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Abstract: In this paper, the invertibility of an interconnected system that consists of two dynamic
subsystems was studied. It can be viewed as the distinguishability of the impacts of local input on
the final global output, that is to say, whether the input at the local level can be recovered uniquely
under a given output at the global level and initial state. The interconnected system constitutes two
dynamic subsystems connected in a cascade manner. In order to guarantee the invertibility of the
studied system, a necessary and sufficient condition was established. On the condition that both
individual subsystems are invertible, the invertibility of the global system can be guaranteed. In order
to recover the local input which generates a given global output, an algorithm was proposed for the
studied interconnected system. Numerical examples were considered to confirm the effectiveness
and robustness of the proposed algorithm.

Keywords: invertibility; interconnected system; input distinguishability; high-level subsystem;
low-level subsystem

1. Introduction of Interconnected System

With the rapid developments of modern techniques, interconnections are becoming
very common in modern control systems. The interconnected system here refers to the
system composed of interacting subsystems either due to physical system structure or
purposes of convenient analysis. The system or process itself may be the result of a series
connection, parallel connection, and feedback interconnection of various subsystems [1].
For instance, a modern system is usually interfaced with multiple sensors, actuators, and
process components. Therefore, a typical system can be viewed as composed of at least
three interconnecting subsystems—actuator, sensor, and process subsystems. In order
to ensure the normal operation of the whole system, the functions of these three parts
must be normal. In addition, each subsystem can also be regarded as a series of dynamic
subsystems, because each subsystem itself can be viewed as a dynamic system. In all
cases, the global plant, as well as each subsystem, can be analyzed at different levels,
up to the component level, to assess the reliability of the entire plant. It is becoming
increasingly important to study the interconnected systems in analyzing dynamic systems,
due to the fact that it allows to investigating less complicated components to study the
properties of a complex system [2]. However, because of the requirement of a large amount
of identification data or deep physical insight, the modeling and analysis of interconnected
systems are challenging [3].

The concerning problems of interconnected systems are of great importance from
a theoretical and practical viewpoint and have been studied extensively. The published
research results involve the problems of stability, observability, controllability, and invert-
ibility of interconnected systems; for example, in [4–8]. As shown in [8], the study provided
a method to distinguish several dynamic subsystems, and it proved that there are usually
delays during information transmission. This will lead to the instability and oscillation of
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these systems. Therefore, many investigations are devoted to the stability of these systems.
As illustrated in [4], the study derives a condition to ensure input to the stable state of an
interconnected system, that is, to guarantee input to the stable state of both subsystems.
In addition to stability, the controllability of interconnected systems was also addressed.
Networked control systems are widely used in various fields of engineering; for exam-
ple, in power generation and distribution systems [9], automotive control systems [10],
cooperative control of unmanned vehicles [11], etc. The forms of interconnected systems
also vary in the existing research. In most studies on tackling power series, the form of
analytic functions interconnections was employed, e.g., [12]. In [13], an interconnected
system constituted with a nonlinear followed by a linear time-invariant dynamical sys-
tem was analyzed. The observability of an interconnected system composed of a partial
differential equation (PDE) and an ordinary differential equation (ODE) was discussed
in [14]. Two Fliess operators’ compositions were found in [15]. In [16], the interconnections
of bilinear subsystems were discussed.

When studying the characteristics of interconnected systems, the interconnected
system composed of cascaded subsystems has received extensive attention. Generally
speaking, due to the limitation of computational availability, system complexity, or com-
munication bandwidth in the practical engineering world, it is very difficult to analyze
cascaded interconnected systems with centralized structures [17]. Therefore, increasing
attention has been paid in recent years to the research of distributed or decentralized
methods. However, distributed analysis becomes more challenging due to the interaction
between subsystems and the limited information available to each subsystem. Therefore,
a problem worthy of attention is whether it can be proved that, under certain conditions,
the influence of the lower subsystem can be distinguished on the higher subsystem, so as to
avoid the complete measurement of the local subsystem. This can be regarded as a problem
of the system’s invertibility because one of the important objectives of invertibility analysis
is to prove that the input or unknown input of the control system is distinguished.

In the past 50 years, due to its important theoretical and practical significance, the in-
vertibility of the system has been widely studied. The research on the invertibility of
nonlinear systems began in reference [18]. In this paper, Silverman’s structural algo-
rithm was extended to multiple-input multiple-output (MIMO) nonlinear systems. After
that, the algorithm was modified in reference [19], which aimed at covering more kinds
of systems. Similar literature related to the extension of the algorithm can be found in
papers [20–25]. The invertibility of the system in the literature is related to the distin-
guishability of the system. The distinguishability of two variables refers to their ability to
produce recognizable output for a given system. Some concepts of distinguishability or
invertibility can be found in the literature, as in [18,22,26,27]. For example, the problem
of the invertibility of switched linear systems was produced by Vu and Liberzon in [28],
in which they discussed the ability to determine the active mode of the system from the
input and output data. The idea was further extended to a nonlinear system in [27] and
applied to fault diagnosis in [29].

In the above studies, the analysis of cascaded nonlinear systems received less attention.
However, it is usually very important to describe the properties of composite systems,
especially when the subsystems are nonlinear [30]. This paper considered a cascaded
interconnected system consisting of two dynamic subsystems for physical or analysis
purposes. The interconnection of two physical devices means that some variables associated
with the first device are also variables or impact variables associated with the second device.
Specifically, the problem is to give a sufficient and/or necessary condition, under which,
given initial states, a local input can produce a distinguishable output of an interconnected
system constituting two nonlinear subsystems. The essence of the problem is whether
it can be proved that, under certain conditions, the input of the lower subsystem has a
significant impact on the output of the higher subsystem. In order to solve this problem,
the invertibility of cascaded interconnected systems is derived. The left invertibility of
the interconnected system is capable of ensuring that the impacts of local variables on
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the global level are distinguishable. The property of distinguishability of two inputs or
parameters refers to their capacity to generate different output signals for a given input
signal. The discussion of invertibility is of great significance in practical engineering.
For example, for the problem of fault detection and isolation (FDI), a significant way is
to treat the fault as an unknown input, and the motivation of invertibility is actually to
detect and isolate the input, that is, to identify the possible location and time of the fault in
the system; for example, in [29,31–33]. The contribution of this paper mainly lies in that it
emphasizes the importance of the influences of local internal dynamics (actuator) on the
global dynamics of the control system. Thus, it provides a basis for allowing the analysis
of less complex subcomponents to study the characteristics of the interconnected systems.

