
HAL Id: hal-03622723
https://laas.hal.science/hal-03622723

Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adapting Deep Learning models to IoT environments
Sofien Resifi, Hassan Hassan, Khalil Drira

To cite this version:
Sofien Resifi, Hassan Hassan, Khalil Drira. Adapting Deep Learning models to IoT environments.
5th Conference on Cloud and Internet of Things (CIoT 2022), Mar 2022, Marrakech, Morocco.
�10.1109/CIoT53061.2022.9766636�. �hal-03622723�

https://laas.hal.science/hal-03622723
https://hal.archives-ouvertes.fr

Adapting Deep Learning models to IoT
environments

Sofien Resifi
LAAS-CNRS

University of Toulouse
Toulouse, France

sresifi@laas.fr

Hassan Hassan
LAAS-CNRS

University of Toulouse
Toulouse, France
hhassan@laas.fr

Khalil Drira
LAAS-CNRS

University of Toulouse
Toulouse, France

khalil@laas.fr

Abstract—Deep Learning (DL) models are very efficient for
many applications including, computer vision, natural language
processing.... Yet DL models require important computation
resources making it particularly difficult to deploy these applica-
tions in constrained environments such as the Internet of Things
(IoT). Offloading DL models to the cloud is one solution to this
problem but has a number of drawbacks related to the trade-
off between efficiency and latency, and other privacy issues. In
this paper we try to solve this problem using two approaches,
first by sharing the DL model between the cloud and the device
and second by optimising the execution of the model using early
exiting where inputs do not need to execute the model entirely.
Both approaches are optimized automatically in order to choose
the best sharing point and the best exiting point according to
input. The solutions proposed could be easily generalized and
are independent of applications and offer a good alternative in
order to execute DL models locally.

Index Terms—Deep Learning, IoT, cloud computing, partition-
ing, optimization

I. INTRODUCTION

Deep Learning (DL) applications know a wide success
during recent years. They are used in image recognition, object
tracking in videos, natural language processing for virtual
assistants, reinforcement agents in robotics and many other
fields. Although those models are very efficient, they require
important resources to be executed. This is not an issue when
it comes to offload applications to the cloud and uses its unlim-
ited resources. Meanwhile making DL applications completely
dependant on the cloud has many drawbacks. This includes for
real time application a long response time, and for privacy, an
important issue as data should transit on distant datacentres.
One of the fields that are challenged by the deployment of
DL applications is IoT environments. As IoT devices have
very limited resources, small CPU capacity, limited memory
and constrained energy power supply, DL applications require
new strategies in order to run in an IoT environments. In
this paper, we handle the adaptation of DL models in con-
strained IoT devices using two approaches: first by optimized
model partitioning for cloud-device collaboration under CPU
and energy limitations and second by executing DL models
partially. The bandwidth between the device and the cloud is
also used as an optimization parameter. Our approach applies
to any model and adapts automatically to device capacities
and network conditions in the IoT environment. Performances

achieved could attain up to 4X speedup in latency of model
execution and 40% energy reduction in some cases. The rest of
this paper is organized as follows; first, we have on overview
of related work, then we introduce model analysis to point out
possible optimization strategies. Second, we explore optimized
cloud collaboration and early exit methods in order to enhance
the performance of DL models on IoT devices. After that,
we show the results of the proposed methods and finally we
conclude with the perspectives of this work

II. RELATED WORK

In the literature, we find many works handling the prob-
lem of adapting DL models to constrained devices under
different angles. First we find approaches trying to accelerate
the execution of DL models using “slimming” techniques
to combine tensor and non-tensor layers in neural network
models [8]. Although this approach claims a real gain in time
execution and memory usage, the “slimming” technique is
highly dependent on the model and cannot apply to all neural
network models such as recurrent neural networks (RNN).
The acceleration of the DL model execution can be achieved
by model compression techniques as in [2], [4], [14]. In
this case the goal is to reduce the computation, energy and
storage cost by cutting unimportant neuron connections in the
model. The performance of such approaches is conditioned
by the neural network model and the dataset used to train
it. Exploiting redundant operations as proposed in [3] can
also be considered in Convolution Neural Network (CNN)
due to some high redundancy in convolution computation but
cannot be applied to other models. Other approaches tackle
the partitioning of the model itself in order to get part of the
model executed on the IoT device and other parts offloaded
to the cloud as proposed in [6]. While in this case the main
problem is how to decide about the good partitioning of the
model according to the dataset used to train the neural network
and based on network conditions. Choosing to execute the
model partially is another approach as suggested in [12].
The same problem as previously is to decide about the right
point to stop the model execution while getting an acceptable
accuracy on predictions. Besides these approaches, a brand
new technologies named under TinyML [13] aim to integrate
Machine Learning capacities within small objects powered by

