which is constructed by
the range of parameters and state.

Consequently, the following adaptive observer based on constraint Optimization is obtained:
˙̂x = g(x̂(t), u(t))
ŷ = Cx̂
x̂(t) = arg min

x̂

{
fob

}
,

(10)

where min
x̂

{
∗
}

presents the optimization calculation using the optimization algorithm.

To summarize, the estimation scheme based on adaptive observer using optimization is shown as
the Figure 1 below.
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Figure 1. Dynamic observer structure block diagram.

4. Adaptive Observer Based on Chaotic De

4.1. Chaotic De Algorithm

DE is an efficient global optimization algorithm in non-continuous, non-convex, highly nonlinear,
noisy, time-dependent or flat solution spaces. It is a population based stochastic optimization algorithm.
DE has become popular due to its great convergence characteristics with few control parameters,
lower computational complexity and strong global optimization ability.

The basic idea of the algorithm is: starting from a randomly generated initial population,
new individual is generated by summing the vector difference of any two individuals in the population
with the third individual, and then the new individual is compared with the corresponding individual
in the contemporary population. If the new individual is more adaptable than the current individual,
the new individual will replace the old one in the next generation, otherwise the old individual is still
preserved. Through continuous evolution, the population keeps the good individuals, eliminates the
bad individuals, and the population intelligence guides the search to the best solution.

Despite all the advantages of DE, it can hinder its performance when dealing with complex
optimization problem, such as estimation of dynamic system state and parameters in this article.
A common disadvantage of evolution is the loss of diversity as search proceeds, resulting in population
stagnation or premature convergence. Therefore, a chaotic strategy is needed to maintain the diversity
of population. A fundamental characteristic of chaotic systems is random, ergodic and no-period
behavior. Applying chaotic sequence instead of random sequence in DE is powerful and efficient.
The DE performance can be improved to prevent premature convergence to local minimum [28].
A variety of chaotic mappings are available for intelligent optimization algorithms to improve their
performance, which interested readers may refer to References [28,29]. In order to enhance the global
convergence and to improve the accuracy of state estimation, the Cubic chaotic sequence is considered
to substitute random numbers for initial population of basic DE. The flow chart of the algorithm is
shown in Figure 2.
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Figure 2. Flow chat of a chaotic differential evolutionary algorithm (DE).
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4.2. Fitness Judgement and Convergence Analysis

In studying the genetic and evolutionary phenomena of biological organisms in nature,
biologists use the term fitness to measure the extent to which a species adapt to its living environment.
Species that have more adaptation to the environment will have more reproductive opportunities.
The species that have a low degree of adaptation to the environment are relatively small and even
extinct. The fitness of the individual (fitnessy) refers to a measure of the extent of the body’s survival
in the population, which is used to distinguish the individual’s "good and bad". The probability that
the fitness is higher is the probability of the next generation. And the relatively low fitness of the next
generation is relatively small. In this case, the evolutionary algorithm also use the concept of fitness to
measure the ability of individuals in the optimization of the optimization of or to achieve or help to
find the optimal solution. The function of measuring the fitness of the individual is a fitness function
system. The fitness function is also called the evaluation function, which is mainly through individual
characteristics to determine the fitness of the individual.

The design of fitness function needs to be proper, otherwise it is easy to make the algorithm
premature and fall into the local optimal. The evolutionary search of DE algorithm is mainly based
on fitness function and makes little use of external information. Therefore, the selection of fitness
function directly affects the convergence performance. The fitness function is the main component of
DE algorithm complexity, so the design of fitness function should be as simple as possible to minimize
the time complexity of calculation.

The fitness function can be directly transformed by the objective function fob(X), and its design
requirements are as follows:

(1) Single value, continuous, non-negative and maximized;
(2) Reasonable and consistent;
(3) Small amount of calculation;
(4) Strong versatility.

According to the above requirements, we define the fitness function

ft(X) = − fob(X)

and a searching vector
Xj = [x1, x2, ..., xk],

where elements Xj, j = 1, 2, ..., Np are in accordance with initial values of the unobtained state variables
and unknown parameters. k is the dimension of the estimator system, Np is the number of individual
of population. The fitness f it(Xj) is greater, the observer output vector Ŷ(t) is closer to the real system
output vector Y(t).