The paper is organized as follows: Section 2 is devoted to the definition of invertibility
of an interconnected dynamic system. In Section 3, conditions are given to validate involv-
ing definitions. Then, the procedure of computation of the inverse of the interconnected
system is presented in Section 4. Numerical simulations are carried out to verify the ef-
fectiveness and robustness of the proposed method in Section 5. Finally, discussions and
conclusions are made in Section 6.

2. Inversion of Nonlinear Interconnected System
2.1. Modeling of the Interconnected System

An interconnected system consisting of two dynamic subsystems was considered,
as shown in Figure 1. The system decomposition could either be due to its physical structure
or the purpose of analysis; for example, the local subsystem could represent field devices,
like an actuator or a sensor. The high-level subsystem could then be the process dynamics,
like a heat exchanger. In this way, it allowed the analysis of less complex subcomponents
to study the characteristics of the interconnected system. Therefore, when analyzing the
whole system, it was of great significance to treat the field equipment as an independent
dynamic subsystem. The case of an inverted pendulum on a cart can be a typical example:
if we view two subsystems physically as a cart and an inverted pendulum, then they
constitute an interconnected system.
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Assume that the low-level subsystem is an input affine dynamic system and depicted
by (1):

∑L :
{ .

xL = fL(xL) + gL(xL)u, xL(t0) = xL0
uL = hL(xL)

(1)

where xL ∈ XL ⊆ <L is the state, uL ∈ UL ⊆ Rm is the output of the low-level subsystem,
which is also the input of the high-level subsystem, and u ∈ U ⊆ <l is the local input.
fLand gL are smooth vector field on <n and h is a smooth vector field on <m. fL, gL, hL are
algebraic functions, respectively.

An input affine dynamic system is also assumed for the higher level subsystem, and
is described by (2):

∑H :
{ .

xH = fH(xH) + gH(xH)uL, xH(t0) = xH0
y = hH(xH)

(2)

where xH ∈ XH ⊆ <n is the state of the high-level subsystem, y ∈ Y ⊆ <p is the output of
the high-level subsystem, which is also the output of the global system, and uL ∈ UL ⊆
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<m is the input of the high-level subsystem, which is also the output of the low-level
subsystem. fH and gH are smooth vector field on <n and hH is a smooth vector field on <p.
fH , gH , hH are algebraic functions, respectively.

In this way, combined with subsystems ∑ L and ∑ H in (1) and (2), an interconnected
system ∑ was generated, where the input and output vectors were considered as u and y,
respectively.

For the interconnected system described by (1) and (2), the main objective of this
paper is to give conditions to prove its invertibility. In this paper, invertibility refers to the
ability to recognize and recover the input u at the local level subsystem from the output
y at the global level. Therefore, the essence of invertibility in this paper is to investigate
the capability of distinguishing local inputs from the influences on global final products.
That is actually a study of the distinguishability of two inputs and their capabilities of
producing different outputs.

2.2. Inverse of Interconnected System

In this section, the objective is to develop the required notations and provide some
background knowledge related to the system invertibility. On this basis, the definition of
correlated inverse of the interconnected system is given, and the formal problem statement
is given. Then, the conditions to verify the relevant definitions are established.

2.2.1. Inverse of Nonlinear System

This section describes the inverse of a dynamic system. The classical definition of
invertibility for non-interconnected systems is given first. For the high-level subsystem
depicted in (2), the input–output map is defined as MH : UL → Y , where the input
function space is UL and the corresponding output function space is Y . MH maps an
input uL(.) to the output y(.) generated by the system driven by uL(.) with an initial
condition xH0. The definition of invertibility of a nonlinear dynamical system is given
below, as shown in [5].

Definition 1. Fix an output set Y and consider an arbitrary interval [t0, T), the system (2)
is invertible at a point xH0 := xH(t0) ∈ XH over Y , if for every y[t0, T) ∈ Y , the equality

MH(xH0)

(
uL1[t0, T)

)
=MH(x0)

(
uL2[t0, T)

)
= y implies that ∃ε > 0, such that uL1[t0, t0+ε) =

uL2[t0, t0+ε). The system is strongly invertible at a point xH0 if it is invertible for each xH ∈
N (xH0), where N is some open neighborhood of xH0. The system is strongly invertible if there
exists an open and dense sub-manifold M (called inverse sub-manifold) such that ∀xH0 ∈ X ,
the system is strongly invertible at xH0.

In fact, by Definition 1, invertibility at xH0 is equivalent to saying that uL1[t0, t0+ε) 6=
uL2[t0, t0+ε) for all ε ∈ (0, T − t0) implies thatMH(x0)

(
uL1[t0, T)

)
=MH(xH0)

(
uL2[t0, T)

)
.

This notion was captured by Hirschorn in [18]. The concept of the inverse of nonlinear
systems can now be extended to interconnected systems.

2.2.2. Inverse of Nonlinear Interconnected System

As shown in Figure 2, the following problems are worth discussing: given the initial
state and the corresponding output y produced by the input u, under what conditions
can the subsystems of the interconnected system uniquely recover the local input u?
This problem is similar to the classical invertibility problem of a non-interconnected and
nonlinear system.
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Considering the input–output map of the high-level subsystem as MH : UL → Y , the
input function space is generated by UL and the corresponding output function space is
generated by Y , thenMH maps an input uL(.) to the output y(.) generated by the system
driven by uL(.) with an initial condition xH0. In addition, the input–output map of the low-
level subsystem is ML : U → UL for some input function space U and the corresponding
output UL.ML maps an input u(.) to the output uL(.) is generated by the system driven
by u(.) with an initial condition xL0.