Microcontroller Units (MCUs). TinyML does not search to
adapt DL models to small IoT devices but rather to implement
some capacities in MCUs in order to make the execution of
ML possible on constrained objects and open the way to some
specific applications. Our work is different by searching to
analyse common DL models and propose new strategies to
deploy these models on constrained devices either by cloud-
device collaboration or by early exiting techniques. In both
approaches we provide an optimization method to make the
decision of partitioning or early exiting automatically.

III. MODEL ANALYSIS

A. Output data size at each layer

When an image goes through a Deep Learning model, it
goes through each layer separately (at each layer we have a
matrix operation). The shape of the image will change passing
from one layer to another. We benchmark with the state of
the art Deep Learning models. The output data size will be
a very important parameter in the optimization problem. We
calculate the output data size at each layer, as the output data
size depends on the type of the layer:

• Convolutional Layers: Those layers have many different
parameters, the output size will be based on the following
parameters:

– Output Height Formula:

Input height+ 2 ∗ padding − kernel size

stride
+ 1

(1)
– Output Width Formula:

Input width+ 2 ∗ padding − kernel size

stride
+ 1

(2)
• Max Pooling Layer: The same calculation for the con-

volutional layer can be applied to the Max Pooling layer.
where:

• Kernel Size: The kernel size is the size of the applied
filter, it can be 3x3,5x5...

• Stride: Stride controls how the filter convolves around the
input. the filter convolves around the input by shifting a
specific number of unit at a time. The amount by which
the filter shifts is the stride.

• Padding: Padding is a term relevant to CNNs as it refers
to the amount of pixels added to an image when it is
being processed by the kernel of a CNN.

B. Input/Output variables

This part is very important for the latency estimation model,
in fact we provide the variables for each layer’s type to
consider:

• Convolution Layers:We include the input feature map
dimension, number, size and stride of the filters. The
latency estimation model for convolution layer is based
on two variables:

– the number of pixels (Input Dimension) in the input
feature maps,

– (filter size
stride)2∗number of filters, which represents

the amount of computation applied to each pixel in
the input feature maps

• Pooling Layers: we use the size of the input and output
feature maps as the latency estimation model variables

• Fully Connected Layers:the input data is multiplied by
the learned weight matrix to generate the output vector.
We use the number of input neurons and number of output
neurons as the latency estimation model variables. The
activation functions layers are handled similarly.

Table I resumes the variables for each type of layer:

Layer Types / Variables In Out
Convolution Layer Input number of pixels (filter size

stride
)2 ∗# filters

Pooling Layer In Dimension Out Dimension
Fully Connected Layer In Neurons Out Neurons

Activation Layer In Dimension Out Dimension
TABLE I

USED VARIABLES FOR THE LATENCY ESTIMATION MODEL

For the activation layers the input dimension is the same as
the output dimension, so we can consider them as one variable

C. Latency estimation model

We predict the latency (execution time) of a layer based on
the input and output variables mentioned in III-B. We establish
a linear regression model for estimating the latency per layer,
the formulation of the problem depends on the type of the
layer:

• Convolution, Pooling and Fully connected layers the
formulation will be as follows:

ŷ = a1∗Input variable+a2∗Output variable+b (3)

where
ŷ: The estimated latency.
a1,a2: Coefficient of the linear regression
b: Bias.

