
HAL Id: hal-03623613
https://laas.hal.science/hal-03623613

Submitted on 29 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integration of Test Generation Into Simulation-Based
Platforms: An Experience Report

Luca Vittorio Sartori, Jérémie Guiochet, Hélène Waeselynck, Aizar Antonio
Berlanga Galvan, Simon Hébert-Vernhes, Magnus Albert

To cite this version:
Luca Vittorio Sartori, Jérémie Guiochet, Hélène Waeselynck, Aizar Antonio Berlanga Galvan, Simon
Hébert-Vernhes, et al.. Integration of Test Generation Into Simulation-Based Platforms: An Experi-
ence Report. 3rd ACM/IEEE International Conference on Automation of Software Test, May 2022,
Pittsburgh, United States. �10.1145/3524481.3527236�. �hal-03623613�

https://laas.hal.science/hal-03623613
https://hal.archives-ouvertes.fr

Integration of Test Generation Into Simulation-Based
Platforms: An Experience Report

Luca Vittorio Sartori∗
Jérémie Guiochet∗
Hélène Waeselynck∗

Aizar Antonio Berlanga Galvan
{firstName.surname}@laas.fr

University of Toulouse, LAAS-CNRS
Toulouse, France

Simon Hébert-Vernhes
Naïo Technologies
Toulouse, France

Magnus Albert
SICK AG

Waldkirch, Germany

ABSTRACT
Field-testing is costly and time-consuming, hence, simulation-based
testing is becomingmore andmore important to validate autonomous
systems. Since autonomous systems can be deployed in diverse
environments, a significant amount of diversified test cases has to be
created. TAF (Testing Automation Framework) is a test generation
tool we developed to serve this purpose. It produces the test cases
from a data model that specifies the virtual environments of interest.
This paper presents a practitioner’s view of the integration of TAF
into simulation-based test platforms, through two industrial case
studies. The first one is for testing an agricultural robot developed
by Naïo Technologies, and the second one for a static perception
system by SICK AG that surveils a road crossing to support con-
nected vehicles with tracking data in complex urban scenarios. We
report on our experience in the design of the data models, as well
as in the automation of the execution, logging, and analysis of the
generated tests. We conclude with lessons learned.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
software testing, automation, software engineering, testing frame-
work, industrial case study, autonomous systems, test case genera-
tion, simulation, software-in-the-loop (SIL) simulation, autonomous
robot, agricultural robot, test oracle, dynamic agents

ACM Reference Format:
Luca Vittorio Sartori, Jérémie Guiochet, Hélène Waeselynck, Aizar Antonio
Berlanga Galvan, Simon Hébert-Vernhes, and Magnus Albert. 2022. Integra-
tion of Test Generation Into Simulation-Based Platforms: An Experience
Report. In IEEE/ACM 3rd International Conference on Automation of Software
Test (AST ’22), May 17–18, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3524481.3527236

1 INTRODUCTION
Complex autonomous systems are now deployed in real applica-
tions, but trusting them is still an unsolved issue. Such systems
would face an enormous number of scenarios, and their validation
using testing is a hot topic. Test in the field is resource-consuming in
terms of time, money, and can even lead to hazardous situations for
the users, the environment, or the system itself. For these reasons,
test in simulation is becoming popular in robotics and automotive.
It also allows testing the system in many more scenarios than the
ones experienced during tests in the field. New simulators with
realistic animations and images (e.g., from the video game industry,
like Unity), or with more realistic simulation of physics (e.g., gravity,
friction, etc. in the robotics domain, like Gazebo), or with specific
behavior already integrated (e.g., in the automotive domain, like
CARLA), are a promising technology: they allow for the deployment
of more and more tests in simulation without spending resources.
We particularly focus on software-in-the-loop (SIL) simulation,
where the real software is running in a simulated environment.