Define composition mapsML ◦MH : U → Y as the input–output map of the studied
interconnected system, given initial conditions (xL0, xH0), the composition ML ◦MH
maps an input u(.) to the output y(.) driven by u(.). The interconnected system is said
to be invertible if driven input u(t) can be recovered by the output y(.), part of the state
and the initial state (xL0, xH0). It is to extend the definition of invertibility to the cascade
interconnected system by Definition 2 as follows:

Definition 2. Fix an output set Y and consider an arbitrary interval [t0, T), the interconnected sys-
tem described in (1) and (2) is invertible at a point (xL0, xH0) = xH(t0) ∈ X over Y , xL(t0) ∈
XL(t0) over UL, if for every y[t0, T) ∈ Y , the equality (ML ◦MH)(xL0, xH0)

(
u1[t0, T)

)
=

(ML ◦MH)(xL0, xH0)

(
u2[t0, T)

)
= y[t0, T) implies that ∃ε > 0, such that u1[t0, t0+ε) = u2[t0, t0+ε).

The system is strongly invertible at a point (xL0, xH0) if it is invertible for each xL ∈ NL(xL0 ),
xH ∈ NH(xH0), where (NL,NH) is some open neighborhood of (xL0, xH0). The system is
strongly invertible if there exists an open and dense sub-manifoldMLo f XL, MHo f XH , such
that ∀(xL0 , xH0) ∈ (ML,MH), the system is strongly invertible at (xL0, xH0).

The invertibility proposed in Definition 2 may not hold in two cases: on one hand,
if there are two different inputs u1, u2 produce two equal outputs uL1 = uL2, while for the
high-level subsystem, uL1, uL2 are its inputs, clearly, these equal inputs will definitely yield
equal outputs y1 = y2 at the global terminal; in this case, invertibility of the interconnected
system fails to hold; on the other hand, even if the two different inputs u1, u2 generate two
different local outputs uL1, uL2 at the low-level subsystem, these two uL1, uL2 yield equal
output y1 = y2 at the global level, and again, the invertibility of the interconnected system
cannot be guaranteed.

The former implies that the low-level subsystem is not invertible, while the latter may
be caused by the non-invertibility of the high-level subsystem.

3. On the Condition of Invertibility of the Interconnected System

The system under consideration is an interconnected system, resulting in the unavail-
ability of classical inversion technologies. It is therefore necessary to investigate a new
toolset for guaranteeing the invertibility of interconnected systems. The problem of the
inverse of interconnected systems can be regarded as a combination of invertible map-
pings and individual input recovery. Therefore, the basic idea of solving the invertibility
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problem is to utilize the relationship between the output and the state of the subsystem
to synthesize the mapping and then use the nonlinear structure algorithm to recover the
input of the corresponding subsystem. It can be concluded from Definition 2 that the
interconnected system cannot be invertible, no matter whether the high-level or low-level
subsystem is invertible or not. Therefore, the necessary and sufficient conditions for invert-
ibility of interconnected systems on set U , UL, and Y can be given from the view of the
individual subsystem.

Theorem 1. Consider the interconnected system ∑ which consists of two subsystems: low-level
∑ L and high-level ∑ H subsystems depicted by (1) and (2), and an output set Y . The interconnected
system is invertible at (xH0, xL0) over Y , if and only if each subsystem, the low-level ∑ L and the
high-level ∑ H , is invertible at xL0 over UL, and xH0 over Y , respectively.

Proof. ConsiderML as the input–output mapping of low-level ∑ L subsystem, whileMH
is the input–output mapping of high-level ∑ H subsystem. Then the compositionML ◦MH
can be considered as the input–output mapping of the interconnected system.

In order to confirm the theorem, it needs to provide a condition from both suffi-
ciency and necessity aspects. To begin with the sufficiency condition, the invertibility of
a dynamic system refers to the bijective of the input–output mapping. Since both sub-
systems are invertible, the corresponding mappingML and mappingMH are bijective
mappings. Moreover, the composition of two bijective mappings is a bijective mapping,
so input–output mappingML ◦MH of the cascade system is bijective. Thus, the cascade
interconnected system is invertible.

The next task is to produce a necessary condition. It can be achieved by the non-
invertibility of either subsystem. That is to say if any of the subsystems is not invertible
at (xL0, xH0), then the interconnected system ∑ is also not invertible.

On one hand, suppose that the high-level subsystem ∑ H is not invertible, then no mat-
ter whether the low-level subsystem ∑ L is invertible or not, for the low-level subsystem de-
scribed in (1), fix an output set UL and consider an arbitrary interval [t0, T). Two distinct in-
puts exist for ∃ ε > 0 u1 6= u2 on [t0, t0 + ε), and it is possible to generate two different out-
putsML(xL0)

(
u1[t0, T)

)
= uL1[t0, T), ML(xL0 )

(
u2[t0, T)

)
= uL2[t0, T), uL1[t0, T) 6= uL2[t0, T).

However, for the high-level subsystem in (2), even if the invertibility of this subsystem is
guaranteed, fix an output set Y . These distinguishable inputs uL1 6= uL2 on [t0, t0 + ε) may
generate two equal outputs MH(xH0)

(
uL1[t0, T)

)
= MH(xH0)

(
uL2[t0, T)

)
= y1[t0, T) =

y2[t0, T) = y[t0, T). Thus, from the aspect of the global level, these two distinct original local
inputs u1 6= u2 on [t0, t0 + ε) produce two equal global outputs y1 = y2 on [t0, t0 + ε):

(ML ◦MH)(xL0, xH0)

(
u1[t0, T)

)
= (ML ◦MH)(xL0, xH0)

(
u2[t0, T)

)
= y[t0, T) (3)

As a result, the interconnected system ∑ can not be invertible at (xH0, xL0) over
(U , UL,Y).