• Activation Layers: Since in activation layers the input
dimension and the output dimension are the same, we
consider them as one variable for the linear regression
model:

ŷ = a1 ∗ Input/Output variable+ b (4)

To create a linear regression model we need to create a
dataset, a matrix containing samples of input/output variables,
and we measure the latency for each couple of input/output
variables. For this purpose we use the Python Library Time
[1]. First we vary the possible Input size (Input variable) for
each layer then we calculate the output variable (whether it is
the output data size or the computation per input pixel which
depends on the type of the layer) based on the parameter of
that layer, so for the same input variable we will have different
output variable depending on the layer’s parameters. As we can
see each layer will be treated differently. The output of this
process is the data and the measured latency for that data, the
data will look different depending on the layer type:

• Convolution, Pooling, and Fully Connected (FC) Lay-
ers: The data matrix in this case will have three columns,
samples of the input variable, samples of the output
variables and the bias, the matrix and the measured
latency look like:

Matrix Data=

IN1 OUT1 1
IN2 OUT2 1
. . .
. . .
. . .

INn OUTn 1

Measured Latency=

y1
y2
.
.
.
yn

• Activation Layers: The matrix data in this case will have

two columns, samples of the input/Output variable(since
they are the same), samples of the output variables and
the bias, so the matrix and the measured latency look
like:

Matrix Data=

IN1 1
IN2 1
. .
. .
. .

INn 1

 , Measured Latency=

y1
y2
.
.
.
yn

The solution of this linear regression problem is presented

in the next section.

D. Solving the linear regression model
Let us call the data matrix X and the measured latency Y .

We need to figure out a linear regression relationship between
X and Y :

X∗? = Y (5)

where X ia an n*3 matrix (depending on the layer’s type but
the approach is the same for all layers) and Y is a n*1 vector.
In linear estimation we add a vector called A with suitable
shape to create a relation between X and Y , our equation will
look like this:

X ∗A = Y (6)

Where A is 3*1 vector, A=
(
a1, a2, a3

)
or A=

(
a1, a2

)
depending on the layer’s type.
Our goal is to calculate the vector A. The intuitive thinking is
to inverse the matrix X but we can not do that directly since
X is a n*3 matrix which is not a square matrix. First we are
going to multiply by XT for both sides therefor we get this
equation:

XTXA = XTY (7)

Now we can see we have XTX as a 3*3 matrix (3*n x
n*3=3*3) which can be inverted. So we can calculate the
vector A by inverting the XTX matrix:

XTXA = XTY
 A = (XTX)−1XTY (8)

Finally we calculated the vector A. In fact once we have our
vector A and we choose a layer with specified input and output
variables, we can estimate that layer’s latency by multiplying
the vector on input and output variables with the vector A.
Let’s call L a vector containing the input and output vari-

ables L=

 INl

OUTl

1

,the estimated latency can be calculated as

follows:

Ŷ = LA =
(
INl, OUTl, 1

)a1
a2
a3

 = a1INl + a2OUTl + a3

(9)
Now we can see the the output of the equation (9) looks
exactly like the formulation in (4).

E. Evaluation of latency estimation model

In order to evaluate the efficiency of the latency estimation
model, we compare the model output with the measured
latency and calculate the percentage of error. The table below
sums up the evaluation results for different models:

CNN Models / Latency Measured Latency(s) Estimated Latency(s) Percentage of Error(%)
AlexNet v1 [7] 0.041 0.039 4
AlexNet v2 [7] 0.054 0.056 3

VGG16 [10] 0.114 0.118 3.3
VGG19 [11] 0.1439 0.1491 4

TABLE II
EVALUATION OF LATENCY ESTIMATION MODEL

Figure 1 shows the results of the latency estimation on
AlexNet model.

Fig. 1. Latency estimation model applied on AlexNet

IV. PARTITIONING ALGORITHM

Based on the latency estimation of each layer on the
device and on the server and taking into consideration the
latency induced by the available bandwidth to transmit the
data we search the best partitioning point for the model. The
partitioning algorithm to make the collaboration between the
device and the cloud is shown in Algorithm 1:

Algorithm 1: Partitioning algorithm
Result: Partition Index
Inputs:

• CNN model
• Di|i = 1...N : Data output size for each layer in the

model
• M(Li): Regression model predicting the latency for a

specific layer.
• B: current wireless network Uplink bandwidth

For each i in 1...N:
TDi ←MDevice(Li)
TSi ←MServer(Li)
TMi ← Di

B

PI= argmin
J=1...N

(
∑J

i=1 TDi +
∑N

k=J+1 TSK + TMi)

Return PI

V. EARLY EXIT

A. Architecture

The second approach we present is early exit. In this
approach the architecture is composed of a baseline model
with some side branches as depicted in figure 2.