Theorem 1. Convergence of chaotic DE based State Estimate
Chaotic DE based state estimate guarantees global convergence of pre-estimated value x̄0(i, g),

i = 1, 2, 3, . . . , m to x0 with the iteration times g.

Proof. (i) Y(x̄0(i, g)) converging to Y(x0) implies x̄0(i, g) converging to x0;
It is obvious that if the system is observable through the output y(t). According to the definition

of system observability, x0 corresponds one-to-one to the output trajectory Yt0,x0(t), x̄0 corresponds
one-to-one to the output trajectory Yt0,x̄0(i,g)(t), so if the sampling points of the output sample are
enough, x0 will correspond to the sample vector Y(x0) one-to-one, and x̄0 will correspond to the sample
vector Y(x̄0(i, g)) one-to-one. Therefore Y(x̄0(i, g)) converging to Y(x0) implies x̄0(i, g) converging
to x0.

(ii) The greedy selection mechanism of the chaotic DE algorithm guarantees global convergence
of sample vector Y(x̄0(i, g)) to Y(x0) with the iteration times g.
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According to greedy selection mechanism, if

ft(x̌0(i, g)) > ft(x̄0(i, g)),

then

x̄0(i, g + 1) = x̌0(i, g),

so
ft(x̄0(i, g + 1)) = ft(x̌0(i, g)) > ft(x̄0(i, g)),

otherwise

x̄0(i, g + 1) = x̄0(i, g),

so
ft(x̄0(i, g + 1)) = ft(x̄0(i, g)).

That is to say, if

F(d(Y(x̌0(i, g)), Y(x0))) < F(d(Y(x̄0(i, g)), Y(x0))),

then

F(d(Y(x̄0(i, g + 1)), Y(x0))) = F(d(Y(x̌0(i, g)), Y(x0))) < F(d(Y(x̄0(i, g)), Y(x0))),

otherwise

F(d(Y(x̄0(i, g + 1)), Y(x0))) = F(d(Y(x̄0(i, g)), Y(x0))).

Therefore:

d
dg

F(d(Y(x̄0(i, g)), Y(x0))) ≤ 0. (11)

According to (7), F(d(X, Y)) ≥ 0, F(d(X, Y)) = 0 iff d(X, Y) = 0, therefore F(d(Y(x̄0(i, g)), Y(x0)))

can be regarded as a Lyapunov function of the generalized vector deviation d(Y(x̄0(i, g)), Y(x0)) of the
sample vectors with respect to the iteration times g. In the inequality (11), it should be noted that the
iteration of DE is not a derivative driven process, and due the global ergodicity and the greedy selection
mechanism of the chaotic DE algorithm, the iterative process will not cease even if in the case of equal
sign "=", unless the optimal point is reached. That is to say the equal sign "=" only for the global optimal
point x̄0 = x0 is permanent, while for any point x̄0 6= x0, the equal sign "=" is temporary. Therefore the
generalized vector deviation d(Y(x̄0(i, g)), Y(x0)) of the sample vectors is stable and converges to the
minimum value with the iteration time g, and x̄0(i, g) converges to the optimal value with the iteration
times g.

On the other hand, the iterative process of the chaotic DE algorithm has global ergodicity, so the
global optimal value x0 always has the chance to become the pre-estimated value x̄0(i, g) of x0,
and Y(x0) becomes sample vector Y(x̄0(i, g)), in an iteration. Once the global optimal point x0 value is
selected as the pre-estimated state initial value, the greedy selection mechanism will irreversibly select
it as the optimal result, and since there is no better point to replace it, the optimal selection result will
remain at this global optimal point and will never change.
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The proof is completed. There are many ways to calculate the generalized vector deviation of the
sample vector, among which the commonly used ones are the Euclide distance and the correlation
coefficient.