For the other, suppose that the low-level subsystem ∑ L is not invertible, then no mat-
ter whether the high-level subsystem ∑ H is invertible or not, for the low-level subsystem
∑ L in (1), fix an output set UL and consider an arbitrary interval [t0, T). Two different
local inputs exist for ∃ ε > 0 u1 6= u2 on [t0, t0 + ε) that can produce two equal outputs:
ML(xL0)

(
u1[t0, T)

)
= uL1[t0, T), ML(xL0 )

(
u2[t0, T)

)
= uL2[t0, T), uL1[t0, T) = uL2[t0, T). From

the aspect of global level, even if invertibility of the high-level subsystem ∑ H in (2) is
ensured, these equal inputs uL1 = uL2 on [t0, t0 + ε) are only capable of producing two
equal outputsMH(xH0)

(
uL1[t0, T)

)
= MH(xH0)

(
uL2[t0, T)

)
= y1[t0, T) = y2[t0, T) = y[t0, T)

at the final level. Thus, for the cascade interconnected system, two different local inputs
u1 6= u2 on [t0, t0 + ε) produce two equal global outputs y1 = y2 on [t0, t0 + ε):

(ML ◦MH)(xL0, xH0)

(
u1[t0, T)

)
= (ML ◦MH)(xL0, xH0)

(
u2[t0, T)

)
= y[t0, T) (4)
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As a result, the interconnected system ∑ can not be invertible at (xH0, xL0) over
(U , UL,Y). �

Theorem 2. Consider the interconnected system ∑ consists of two subsystems: the low-level ∑ L
and the high-level ∑ H subsystems depicted by (1) and (2), and an output set Y . The interconnected
system is strongly invertible at (xH0, xL0) over Y if and only if each low-level ∑ L and high-
level ∑ H subsytems is strongly invertible at xL0 over UL, and xH0 over Y , respectively.

Remark 1. If the interconnected system ∑ depicted by (1) and (2) is globally invertible, then the
local inputs can be uniquely recovered over the time interval [t0, T). Moreover, T can be arbitrarily
large if the state trajectories do not show a finite escape time.

From Theorem 2, in order to obtain the invertibility of the studied interconnected
system, the key criterion is to ensure the invertibility of the individual subsystem. In a
differential-algebraic setting, the left invertibility can be determined in terms of the differ-
ential output rank of the system (see [30,31,34])

Definition 3. The differential output rank ρ of a system is equal to the differential transcendence
degree of the differential extension k〈y〉 over the differential field k, i.e., ρ = di f f trd

◦
k〈y〉 /k.

Property 1. The differential output rank ρ of a system is smaller or equal to min(m, p)

ρ = diff tr d
◦
k〈y〉 /k ≤ min(m, p) (5)

where m, p are the total number of inputs and outputs, respectively.

The differential output rank ρ is also the maximum number of outputs that are related
by a differential polynomial equation with coefficients over K (independent of x and u).

Theorem 3. A system is left-invertible if and only if the differential output rank ρ is equal to the
total number of inputs, e.g., ρ = m in (2).

That is, if the differential output rank is equal to the number of the inputs, the system
is invertible. This implies that the number of outputs must be greater, or equal to the
number of inputs.

4. On Computation of the Dynamics Inverse of the Interconnected System

After verifying the invertibility of the interconnected system, it is capable of recovering
the original inputs uniquely from the global measurement. It implies that each original
local input affects the global output distinguishably. In fact, if a system is invertible, there
are already structure algorithms that allow one to express the input as a function of the
output, its derivatives, and possibly some states (for example, in [4,21,23,33]).

A methodology given in Theorem 1 is now capable of checking the invertibility of
a nonlinear system. Considering the interconnected input–output system ∑ with two
subsystems ∑ L and ∑ H from inputs U into outputs Y , its composition input–output map
isML ◦MH. If the interconnected system is left invertible, there exists an input–output
system ∑ −1 from inputs Y into outputs U , and the inverse composition map is defined as
(ML ◦MH)

−1, such that the cascade system ∑ ∑ −1 : U → Y → U is the identity. In our
mainly algebraic setting, it was supposed that U , Y are a good class of functions equipped
with an algebraic structure; for example, they are differential vector space. Then the inverse
of the interconnected system is defined as in Theorem 3.

Theorem 4. Consider the interconnected system ∑ that consists of two subsystems: the low-level
∑ L and high-level ∑ H subsystems, and an input–output set (U ,Y). If the interconnected system
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is strongly invertible at (xH0, xL0) over (UL,Y), then the inverse interconnected system can also
be an interconnected system with the input–output set (Y , U ), as follows:

(ML ◦MH)
−1 =MH

−1 ◦ML
−1 (6)

Proof. Supposed that bothML andMH are invertible, thenML
−1 ◦MH = iU ,MH

−1 ◦
MH =ML ◦ML

−1 = iU andMH ◦MH
−1= iY . �

Thus, for any y ∈ Y , one can obtain[
(ML ◦MH) ◦

(
MH

−1 ◦ML
−1
)]

(y) =
[
ML ◦

(
MH ◦MH

−1
)
◦ML

−1
]
(u)

= ML ◦ (iU
(
ML

−1(u)
)

= ML ◦ML
−1(u)

= iU (u)

It follows that (MH ◦ML) ◦
(
ML

−1 ◦MH
−1
)

= iY . Similarly, one can show

that
(
ML

−1 ◦MH
−1
)
◦ (MH ◦ML) = iU . Therefore,ML ◦MH is invertible with inverseMH

−1 ◦
ML

−1.
It can be seen from Figure 3 that the inverse system of an interconnected system can

also be regarded as an interconnected system, and its components are the inverse subsys-
tems of each subsystem. In the interconnected inverse system, the global output is the
original input of the interconnected system. This implies that it is capable of distinguishing
the impacts of each local input on the global output. To compute the inverse of an input
affine interconnected system, the structure algorithm allows us to express the input as a
function of the output, its derivatives, and possibly some states, as shown in [4].
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For the high-level subsystem depicted in (2), the expression of its inverse dynamics
can be realized as from (7):

MH
−1 :

{ .
ηH = ϕH

(
ηH , y,

.
y, . . .

)
uL = ωH

(
ηH , y,

.
y, . . .

) (7)

where ηH is a function of the state xH of the high-level subsystem.
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For the low-level subsystem depicted in (1), the expression of its inverse dynamics
can be realized as from (8):

ML
−1 :


.
ηL = ϕL

(
ηL, uL,

.
uL, . . .

)
u = ωL

(
ηL, uL,

..
uL, . . .