Fig. 2. Early exiting architecture

The input image goes through the architecture until arriving
the (n-1) convolution layer, at that stage the features generated
but the convolution layer number (n-1) will be fed to a linear
classifier to generate a confidence level for a prediction. Based
on that confidence level a decision will be made to exit the
architecture at that stage or to proceed to the next stage after
the next convolution layer, the exit decision is based on two
criteria:

• If the linear classifier does not generate sufficient con-
fidence level associated with any of the class labels or
produce a sufficient confidence for more than one label,
the input is deemed to be difficult to classify by the
current stage and it is passed along to the next stage.

• If the linear classifier produces sufficient confidence asso-
ciated with only one label, then the classification process
is terminated at that stage and the corresponding label is
produced as output of the framework.

B. Training phase

We use transfer learning in order to reduce training time on
our models. Transfer Learning is a machine learning method
where a model developed for a task is reused as the starting
point for a model on a second task. Transfer learning is
illustrated in figure 3.

Fig. 3. Transfer learning

The training phase of this approach can be illustrated in
some steps as follows

• Training the Baseline: In our work we used the baseline
VGG16 [10] implemented with Pytorch [9] and pre-
trained on the ImageNet dataset [5], we chose an example
of dataset which is cat-dog dataset and we applied Trans-
fer Learning to the pre-trained version of VGG16 to get
a good baseline training with 98% accuracy.

• Creating Exits: We create exits and we add the linear
classifiers to the baseline model. With the notion of
Transfer Learning, we fix the weights of the convo-
lutional layers of the baseline model and we only train
the linear classifiers for each exit separately (The metric
used to train the exits and the baseline is Cross Entropy).

C. Deployment phase & Decision making

Once the baseline and all exits are trained, we push the
architecture to the deployment phase. The steps of the de-
ployment phase are shown in algorithm 2.

In summary, the presented approach modulates implicitly
the number of layers used for classification based on the
input and produces an optimal DL model. The user defined
threshold, P , for the confidence level can be adjusted during
runtime to achieve the best trade-off between accuracy and
efficiency improvements comparing to the baseline model.
Thus, this approach is systematic and hence can be applied
to all image recognition applications.

D. Improving early exiting approach

The early exit approach presented in the previous section
requires a validation at each step before passing to the next. We
improve it by adding an other component to the architecture
which is called Automated Decision Making. Previously we

Algorithm 2: Deployment phase
Result: Early Exiting Model
Inputs:

• CNN model as a baseline.
• Input image

Step:
• First Step: Launch the model for an input image until

arriving to the first exit.
• Second Step: Execute the first exit and get the vector

of classes’ probabilities.
• Third Step: If the confidence value of the output is

beyond a certain threshold P (user defined), then
TERMINATE testing at that exit.

• Fourth Step: Repeat the same steps until finishing all
exits.

had the validation process, in fact each input goes through the
exit before it is validated, if it is not validated it moves to
the next exit. this process can be improved by the automated
decision making.

Fig. 4. Automated decision making

Instead of validating the input at each exit, with the auto-
mated decision making we predict the index of the exit so that
the input goes directly to the exit where it is going to leave
the architecture without passing by all the previous exits. The
Decision Making component is a Deep Learning (DL) model
which we train on a modified version of the data set that
the baseline was trained on. In order to prepare the decision
making component we have two steps:

• Dataset Preparation: To prepare the dataset, for each
image we apply the early exiting approach to get a vector
of exits’ indexes which will be the new target for the
decision making model. In this example we fixed the
probability threshold to 0.9.

• Training the Decision Making: Once the data is ready
we train the decision making model using the technique
of Transfer Learning to obtain high accuracy.

The automated decision making comes with an additional cost,
as the new component will induce additional time execution
and energy consumption. In order to reduce the impact of this
extra component we propose two solutions:

• First Solution: This first solution is mainly about re-
ducing the Deep learning model used for the decision

making. In our experiments we have seen that this so-
lution is not efficient. In fact when we reduce the deep
learning model (choosing a smaller DL model), we start
to make some losses on the accuracy. This solution im-
pacts negatively the performance of the approach besides
the percentage of energy and latency gain has slightly
improved comparing the early exiting approach without
decision making.