However, testing in simulation raises classic concerns in system
testing, like how to generate and select test cases. Manually devel-
oping test cases is indeed a tedious and non-efficient approach, and
in many software projects it has been replaced by automatic gener-
ation, selection, execution, and analysis of tests. This is particularly
efficient in the context of continuous integration. However, in the
context of SIL testing of autonomous system, current approaches
for test generation are not appropriate (mainly due to the absence
of formal specification of the inputs, and their wide diversity).

The objective of this study is to assess what are the benefits and
limits of the integration of automation, and particularly test case
generation, into current test architectures for autonomous systems.
We explore this issue by integrating an automatic test case gener-
ation in two experiments with industrial applications. We chose
to integrate the tool TAF (Testing Automation Framework [15],
which was originally designed for the generation of 3D worlds and
missions for testing autonomous robots. This tool allows the user
to enter a test data model (an abstract model of what could be a test
case), the constraints between the data, and it produces test cases
(files or scripts) that could be directly used by the simulators. The
two case studies integrate TAF, but are different because the first
one, the simulation of an agricultural robot in a static environment,
includes a system under test and its simulation, whereas the second
one does not simulate a system, but is limited to the generation
of tests scenarios with dynamic agents (pedestrians and vehicles).

1

https://orcid.org/0000-0001-9836-5590
https://orcid.org/0000-0002-1285-8974
https://doi.org/10.1145/3524481.3527236

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Sartori et al.

For each case study, we gather all benefits and limits, in order to
produce a list of lessons learned that might be valuable for any team
interested in developing or integrating automatic test generation
for test in simulation.

After outlining in Section II the body of literature relevant to
this work, we present TAF in Section III. Section IV describes the
first case study, about an agricultural robot, followed by the second
case study, the perception system, in Section V. The lessons learned
are summarized in Section VI. We conclude in Section VII.

2 RELATEDWORK
This section presents first the work related to testing in simulation,
and then focuses on the work regarding the generation of test cases.

Testing in simulation is an approach for software testing that
can be used to validate software in virtualized conditions. There
are various types of simulation that can be used, based on the
test objective, like Model-in-the-Loop (MIL) simulation, in which
a model of the system is used, or Software-in-the-Loop (SIL), in
which the real software of the system is running. For SIL, depending
on the domain, different simulators with a varying level of physical
fidelity were deployed: Gazebo [8] for robotics, Unity [4] for video
games, CARLA [7] for automotive, etc. Generating test cases and
scenarios to run in these simulators requires time, with many cases
generated manually. CARLA, through its scenario_runner, offers
support for ASAM OpenSCENARIO [1] for the description of the
evolution of scenarios for automotive simulators, but this approach
offers a restricted constraints’ management. More in general, for
test generation, there are very few published works in the context
of test in SIL simulation, but there are many works about automatic
test case generation in the testing community, with a survey [5]
available on the most prominent techniques.

For the test case generation, in summary [13], there are three
main categories of approaches for test case generation: 1) based
on generate-then-filter, which consists in producing a candidate
test case and discarding it if it does not respect the criteria. The
process is repeated until there are enough feasible test cases. This
has the drawback of generating a lot of invalid solutions if there
are constraints, hence, it is not efficient for complex simulation
data models. 2) Based on tuning the generation, using application-
specific knowledge on how to build the data. The disadvantages
are that it requires high development effort for each application
and that it is not generic. 3) Based on constraints solving, where the
generation effort is delegated to a constraint solver. This approach is
not suitable for rich data structures, and there are few contributions
for generating diverse solutions.

To mitigate the disadvantages of the last approach, LAAS-CNRS
developed a tool: TAF (Testing Automation Framework) [12]. TAF,
and the present paper, are inserted in an ongoing work at LAAS-
CNRS regarding simulation-based testing [11–14]. The work of
LAAS-CNRS focused on the generation of virtual worlds, on finding
bugs in simulators with low physical fidelity for the robotMana [14],
on addressing non-determinism, and lately on developing TAF for
aiding practitioners in generating test cases from rich data struc-
tures with constraints. TAF is a tool that mixes random sampling
and resolution of constraints to generate test cases with enforced

diversity. This tool was developed starting from an issue encoun-
tered in the Oz robot industrial case study [13], and generalizing
the solution to tackle the bigger issue of generating size-varying
data with constraints.