)
(8)

where ηL is a function of the state xL of the low-level subsystem.
Inverse dynamics (7), together with inverse dynamics (8), constitutes the inverse of

the studied interconnected system. It can be seen that the basis of the proposed calculation
of the inverse of the interconnected dynamic system is the existence of left invertibility
of the original interconnected cascade system. The feasibility of the input-based inverse
reconstruction method is determined by the existence of left invertibility. For the inter-
connected inverse system, the output is the input of the original system, while the input
is the output of the original global system and its possible time derivative. A series of
invertibility related analysis has shown that a key point is the concept of relative degree.
The theory is suitable for linear time-invariant and nonlinear systems with vector relativity.
More details about the relative degree can be found in reference [4].

Definition 4. (Relative degree of nonlinear systems). For the invertible dynamic system described
by (2), the relative degree ri of the output yi with respect to the input vector uL is the smallest
integer which is defined by

LgHj
Lri−1

fH
hHi(xH) 6= 0; 1 ≤ j ≤ m (9)

LgHj
Lk

fH
hHi(xH) = 0; 0 ≤ k < ri − 1, 1 ≤ j ≤ m (10)

where L fH (.)and LgH (.) represent the Lie derivatives of a real function hH(xH) along the vector
field fH(xH) and gH(xH).

L0
fH

hHi(xH) = hHi(xH)

Lk
fH

hHi(xH) =
∂
(

Lk−1
fH

hHi(xH)
)

∂xH
fH(xH)

and LgHj
Lk

fH
hHi(xH) =

∂
(

Lk
fH

hHi(xH)
)

∂xH
gHj(xH).

Denote a matrix ∆(xH) as

∆(xH) =

 LgH1
Lr1−1

fH
hH1(xH) . . . LgHm

Lr1−1
fH

hH1(xH)

. . . . . . . . .
LgH1

Lrm−1
fH

hHm(xH) . . . LgHm
Lrm−1

fH
hHm(xH)

 (11)

∆(xH) is a nonsingular matrix with full rank:

rank ∆(xH) = m (12)

In order to derive a function of states and output in (2) to represent uL(t) as, the first
step is to differentiate yi i = 1, . . . , m to obtain the derivatives:

Suppose ri = 1, one can get:

y(1)
i = ∂hHi(xH)

∂xH

.
xH(t)

= ∂hHi(xH)
∂xH

(fH(xH) + gH(xH) uL)

= L1
fH

hHi(xH) +
m
∑

j=1
L1

gHj
L0

fH
hHi(xH)uLj
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If ri 6= 1, then L1
gHj

L0
fH

hHi(xH) = 0; 1 ≤ j ≤ m
In this way,

y(1)
i = L1

fH
hHi(xH) (13)

Generally speaking, it needs to continue this differential procedure, for k < ri ,
one will have

y(j)
i = Lj

fH
hHi(xH)

= ∂xH

(
Lj−1

fH
hhi(xH)fH(xH)

)
+

j−2
∑

s=0
∂

u(j)
L
(Lj−1

fH
hHi(xH))u

(s)
L j = 0, . . . , k, k < ri

(14)

Until the relative degree ri , it reaches

y(ri)
i = Lri

fH
hHi(xH) +

m

∑
j=1

LgHj
(Lri−1

fH
hhi(xH)) uLj i = 1, . . . , m (15)

If there are m relative order r1, . . . , rm related to the output y, and the total relative
degree satisfied (16):

r =
m

∑
i=1

ri = n (16)

then calculating expressions for their derivatives can be referred to as a one-step algorithm
to obtain an inverse, and we get

y(r1)
1
...

y(rm)
m

 =


Lr1

fH
hH1(xH)

...
Lrm

fH
hHm(xH)

+
 LgH1

Lr1−1
fH

hH1(xH) . . . LgHm
Lr1−1

fH
hH1(xH)

. . . . . . . . .
LgH1

Lrm−1
fH

hHm(xH) . . . LgHm
Lrm−1

fH
hHm(xH)

 uL (17)

the Equation (18) can be solved for uL to obtain

uL =

 LgH1
Lr1−1

fH
hH1(xH) . . . LgHm

Lr1−1
fH

hH1(xH)

. . . . . . . . .
LgH1

Lrm−1
fH

hHm(xH) . . . LgHm
Lrm−1

fH
hHm(xH)


−1

.




y(r1)
1
...

y(rm)
m

 −


Lr1

fH
hH1(xH)

...
Lrm

fH
hHm(xH)


 (18)

In this situation, there will be no internal dynamics, and all the results will be finite
time in nature, see reference [34].

However, normally, the total relative degree is assumed:

r =
m

∑
i=1

ri < n (19)

In this case, the system given by (2) can be presented on a new basis that is introduced
as follows:

Define the following change of the coordinates:

ξHi =
[
ξ1

Hi, ξ
2
Hi, . . . , ξri

Hi

]T

=
[
φ1

Hi(xH), φ2
Hi(xH), . . . ,φri

Hi(xH)
]T

=
[
hHi(xH), LfH hHi(xH), . . . , Lri−1

fH
hHi(xH)

]T
i = 1, . . . , m

ξH = [ξH1, ξH2, . . . , ξHm]
= [φH1(xH), φH2(xH), . . . , φHm(xH) ]

ζH =
[
φH(r+1)(xH), φH(r+2)(xH), . . . , φHn(xH)

]T

y =
[
ξ1

H1, ξ1
H2, . . . , ξ1

Hm

]
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By applying the new local coordinates transformation proposed in [4], if the sys-
tem holds the assumption of relative degree, it is always possible to find the function
φH(r+1)(xH), φH(r+2)(xH), . . . , φHn(xH), thus,

φH(xH) =
[
φH1(xH), φH2(xH), . . . , φHm(xH),φH(r+1)(xH), . . . , φHn(xH)

]
(20)

The mapping φH(xH) is a local diffeomorphism, which means

xH = φ−1
H (ξH, ζH) (21)

Furthermore, according to [5], if the assumption is satisfied,

Assumption 1. The distribution Γ = span
{

gH1 gH2 · · · gHm
}

is involutive, then, it
is always possible to identify the function φH(r+1)(xH), φH(r+2)(xH), . . . , φHn(xH) in such a
way that

LgHj
φHi(xH) = 0, i = r + 1, . . . ., n, j = 1, . . . , m

.
ζH = q(ξH, ζH)

Then, the input vector uL can be obtained by means of the output vector y and its
derivatives:

uL = ∆
(
φ−1

H (ξH, ζH)
)−1



ξ
(r1)
H1
...