• Second Solution: This second solution is to launch the
decision making on the cloud to unburden the device with
its costs. Since we are speaking about cloud computing,
we must take into account the bandwidth of the Uplink
connection. Figure 5 presents the new architecture of the
early exiting approach:

Fig. 5. Offloading decision making to the cloud

When we execute the decision making component on the
cloud we actually have some costs to add, the first one is
T1(B) which is the transmission time of the input images,
the second one is T2 which the time execution of the
decision making model on the cloud and finally T3(B)
which is the reception time of the results (the exit indexes
for the input images).

VI. RESULTS

A. Partitioning algorithm results

In order to visualize the output of our partition algorithm,
we fix the value of the bandwidth and the input image size.
We choose the value B = 0.05MB/s for the bandwidth and
the size of 128 ∗ 128 ∗ 3 for the input.

Fig. 6. Output of partitioning algorithm

Figure 6 presents how the partitioning algorithm works for
different models for the specified bandwidth (B=0.05 MB/s).

Exit / Characteristics Accuracy F1 Score Latency(s) Energy Consumption
Exit1 0.9 0.89 19.62 53.16
Exit2 0.93 0.927 21.81 77.07

Baseline 0.98 0.98 34.68 138.94
TABLE III

RESULTS OF EACH EXIT SEPARATELY

The partitioning index is highly dependent on the bandwidth.
In figure 7, we compare between three approaches, the device-

Fig. 7. Comparison of device-only, cloud-only, and partitioning approaches

only approach, the cloud-only approach and the partitioning
approach. In order to have a good evaluation of this method
we vary the bandwidth and observe how the latency of the
decomposed model evolve in comparison to the latency of
other approaches. In the case of the model AlexNet V2, we
can notice that the latency of the model in the device (red line
with star marker) is constant because it is not impacted by
the bandwidth, while the latency on the server (blue line with
lozenge marker) is decreasing when the bandwidth is increas-
ing because in the cloud-only approach the input image will be
sent to the cloud so the latency of transmission decreases with
the bandwidth. Now if we look at the partitioning approach
latency we remark that it is decreasing with the variation of
the bandwidth, when the bandwidth is smaller then 2.3 MB/s
the partitioning approach has the best latency which proves
that this method is efficient. When the bandwidth is large
enough we notice that the partitioning approach and the cloud-
only approach are superposed, in other words the partition
algorithm knows exactly when to send the model to the cloud,
we call that bandwidth Bc which is the transition bandwidth
to the cloud. Finally we have calculated the average speedup
of this method by comparing the latency of the model on the
device and the latency of the model with the partitioning for
each value of the bandwidth. The speedup will be the average
across the possible values of the bandwidth. Our calculation
shows that we have 1.5X up to 3X speedup, actually the
speedup depends on the server capacity, and with a more
powerful server we would get a higher speedup.

B. Early exiting results

We evaluate the results of the early exit approach by
working on a batch of images (it could be a batch of 100,200...
images), in the results presented in table III the batch size is
150 images.

1) Evaluate each exit separately: Table III illustrates the
performance, the latency, and the energy consumption of
each exit on a batch of 150 images for probability threshold
P=0.75. What we notice here that the baseline model is the
most accurate, yet its latency and energy consumption is
remarkably higher then exit1 and exit2 therefor obviously we
will encounter a trade-off problem.

2) Image distribution per exit: Actually the image distribu-
tion depends on the threshold of probabilities that we choose,
the bar plot show in figure 8 presents the different distribution
of the images per exit for different threshold values. We

Fig. 8. Image distribution

remark that when the threshold is 0.5, the images tend to leave
the architecture from the first exit since the confidence level
demanded is low, while the number of images in exit 2 are
around 20 images and fewer images get to complete the whole
architecture. When the probability threshold is 0.9 which is
a high confidence level we notice that a big portion of the
images leave the architecture from the first exit which proves
that for some samples of batch images, it is enough to leave
the architecture at the first exit with a high confidence level.
We notice also that the portion of the images that completed
the baseline architecture is now important since the confidence
level is high.