Even if TAF has been shown to manage well constraints, di-
versity, and rich structures [12], no paper has been published to
assess the benefits and limits of its integration in a test suite for
industrial case studies. This paper presents this assessment. Previ-
ously, with the agricultural weeding robot Oz [13], we encountered
non-determinism related to the decisions of the system, and we
proposed a statistical approach to address it [11]. In another case
study, we encountered another type of non-determinism, related
to the toolchain and controllability in simulation [9]. These works
reinforce the idea that simulation-based testing is not a substitute
of field-testing, and has its own advantages and drawbacks, hence
the need for more experience reports with industrial case studies,
to help the practitioners.

3 TAF: TESTING AUTOMATION FRAMEWORK
TAF (Testing Automation Framework) is an open-source tool de-
veloped at LAAS-CNRS to generate concrete test cases with added
diversity and that respect constraints. TAFworks bymixing random
sampling and resolution of constraints to enforce diversity. The
main algorithm uses the Z3 solver [6] for constraint solving. TAF
was initially created to generate test cases of worlds and missions
for robotic simulation, but it was expanded to solve themore general
problem of generating size-varying data with semantic constraints.

As presented in Figure 1, TAF transforms an abstract model of
the test data (called the Template), containing constraints, into
instantiated test cases that respect the constraints (defined as “Test
cases” before the export in Figure 1). Moreover, by using an export
function/file customized by the user, TAF converts these test cases
to output files that are specific to the testing architecture, e.g.
maps/environments for the simulator, scripts, etc. An example
is given in Figure 1, where the generated files are in JSON and
in a specific format for a robotic application (explained later in
the agricultural robot in Section 4). TAF uses a hierarchical XML
tree structure to model the test data (the Template) with dedicated
functions. This model contains the constraints, also expressed with
XML, but extended with test generating features (e.g., with normal
distribution for random sorting). Based on the model, TAF will
create a skeleton of an export function in Python. This export
function has to be customized by the user.

The concepts presented in this subsection (TAF template, con-
straints, and export) are explained in the following paragraphs.

3.1 TAF XML template
The TAF XML template is the input file of the TAF framework. It is
on the left of Figure 1. It contains a hierarchical tree structure—the
model of the test case—with its elements and parameters. A TAF
test case template includes four types of XML elements: Root, Node,
Parameter, and Constraint. Every element must have a “name”
attribute. Elements are nested to form a tree starting from the
root. The root and nodes are composite data structures with child
elements, while a parameter is not composite. The parameters can
be of type boolean, string, real, and integer. Both the parameters and

2

Integration of Test Generation Into Simulation-Based Platforms: An Experience Report AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

.xml

Template
User

Test case 2

Test case 3

Test case n

Test case 1

Data factory Export

.robot .json

.py

Skeleton for export

Test case 1

.robot .json

Test case 1

.robot .json

Test case m

TAF component

…

…

Source file completed by the user

Figure 1: Overview of TAF.

nodes have a “nb_instances” (number of instances) meta-attribute
that allows for multiplicity.

A snippet of an XML template can be seen below. This example
specifies a world (which is a field for agriculture), composed of
rows (of vegetables) (with a multiplicity between 2 and 10 rows,
in L3). Each row has a length, which is between 10 and 100 (L4),
and an inclination between -2 and 2 (L5). Only one constraint is
presented here (L7-L11), which is explained in the next subsection.