ξ
(rm)
Hm

 −


Lr1

fH
hH1

(
φ−1

H (ξH, ζH)
)

...
Lrm

fH
hHm

(
φ−1

H (ξH, ζH)
)

 (22)

Fortunately, along with the discussion of this paper, linear and nonlinear problems
can be treated in parallel with each other. Results for linear time-invariant (LTI) systems
will always be viewed as special cases of the results obtained for the nonlinear problems
specified by the general input affine nonlinear system model.

5. Numerical Simulations

In this section, numerical simulation was employed to validate the effectiveness
and robustness of the proposed algorithm. The main objective is to confirm, by means
of numerical simulations, that the input of an invertible interconnected system can be
recovered uniquely from the measured global output. A case study was developed on an
intensified heat exchanger (HEX). More relative information can be found in [35]. During
the course of the simulation work, the aim is to prove that the pneumatic pressure of the
actuators at the local level can be recovered by the measured outlet temperatures of HEX at
the global level.

5.1. Modeling of the Interconnected System
5.1.1. Low-Level Subsystem Modeling

The pneumatic control valve was employed to act as an actuator in this system.
In [36,37], a pneumatic control valve can be modeled in the following form:

pc AL = m
d2v
dt

+ µ
dv
dt

+ kv (23)

where AL is the diaphragm area on which the pneumatic pressure acts, pc is the pneumatic
pressure, m is the mass of the control valve stem, µ is the friction of the valve stem, k is the
spring compliance, and v is the stem displacement or percentage opening of the valve.
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xL
T =

[
xL1 xL2 xL3 xL4

]
=
[

v1
dv1
dt v2

dv2
dt

]
,

uT =
[

u1 u2
]
=
[

pc1 pc2
]
, uL

T =
[

Q1 Q2
]
=
[

gv

√
P1
sg v1 Cv

√
∆P2
sg v2

]
,

C =
[

c1 c2 c3 c4
]
=
[

gv

√
P1
sg 0 gv

√
P2
sg 0

]
the actuator subsystem is then described by four states, two inputs and two outputs, as

.
xL =


0 1 0 0
− k1

m −µ1
m 0 0

0 0 0 1
0 0 − k2

m −µ2
m

xL +


AL
m 0
0 0
0 AL

m
0 0

u

uL=

[
gv

√
P1
sg 0 gv

√
P2
sg 0

]
xL

(24)

5.1.2. High-Level Subsystem Modeling

The HEX can be modeled based on the mass and energy balances that describe the
evolution of the characteristic values—temperature, mass, composition, pressure, etc.
From [16], the dynamic equations governing the heat balance of the process fluid and the
utility fluid are given by

.
TH = UA

ρHcpHVH
(TC − TH) +

1
VH

(
Tin

H − TH

)
QH

.
TC = UA

ρCcpCVC
(TH − TC) +

1
VC

(
Tin

C − TC

)
QC

(25)

where ρH, ρC are the density of the process fluid and utility fluid (kg.m−3), VH , VC are
volume of the process fluid and utility fluid (m3), Cp H , CpC are specific heat of the process
fluid and utility fluid (J.kg−1.K−1), U is the overall heat transfer coefficient (J.m−2.K−1.s−1),
A is the reaction area (m2), QH , QC are mass flowrate of the process fluid and utility fluid
(kg.s−1), TH is the process fluid temperature, Tin

H is the inlet temperature of the process
fluid, TC is the utility fluid temperature, and Tin

C is the inlet temperature of utility fluid.

Define the state vector as xH
T =

[
xH1 , xH2

]T
= [TH, TC]

T, the control input uL
T =

[uL1, uL2]
T = [QH, QL]

T, the output vector of measurable variables yH
T = [yH1, yH2]

T =

[TH, TC]
T, then the above two equations can be rewritten in the following state-space form:

.
xH = fH(xH) +

2
∑

i=1
gHi(xH)uL

yH = hH(xH, uL)
(26)

where fH(xH) =

(
fH1(xH)
fH2(xH)

)
=

( hHA
ρHCp HVH

(TH − TC)
huA

ρCCpCVC
(TC − TH)

)
, and gH = (gH1, gH2) = (Tin

H−TH)
VH

0

0 (Tin
C−TC)
VC

, yH1 = xH1, yH2 = xH2, Tin
H , Tin

C are measured and constant.

An interconnected system is constituted by (26) and (27).

5.2. Invertibility Checking

As mentioned above, one of the key points in computing dynamic inverses through
system inverses is the reversibility of systems. The above discussed algebraic criteria were
employed. Then, the system inputs can be expressed as a function of the output and its
derivative. In order to test the invertibility of the interconnected systems modeled by (25)
and (26), the output differential rank of each subsystem is required to equal the number of
the inputs.
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First, the invertibility of the high-level subsystem should be checked. As shown in (25),
there are two inputs, uL1, uL2, representing the fluid flow rates QH , QC of both fluids,
respectively. In order to verify the invertibility characteristics, the output differential rank
should be equal to the input number 2. To achieve this purpose, the explicit expressions of
input and output yH are derived by calculating the derivative yH . Corresponding to (26),
there are two outputs, yH1, yH2, representing the temperature of both fluids TH and TC,
differentiating all two outputs, the following equation is obtained:

.
yH1 = hHA

ρHCp HVH
(yH2 − yH1) +

uL1
VH

(
Tin

H − yH1

)
.
yH2 = huA

ρCCpCVC
(yH1 − yH2) +

uL2
VC

(
Tin

C − yH2

) (27)

From Equation (27), all the output differential equations are dependent on states xH
and inputs uL, thus there are r = 0 independent relations, outputs number p is 2, then the
output differential rank is as follows:

ρ = p− r = 2 (28)

According to Theorem 3, the invertibility of the high-level subsystem can be verified.
After that, the invertibility of the low-level subsystem should be checked. There are

two local inputs u1, u2, in (25), representing the pneumatic pressure pc1, pc2 of both fluids.
By differentiating the two outputs uL1, uL2 and finding all possible independent relations,
it is easy to check that the low-level subsystem is invertible.