3) Variation of energy gain, latency gain and accuracy loss:
We examined before the distribution of the images per exit as
a function of the probability threshold, now we look at the
energy gain percentage and latency gain percentage and the
accuracy loss percentage.

Fig. 9. Latency and energy gain vs accuracy loss

In figure 9 we can see that the percentage of gain latency
and energy is decreasing with the variation of the probability
threshold and that can be explained by the distribution of the

images per exit. In fact when the probability threshold is 0.5
the most of image samples leave the architecture from exit 1,
which is presented in section VI-B2. With that 0.5 confidence
level we can reduce the time execution by 31% and the energy
consumption by 44% with only 4% Loss in the accuracy. When
we increase the probability threshold we can obviously see that
we have a trade-off, for example when the threshold is 0.9 we
have 0% loss in the accuracy yet the latency gain is only 9%
and the energy gain is around 24%. To sum up, the choice
of the probability threshold is very dependent on the task, for
example if we are using the Deep Learning model to classify
objects, it would be better to choose a low threshold while in
medical diagnosis context the confidence level must be higher.

Fig. 10. Energy gain vs latency gain

4) Results of early exiting with decision maker: Since the
accuracy loss is not impacted by the bandwidth, we chose not
to present it on the figure 10, actually the accuracy loss was
around 5% compared to the baseline. In fact the energy gain
is not impacted by the variation of the bandwidth because
the same model will be executed only the time is not the
same. Here we can see that the energy gain is 57% which
a very good result, previously with old version of the early
exiting approach the maximum energy gain percentage was
40% when the threshold was 0.5 (low confidence level). Now
with a high confidence level we got a higher energy gain
percentage. When looking at the latency gain we notice that
we have a negative gain when the bandwidth is too small(the
negative gain is caused by the transmission latency), but when
we have a bandwidth higher then 0.5 MB/s, which is a very
large bandwidth, we start to get a latency gain percentage equal
to 40% while previously the maximum latency gain was 37%
with a low confidence level.

VII. CONCLUSION

In this paper we presented two approaches to enhance DL
models performance in IoT environments. First we presented a
collaboration method between the device and the cloud based
on partitioning approach with an algorithm to determine the
best point to partition a DL model. Second we presented an
early exiting approach that aims to execute the DL model
partially and exit the model as soon as the result respect
the required accuracy. Both methods offer the possibility to
IoT devices to execute complex DL models locally and make
it possible to deploy high performance applications in IoT

environments. In future work we will extend these approaches
to video streaming applications in IoT environments.

REFERENCES

[1] Python Software Foundation. Time calculation per instruction.
[2] Shupeng Gui, Haotao Wang, Haichuan Yang, Chen Yu, Zhangyang

Wang, and Ji Liu. Model compression with adversarial robustness: A
unified optimization framework. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
1283–1294, 2019.

[3] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang
Xu. Ghostnet: More features from cheap operations. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
1577–1586, 2020.

[4] Song Han, Huizi Mao, and William J. Dally. Deep compression:
Compressing deep neural network with pruning, trained quantization
and huffman coding. In Yoshua Bengio and Yann LeCun, editors, 4th
International Conference on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[5] ImageNet. Imagenet dataset containing 1000 classes.
[6] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor N.

Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. In Yunji Chen, Olivier
Temam, and John Carter, editors, Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2017, Xi’an, China, April
8-12, 2017, pages 615–629. ACM, 2017.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[8] Dawei Li, Xiaolong Wang, and Deguang Kong. Deeprebirth: Acceler-
ating deep neural network execution on mobile devices. In Sheila A.
McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages
2322–2330. AAAI Press, 2018.

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019.

[10] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[11] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In International Conference
on Learning Representations, 2015.

[12] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. Branchynet:
Fast inference via early exiting from deep neural networks. CoRR,
abs/1709.01686, 2017.

[13] P. Warden and D. Situnayake. TinyML: Machine Learning with Tensor-
Flow Lite on Arduino and Ultra-low-power Microcontrollers. O’Reilly
Media, Incorporated, 2020.

[14] Yixing Xu, Yunhe Wang, Hanting Chen, Kai Han, Chunjing Xu,
Dacheng Tao, and Chang Xu. Positive-unlabeled compression on the
cloud. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 2561–2570, 2019.