1 <node name="world"> <!-- file .geojson -->

2 <parameter name="len_between_rows" type="real" min="1.5

" max="2.5"/>

3 <node name="row" min="2" max="10">

4 <parameter name="row_length" type="real" min="10" max

="100"/>

5 <parameter name="row_inclination" type="integer" min=

"-2" max="2"/>

6 <!-- rows constraints -->

7 <constraint name="interval" types="forall"

8 expressions="row[i]\ length INFEQ 1.1* row[i-1]\

length; row[i]\ length SUPEQ 0.9* row[i-1]\ length"

9 quantifiers="i"

10 ranges="[1, row.nb_instances -1]"/>

Listing 1: Snippet of the TAF XML template for the robot
Dino

More examples of templates can be seen in the TAF paper [12]
or on the TAF repository [15].

3.2 TAF model constraints
The TAF template include constraints, which consist of expressions
that specify semantic properties in a descriptive way. The expres-
sions may involve logical (not, and, or, implies), arithmetic (+, -, *,
/), and relational (==, !=, <, <=, >, >=) operators. The structure of
the expressions follows the Z3 solver syntax [6]. In Listing 1, the
constraint in L7-L11 specifies that two consecutive rows (row[i-1]
and row [i]) have lengths that cannot differ more than 10% (using
1.1 and 0.9 multiplication). The quantifier “i” (an iterator) is used to

enumerate the rows, and its interval is specified with the keyword
“ranges” (L11).

TAF uses the capabilities of the Z3 solver to construct valid
test cases. TAF can create valid test cases from size-varying data
structures with numerical constraints. It uses layered generation,
meaning that layer “k” is generated respecting the constraints, then
TAF moves to the generation of layer “k+1”. If it is not possible
to find values for the parameters that respect the constraints for
layer “k+1”, because there are constraints between values at layer
“k+1” and layer “k”, TAF uses backtracking to go back to layer “k”
and generates a new different solution, then tries again to generate
layer “k+1”.

3.3 TAF export facilities
The role of the TAF export is to transform the instantiated model
(the genotype, like the DNA of a person, which contains the value
of the parameters) in files for the simulation (the phenotype, like
the external traits, features, and appearance of the person).

The first time TAF is executed with a new template, it creates an
export skeleton that is different for each template and that shows to
the user how to access the various data elements in the instantiated
test case. The export file is on the bottom-left of Figure 1. The export
functions are initially empty, because they have to be completed
with the code and customizations of the user. When customized,
this export script creates output files based on the user needs. On
the right of Figure 1 there are examples of the output files, in the
form of test cases files .robot and .JSON.

This and the previous subsections have presented how TAF
works, from input (template) to output (test cases), explaining
the inner workings of TAF. The following subsection moves to
a zoomed-out general view and shows how TAF can be integrated
in a testing framework.

3

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Sartori et al.

Figure 2: TAF integrated in a testing framework with
generation, simulation, and analysis phases.

3.4 TAF integration in a testing framework
The goal of a testing framework is to assure that a system is
thoroughly tested before going to production. It uses a repeatable
procedure divided in phases, making it easy to test if changes to
the code of the system have introduced faults, as repeating the
testing procedure will show new failures. The testing framework
is usually composed by three phases: generation, simulation, and
analysis, visible in Figure 2. During the generation phase, the test
cases are modeled and created. They can be generated using tools,
like TAF, or can be composed by hard-coded test cases created
by the developers. The test cases are then run in the simulation
phase, using the simulator, which will record data and logs. The
recorded data is used during the analysis phase, in which they
are analyzed to understand what led to the failures. TAF can be
inserted in the generation phase, as on the upper left of Figure 2,
where TAF generates the test cases, starting from the template, as
described in the previous subsections. As there are different ways
to generate test cases, TAF was compared to other approaches [12],
e.g., generate-then-filter, showing that TAF, for the four case studies,
can generate diverse test cases (while other approaches can not),
and that the performance of the generation time is competitive
with respect to a similar generation tool, while obtaining a much
better coverage of the data space.