5.3. Inverse System Representing

In order to reconstruct inputs of both high-level and low-level subsystems, they are
represented as a function of the global measurement outputs and their derivatives. Accord-
ing to the structure algorithm introduced in Section 4, an expression for the two inputs of
the high-level subsystem can be derived asũL =

[
ũL1 ũL2

]
. ũL1 =

Vp

Tin
H−yH1

( .
yH1 −

hHA
ρHCp HVH

yH2 +
hHA

ρHCp HVH
yH1

)
ũL2 = Vu

Tin
C−yH2

( .
yH2 −

huA
ρCCpCVC

yH1 +
huA

ρCCpCVC
yH2

) (29)

Then an expression for the two original inputs of the low-level subsystem can be
derived as u =

[
u1 u2

]
. u1 = α.β1

[ ..
ũL1 + γ11

.
ũL1 + γ12ũL1

]
u2 = α.β2

[ ..
ũL2 + γ21

.
ũL2 + γ22ũL2

] (30)

where α = m
Aa

, βi = 1/gv

√
Pi
sg , i = 1, 2, γ11 = − k1

m , γ12 = −µ1
m , γ21 = − k2

m , γ22 = −µ2
m .

5.4. Numerical Simulations and Discussion

The proposed computation algorithm of invertibility of the interconnected system
was confirmed by simulations with the values from [16]. These relevant values were as
follows: Inlet temperatures of both fluids Tin

H and Tin
C were 78 °C and 18 °C. Both fluid

flow rates were the interconnection of the global system and were assumed to be not
measured, their expected values were obtained by theoretical computation, and the specific
computed values were 4.22× 10−5 m3 s−1 for QC of the utility fluid and 4.17× 10−6 m3 s−1

for QH of the process fluid, respectively. Parameters related to fluids actuators were
m = 2 kg, Aa = 0.029 m2, µ = 1500 Ns/m and k = 6089 Ns/m, pressure drop ∆P in utility
fluid was 0.6 MPa and 60 KPa in the process fluid. The pneumatic pressures pc1, pc2
were considered as the two inputs of the low-level subsystem, the values were 1 MPa and
1.2 Mpa. The purpose of the design is to testify whether the value of the pneumatic pressure
recovered by the inverse of the interconnected system is consistent with the original value.
In order to achieve this purpose, two simulations were carried out. In case 1, fixed values
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of both inputs were considered, by contrast in case 2, an abrupt change was supposed
to apply to the input pc2, the pneumatic pressure of the utility fluid. Simulation results
are reported in Figures 4–15. In order to prove the robustness, external interference or
measurement noise was considered at the sensor of temperature of process fluid TH in
the simulation. The colored noise was generated with a second-order AR filter excited by
Gaussian white noise with zero mean and unitary variance.

5.4.1. Case 1: Both Pneumatic Pressure pc1, pc2 Are Fixed

Both local inputs of pneumatic pressures pc1, pc2 were considered to be fixed in this
case. The simulation purpose is to confirm if the local inputs pneumatic pressure pc1, pc2
can be uniquely recovered by the global measured temperatures TH, TC, under given
initial conditions. Figures 4–9 confirm the reconstructability and robustness of the intercon-
nected system.

Figures 4 and 5 show the measured temperatures of both fluids under noise-free and
noise-corrupted situations. From Figures 4a and 5a, it can be seen that, after a relatively
short transient time, the temperatures of both fluids stabilized at a new level, and from
Figures 4b and 5b, it can be seen that even measurements were corrupted by the colored
noise, convergence can also be ensured. These measurements were then employed to
reconstruct inputs of high-level subsystems.

As shown in Figure 6, the expected computed value of process fluid flow rates QH
are plotted in the black solid lines, and red dash lines represent the reconstructed values
via the inverse of the high-level subsystem. It is illustrated in Figure 6a that, after a short
transient period, if the measurement is not corrupted by noise, the reconstructed value in
the red dash curve tracks the computed value in the black solid curve correctly. And from
Figure 6b, when measurement suffers noise, the reconstructed value can also track the
computed one with acceptable accuracy. It is obvious that the inverse of the high-level
subsystem is capable of recovering its inputs with acceptable accuracy.
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When it comes to the utility fluid case in Figure 7a,b, the computed value in black
solid lines overlapped the reconstructed values in red dash lines after a short transient
time, no matter with or without measurement noise. Figure 7a illustrates the noise-free
case while Figure 7b represents the noise-corrupted situation. From Figure 7b, compared
with measured temperature, it can be seen that noise value impacts reconstruct value more
significantly. Whatever the case, the input reconfiguration capability of the high-level
subsystem is confirmed. Thereafter, these reconstructed values were used as inputs of the
inverse of the low-level subsystem, with the aim of checking the reconfiguration capacities.
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Figure 7. (a) Reconstructed and computed QC (noise-free situation) in case 1; (b) reconstructed and
computed QC (noise-corrupted situation) in case 1.

It can be seen from Figure 8a,b that the input reconfiguration capability of the low-level
subsystem is confirmed. It is obvious in Figure 8a,b that the recovered pneumatic pressure
of the process fluid pc1 in red dash lines converge to the measurement value in black solid
lines correctly, and the short transient time is less than 2 s. From Figure 8a, during the first
two seconds, oscillation is observed. It can be seen from Figure 8b that the reconstructed
value is influenced clearly by measurement noise. Since recovered pneumatic pressure pc1
is also the original input of the interconnected system, thus reconfiguration capability of
the global interconnected system is also confirmed.

For utility fluid flowrate, similar results to process fluid are obtained. From Figure 9a,b,
it can be seen that the recovered pneumatic pressure pc2 in red dash lines converge to the
measured pneumatic pressure in black solid curves after a short transient time, which are
also the outputs of the inverse interconnected system.
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In sum, it can be concluded that, if local inputs remain constant and both subsystems
are invertible, the local inputs of an interconnected system can be recovered by the global
system correctly, and both effectiveness and robustness are guaranteed.