4.2.1. Euclide Distance Based State Estimate

Let generalized vector deviation of the sample vector be:

d(Y(x̂0(i, g)), Y(x0)) = Y(x̂0(i, g))−Y(x0). (12)

It satisfies the definition (3) of generalized vector deviation.
The fitness function is selected as:

ft(x̂0(i, g)) = −F(d(Y(x̂0(i, g)), Y(x0)))

= −1
2
(Y(x̂0(i, g))−Y(x0))(Y(x̂0(i, g))−Y(x0))

> (13)

Then:

F(d(Y(x̂0(i, g)), Y(x0))) > 0, ∀Y(x̂0(i, g)) 6= Y(x0)

F(d(Y(x̂0(i, g)), Y(x0))) = 0, i f f Y(x̂0(i, g)) = Y(x0).

By combining the greedy selection, it is known that F(d(Y(x̂0(i, g)), Y(x0))) (13) is a Lyapunov
function of the vector error (Y(x̂0(i, g))−Y(x0)) (12). Under the DE algorithm, the vector Y(x̂0(i, g))
(that is to say the vector Y(x̄0(i, g))) will converge to the vector Y(x0) with g, therefore (x̄0(i, g)) will
converge to x0 with g.

4.2.2. Correlation Coefficient Based State Estimate

The correlation coefficient between the two variable samples can reflect the direction and the
waveform similarity degrees of the two variables. As a statistical method, correlation analysis has
been applied in evaluating the strength of the relationship between two quantitative variables with
available statistical data. This technique is strictly connected to the linear regression analysis that is
a statistical approach for modeling the association between a dependent variable and one or more
explanatory or independent variables. Here, the Pearson correlation coefficient is chosen to extract
feature similarity between the sample data.

Let generalized vector deviation of the sample vector be:

d(Y(x̂0(i, g)), Y(x0)) = N − cov(Y(x̂0(i, g)), Y(x0))

σ(Y(x̂0(i,g)))σ(Y(x0))

= N − E(Y(x̂0(i, g))Y>(x0))− E(Y(x̂0(i, g)))E(Y(x0))√
E(Y2(x̂0(i, g)))− E2(Y(x̂0(i, g)))

√
E(Y2(x0))− E2(Y(x0))

, (14)

where: N is the dimensions of the output variable y(t).
When Y(x̂0(i, g)) = Y(x0), d(Y(x̂0(i, g)), Y(x0)) = 0. Therefore, d(Y(x̂0(i, g)), Y(x0)) (14) satisfies

the definition (3) of generalized vector deviation.
The fitness function

ft(x̂0(i, g)) = N − F(d(Y(x̂0(i, g)), Y(x0)))

is selected. At this point, the fitness of an individual is the correlation coefficient. The greater the
correlation coefficient is, the greater the fitness value is and the more likely the individual is to be
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selected. The generalized vector deviation d(Y(x̂0(i, g)), Y(x0)) (14) of the sample vector can be
verified that:

F(d(Y(x̂0(i, g)), Y(x0))) > 0, ∀Y(x̂0(i, g)) 6= Y(x0)

F(d(Y(x̂0(i, g)), Y(x0))) = 0, i f f Y(x̂0(i, g)) = Y(x0).

By combining the greedy selection, it is known that F(d(Y(x̂0(i, g)), Y(x0))), that is,., the generalized
vector deviation of the sample vector d(Y(x̂0(i, g)), Y(x0)) (14) is a Lyapunov function of itself,
that is,., of the generalized vector deviation d(Y(x̂0(i, g)), Y(x0)) (14) of the sample vector. Under the
DE algorithm, the generalized vector deviation d(Y(x̂0(i, g)), Y(x0)) (14) will converge to 0, according
to the definition (3), Y(x̂0(i, g)) will converge to Y(x0) with g, and (x̄0(i, g)) will converge to x0 with g.

4.3. Structure Of Observer

The mathematical model of the real process is used as the observer model, the observer model
receives the control signal u(t) of the real process as the control input signal of its self. A time window
from t0 to tl is used as the time domain of the DE algorithm optimization calculation.

In order to reduce the computation, the measurable state variables will not be estimated and their
measurements will be used in the observer model. The observer structure is same as Figure 1.

4.4. The Process of State Estimation

4.4.1. Initialization Of The Observer

The start time t0 of the time window is considered as the initial time of the real process and of the
observer, consequently the state of the real process at this time and the state of the pre-estimate state of
the observer at this time are considered as their initial states.

The trajectory Yt0,x0(t) of the measurable output y(t) from t0 to tl of the real process is sampled
with a fixed sampling period, the output sample Y(x0) is obtained. The m trajectories Yt0,x̄0(t),
i = 1, 2, . . . , m of the observer model output y(t) from t0 to tl with the pre-estimate initial state
x̄0(i, g), i = 1, 2, . . . , m are also sampled, the output samples Y(x̄0)(i, g), i = 1, 2, . . . , m are obtained.
The sample Y(x0) and the samples Y(x̄0)(i, g), i = 1, 2, . . . , m are used in the DE based state estimate.

4.4.2. Real Time Tracking Estimation of the Observer State

In order to compensate the influence of external disturbances and of the system model changes
on the state estimate, the state estimate needs to track the system state on-line in real time manner.
After complete the state estimate of the last time window, a new time window with a same time length
as the previous time window is recreated. The start time and the terminal time of the new time window
are re-denoted by t0 and tl , and all the variables use the same notations in the previous time window.
The DE based state estimate procedure which was executed in the previous time window is repeated.

The state estimation value x(t) at the beginning time of the new time window calculated using
the estimated initial state x0 in the previous time window is reserved as a pre-estimate initial state
x̄0(i, g), that is,., an individual of the initial population P(x̄0(g)) in the new time window state estimate
calculation, so as to inherit the state estimate result of the previous time window to accelerate the search
of optimal point. However, in order to track the changes in real time, the remaining m− 1 pre-estimate
initial states are reset according to the rule of the chaos DE algorithm. If the state estimation of the
previous time window is still globally optimal, it will be retained in the new time window, otherwise it
will be replaced by the new optimal estimation.

After the task of the current time window is finished, another new time window is recreated,
and the procedure in the previous time window is repeated. It operates repeatedly in this way all the
time. The new time window can partially overlap, not overlap or even not connect with the previous
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time window according to the necessary of the update. Generally, the number m of the individuals of
the initial population in the normal time windows is smaller than the one of the first time window.

The purpose of adaptive observer is to realize the joint estimate of state and parameter, and the
detection of system parameter changes. The system parameters to be estimated are considered as the
extended state variables with zero dynamics as (4), thus the adaptive observer is equivalent to the
nonlinear state observer. When the system parameters are considered as the extended state variables,
their values are hence the initial values of the extended state variables if they remain unchange.

It is easy to understand that the dimension of state x0 directly affects the calculation load of
the estimate analysis. Therefore, the dimension of state x0 to be estimated should be minimized,
as mentioned previously, the measurable state variable should not be considered in the estimation.
For the system parameters which are considered as the extended state variables, only unknown
parameters and the parameters that maybe subject to change are considered, while other parameters
are considered as the parts of the system model and are not included in the estimation. Even the
unknown parameters if they do not subject to change, they should not be included in the estimation
unless in the first time window. Because they have been estimated in the period of the first time
window therefore their values become known.

5. Simulation Experiment

5.1. the Experiment Process

To illustrate the effectiveness of the proposed methodology, in this section, a simulation
experiment on three tank systems(TTS) is introduced. In a lot of literature, TTS have been considered
as a benchmark to solve the problems such as system control, identification and fault diagnosis
purposes [30–33]. It is a multi-input, multi-output (MIMO) plant. Most available control techniques
have been applied to this benchmark, allowing the comparison of their performances. It possesses a
rich nonlinear dynamic, high complexity and strong coupling. The TTS is shown in Figure 3.

h 2

h 1

h 3

Pump1 Pump2

Tank1 Tank3 Tank2

V1 V3 V2

Q13 Q32 Q20

Q1 Q2

Figure 3. Three tanks system.
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Consider three tank systems as described in Reference [19]. It is described by a state-space
equation with

dh1
dt = 1

A (Q1 − δ1Ansgn(h1 − h3)
√

2g |h1 − h3|)
dh2
dt = 1

A (Q2 + δ3Ansgn(h3 − h2)
√

2g |h3 − h2| − δ2An
√

2gh2)
dh3
dt =

1
A (δ1Ansgn(h1 − h3)

√
2g |h1 − h3| − δ3Ansgn(h3 − h2)