5.4.2. Case 2: Pneumatic Pressure pc1 Remains Fixed, Pneumatic Pressure pc2
Increases Abruptly

In this case, the aim is to illustrate that the proposed local input recovered algorithm is
also available even if the local inputs are time-varying. To achieve this purpose, a sudden
increase was supposed to apply to the pneumatic pressure pc2 of the utility fluid, where an-
other 0.5 MPA was assumed at time 120 s. Figures 10–15 report the simulation results.

Figures 10 and 11 represent the measured temperature of both fluids, Figure 10a
describes the noise-free situation, and Figure 10a,b means that measurement of process
temperature TH is corrupted by the colored noise. It can be seen from Figures 10 and 11
that the temperature of both fluids at the global level varies at 120 s due to variation of
pneumatic pressure pc1 at the local level. The temperature of the utility fluid in Figure 10b
is not influenced by noise since measured noise was supposed on the process fluid. Thus,
from Figure 11b, it is clear that the measured process fluid temperature is fluctuant with a
small amplitude due to noise. These measured fluid temperatures were fed to the high-level
inverse subsystem to reconstruct inputs of the high-level subsystem.

From Figure 12a,b, it can be obtained that the reconstructed flow rates QH of the
process fluid in red dash curves overlap the computed values in black solid lines after a
short transient time. Resulting from the supposed variation of pneumatic pressure pc2
at 120 s, the reconstructed values fluctuate a little. For the noise-free case in Figure 12a,
after less than two seconds, the reconstructed flow rate QH of the process fluid converges
back to the computed values in black solid lines again. For the noise-corrupted situation in
Figure 12b, the reconstructed value fluctuates significantly. Compared with the measured
value, the influence of noise on the reconstructed value is more obvious.
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For the utility fluid flow rate QC in Figure 13a,b, it can be seen that the reconstructed
values in red dash lines converge to the computed values in the black solid line after
transient time. Because of changes at 120 s, reconstructed fluid flow rates vary accordingly
and reach a new stable level. Similar to the process fluid, the reconstructed utility fluid
QC flunctuates significantly in the noise-corrupted situation in Figure 13b. Since the
reconstructed values were retrieved from the global measured temperatures by higher-
level subsystems, it can be seen that the variation of variables of the local subsystem has a
significant impact on the global measurements, which is consistent with the hypothesis.
Moreover, the simulation results show that the influence of noise on the reconstructed
value is obviously stronger than the measured value.
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Figure 13. (a) Reconstructed and computed QC (noise-free situation) in case 2; (b) reconstructed and
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Next, the output of the inverse of the high-level subsystem was fed back to the
inverse of the low-level subsystem to reconstruct the original local input at the low-level
subsystem, with the aim to identify the reconfigurability of the global interconnected
system. The simulation results are shown in Figures 13–15.

As we can see from Figure 14a,b, recovered pneumatic pressure pc1 in red dash lines
follow the measured values in black solid lines after a short transient time. At time 120 s,
the recovered value in the red dash line varies suddenly, but fortunately, it converges to the
measured curve quickly. The reason for this variation is caused by the change of pneumatic
pressure pc2. In the noise-corrupted situation in Figure 14b, obvious impacts are observed.
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Figure 14. (a) Measured and recovered pc1 (noise-free situation) in case 2; (b) measured and
recovered pc1 (noise-corrupted situation) in case 2.

The simulation results of pneumatic pressured pc2 of utility fluid case are plotted in
Figure 15a,b. Similar to the situation of pc1 of the process fluid, under the noise-free case
in Figure 15a, it can be seen that the recovered pneumatic pressured pc2 in the red dash
curve tracks the measured pc2 in the black solid curve rapidly; at 120 s, the measured
value increases suddenly, and after a relatively short transient time, the recovered value
follows the measured one correctly again. From the simulation results, it can be concluded
that the inverse interconnected system can uniquely recover the original local input of the
interconnected system using global measurements. In other words, if the interconnected
system is invertible, the local input has a significant and distinguishable impact on a higher
level. For the noise-corrupted situation in Figure 15b, although the computation bias is
relatively important, the recovered value in the red dash line can also track the measured
value in the black solid line with acceptable accuracy.

It can be concluded that, if the invertibility of the interconnected system can be
obtained, it is capable of recovering local inputs by the outputs at the global level with ac-
ceptable accuracy, which indicates that both its effectiveness and robustness are confirmed.
Even though the noise power in the simulation is relatively small, and even if its influence
on the measured value is very small, this small power noise will have a greater impact on
the reconstruction value. In the experiment, it is found that the invertible cascade system
cannot reconstruct the local input value well under the condition of a high-power noise.
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6. Conclusions

In this paper, the invertibility of a nonlinear interconnected system consisting of
two nonlinear affine subsystems was studied. A necessary and sufficient condition for
guaranteeing the invertibility of the interconnected nonlinear system was established,
involving the invertibility of individual subsystems. In order to recover the local input
that yields the global output of the whole system, an algorithm was proposed that aimed
at recovering the input uniquely in finite steps. Numerical simulations were included to
confirm the effectiveness and robustness of the proposed methodology. Although there
may be significant computation bias, especially when the output is corrupted by a high-
power noise, the purpose is to confirm that the local input has a significant impact on the
global level when the entire system is invertible. In this case, it allows the entire system to
be monitored and analyzed on local subcomponents, but with global information.

However, in addition to the admirable features of the proposed methodology, there
are open issues. An attractive direction is to establish a more constructive and relaxed
condition for checking the invertibility of the interconnected systems. The goal is to verify
the identifiability of the inputs (or unknown inputs), such as systems with more inputs
than outputs, systems without a standard form, or with zero dynamic instability. The case
where modeling uncertainties and measurement noise cannot be augmented into unknown
input could be another interesting research direction in order to extend the applicability of
the method proposed. Another problem to be solved is to verify the stability and sensitivity
of the estimation error to prove that the required modeling information can be scaled
without destroying the instability of the input reconstruction algorithm.
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