√
2g |h3 − h2|),

(15)

where A is the cross section area of tank (cm2); An is the cross section area of pipe (cm2);Q1,Q2are
incoming mass flow (cm3/s);δi, i = 1, 2, 3, are coefficient of flow for valves; i = 1, 2, 3, are the water
level (cm) of each tank and can not be measured but can be estimated. The state vector X, input U and
output vector Y will be

X = [h1, h2, h3]
T ∈ R3,Y = [h1, h2], U = [Q1, Q2] ∈ R2, Q1 = Q2

.
The system parameters are A = 100, An = 0.6, Q1 = Q2 = 30.
It is necessary to monitor the valves because their opening has a great influence on the dynamic

characteristics of the system. Then the parametric model of the three tank system can be defined
as follows:

dh1
dt = 1

A (Q1 − p1δ1maxAnsgn(h1 − h3)
√

2g |h1 − h3|)
dh2
dt = 1

A (Q2 + p3δ3maxAnsgn(h3 − h2)
√

2g |h3 − h2| − p2δ2maxAn
√

2gh2)
dh3
dt =

1
A (p1δ1maxAnsgn(h1 − h3)

√
2g |h1 − h3| − p3δ3maxAnsgn(h3 − h2)

√
2g |h3 − h2|),

(16)

where p denotes the opening of valve, pi ∈ [0, 1], δimax = 0.6(i = 1, 2, 3), hmax = 100.
It is assumed that the liquid levels h1 and h2 are measurable and the parameters used to represent

the valve opening and h3 are unknown. Our aim here is to estimate the parameters p and state x3 by
using adaptive observer based on chaotic DE. In order to verify the effect of fitness function on the
performance of the proposed observer, in this paper, the two fitness functions are used to adaptive
observer. The one is negative Euclidean distance based and the other is correlation coefficient based.

The first fitness function ft1 based on the residual norm is as follows

ft1 = max(−
2

∑
i=1
‖yi − ŷi‖2).

The second fitness function ft2 based on correlation coefficient ρyi ŷi is as follows

ft2 = max
2

∑
i=1

ρyi ŷi .

The constraint conditions of the above fitness functions are as follows

s.t.


0 ≤ p1 ≤ 1
0 ≤ p2 ≤ 1
0 ≤ p3 ≤ 1
0 ≤ h3

hmax
≤ 1.


The initial states of the real system are X(0) = [0, 0, 60]. The initial states of the adaptive observer

X′(0) = [0, 0, 0]. X(0) 6= X′(0). The initial values of parameters of the real system are equal to the ones
of adaptive observer, namely P(0) = P′(0) = [1, 1, 1].The time window T = 1000 s.The parameters of
DE are as follows: Gm=85, Np=25, F0=0.7, CR=0.7. Gm, Np, F0 and CR respectively represent the
number of iterations, population number, contraction factor and crossover probability of DE.
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5.2. Results

5.2.1. Output Noiseless Case

In order to verify the effectiveness of the proposed adaptive observer in the paper, the noise-free
case is first examined with the aid of the three tanks system. Figures 4–7 show the estimation
of state(h3) and parameters(p1, p2, p3) based on Euclidean distance. Figures 8–11 present the
estimation of state(h3) and parameters(p1, p2, p3) based on correlation coefficient. In the noise-free
case, the two fitness functions have similar performance in parameter estimation. In the aspect of
state estimation, the method based on Euclidean distance has better performance than that based on
correlation coefficient.

Figure 4. Euclide distance based parameters estimation (noise free).

Figure 5. Euclide distance based parameters estimation error (noise free).
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Figure 6. Euclide distance based h3 estimation (noise free).

Figure 7. Euclide distance based h3 estimation error (noise free).

Figure 8. Correlation oefficient based parameters estimation (noise free).
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Figure 9. Correlation oefficient based parameters estimation error (noise free).

Figure 10. Correlation oefficient based h3 estimation (noise free).

Figure 11. Correlation oefficient based h3 estimation error (noise free).

5.2.2. Output Noise Case

Figures 12 and 13 show the relationship of the Euclide distance and correlation coefficient to
signals to noise ratio (SNR), respectively. It can be seen from Figure 12 that even if SNR is small,
the Euclide distance can converge to the optimal value of 0. This indicates that the fitness function
based on the Euclide distance is more robust to output noise. Figure 13 shows that the optimization
method based on correlation coefficient is more affected by noise. Tables 1 and 2 respectively show the
optimization results of the two optimization methods under different SNR. The values of the estimated
parameters and state indicate that the higher the SNR, the better the estimation performance. It can
also be seen from Tables 1 and 2 that under the same SNR conditions, the optimization results of the
method based on Euclide distance is better than that based on correlation coefficient. This is consistent
with the results shown in Figures 12 and 13.
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Figure 12. the relationship between the output Euclide distance and signal to noise ratio (SNR).

Figure 13. the relationship between the correlation coefficient and signal to noise ratio (SNR).

Table 1. Euclide distance based State Estimation with different SNR in different time window.

Time Windows Parameters and State Real Value SNR = 40 SNR = 20 SNR = 0 SNR = −20

T1 p1 1.0 0.999087 0.999364 0.999813 0.999967
p2 1.0 0.999991 0.999723 0.999940 0.999252
p3 1.0 0.999701 0.999870 0.997682 0.999543
×30_1 60 59.966276 59.932078 59.99610 60.544748

T2 p1 0.7 0.700820 0.700481 0.703425 0.697855
p2 0.5 0.500058 0.500025 0.500036 0.497927
p3 1.0 0.995941 0.997649 0.984109 0.996104
×30_2 16.9627 16.960300 16.967100 16.984000 16.990400

T3 p1 0.4 0.399617 0.400500 0.398200 0.466186
p2 0.5 0.500000 0.498595 0.500644 0.489645
p3 0.5 0.502152 0.501541 0.503773 0.371251
×30_3 42.5734 42.591400 42.586000 42.664200 42.799100
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Table 2. Correlation coefficient based state estimate with different SNR in different time window.

Time Windows Parameters and State Real Value Snr = 40 Snr = 20 Snr = 0 Snr = −20

T1 p1 1.0 0.999574 0.996146 0.993772 0.906664
p2 1.0 0.996875 0.993811 0.997931 0.848719
p3 1.0 0.995743 0.998232 0.999294 0.719801
×30_1 60 60.358080 60.762891 60.846103 99.962134

T2 p1 0.7 0.697141 0.698687 0.685231 0.999788
p2 0.5 0.500271 0.502190 0.494263 0.750182
p3 1.0 0.999851 0.978813 0.999999 0.522667
×30_2 16.9627 17.0815 17.03170 17.0278 27.3859

T3 p1 0.4 0.399176 0.399688 0.459429 0.360988
p2 0.5 0.500363 0.503093 0.504853 0.683623
p3 0.5 0.500519 0.510340 0.483031 0.447569
×30_3 42.5734 42.56340 42.88530 43.1220 36.5713

6. Conclusions

State observer is very important in the control theory. In the past, the study on the state observer
have focused on linear system. For the design of observer of nonlinear systems, the linear design
methods are often used after linearization of nonlinear systems. When unknown state initial value,
output noise and uncertain model parameters are considered, state observation will become more
difficult. To address the challenge, a intelligent adaptive observer based on intelligent optimization
algorithm is proposed in this paper. As a simple and efficient heuristic for global optimization
over continuous spaces, chaotic DE is used to construct a adaptive scheme based on dynamic
optimization which allow the direct estimation of the states and parameters.When the necessary
observability condition is satisfied, the observer can realize the robust estimation of system parameters
and states with less measurement information.The simulation proves the effectiveness of the algorithm.
In addition, we found that fitness function plays an important role on the performance of observer.
Two fitness functions are used in this paper. Finally, it is found that the two fitness functions have
different robustness under the same algorithm control parameters. The simulation verified the
difference on performance. On the whole, the method based on the residual norm is better than
the one based on correlation coefficient. Therefore, it is necessary to select an appropriate fitness
function before designing the proposed observer. Further study on this problem is valuable, as it can
improve the performance of the observer. In conclusion, this paper expands the application of DE in
practical engineering problems. In the future, it is interesting to combine more intelligent optimization
algorithms with the practical application.
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