4 THE AGRICULTURAL ROBOT CASE STUDY
This section introduces a case study that permits us to illustrate
the integration of TAF into a continuous integration pipeline. We
present an overview of the system, the type of test cases that are
generated, and our contribution, in order to frame the insights
gained during the integration, which are shown in Section 6.

This case study is in the context of validating the weeding
mission of an agricultural robot, Dino, visible in Figure 3, where the
System-Under-Test (SUT) is the software of the robot. The focus
of our work is on the integration of the generation of test cases in
the existing toolchain and continuous integration pipeline of the
company, with a simulator in development. To assess our work on
the testing automation and new generation process, we performed
a testing campaign comparing simulation-based testing against
field-testing, which showed bugs in the stable version of robot
software and simulator.

Figure 3: The Dino robot for vegetable weeding on large-scale
vegetable farms. Source Naïo Technologies [10]

4.1 System overview, environment, mission
Dino is an autonomous robot developed to mechanically weed
vegetable crops on large-scale vegetable farms. It is designed by
Naïo Technologies in Toulouse, France. Dino eliminates the need
for chemical weed control, weeds all by itself, and works as follows.
First, it memorizes and plots a map of the field of crops. Second,
it uses GPS-tracking to work autonomously throughout the rows.
Third, it uses a camera vision system to detect crops and to position
its tools as closely as possible to the crops.

A typical Environment for Dino is a static flat field composed
bymultiple parallel rows (or vegetable beds) with similar length and
with a similar distance between rows. The structure of the fields
changes based on the vegetables, e.g., lettuce, carrots, onions, etc.
Of course, there can be less typical fields with much more variety.

In the environment, a typical weedingmission for Dino consists
in loading the map of the field, aligning itself with the row, regu-
lating the position of the weeding tools before entering the row,
weeding the row, raising the tools when exiting the row, performing
a U-turn to align itself with the next row, repeating the previous
steps until the last row has been weeded, and displaying on the
remote a message to confirm that the mission has been completed.

The new Dino missions and environments are generated by TAF,
which is integrated in the existing architecture as follows.

4.2 Test architecture
Naïo had already in place a continuous integration pipeline with
a test architecture. This means that when new code or fixes are
added to the robot software (the SUT), a set of hard-coded and
predefined test cases are run in simulation, the observed robot
behavior is compared to the expected behavior, and a test report is
produced. With this process, if a failure is reported, the developers
can understand what went wrong and fix the issue with the next
code commit.

The test architecture of Naïo is comprised by many phases, e.g.,
build testing, unit testing, code analysis, acceptance testing. For this
case study, we focused on the generation, simulation, and analysis,
for a subset of the possible missions of the acceptance testing.

4

Integration of Test Generation Into Simulation-Based Platforms: An Experience Report AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

The company gave us two examples of predefined test cases
used in their pipeline: one with one straight row and a second
with two straight rows. Every time, the same two test cases were
run without diversity. We extended and generalized this type of
missions to an arbitrary number of rows, with added diversity. Due
to the structure of the testing architecture, our TAF generation is
done offline, detached (and before) the continuous integration of
new code.

Regarding the integration of TAF in the testing architecture of
Naïo, it is depicted in Figure 4. If there are just predefined test
cases, there would be no generation phase, because the simulation
would run the same tests every time. Instead, we introduced the
generation phase with generic test cases, which is the first phase of
the testing procedure. More specifically, the TAF template file is the
starting point. TAF is in the generation phase and, starting from
the template—the model of the test cases—, provides the instanti-
ated test cases, and, through the TAF export, provides as outputs
the files needed to start the simulation phase, i.e., map.geojson
and mission.robot. TAF generates test cases containing the world,
mission, and some properties for the expected behavior (like the
maximum weeding time for the rows, commands to send to the
robot, and expected keywords returned by the GUI of the robot).
These test cases are then run in simulation.

To automate the simulation phase, the company uses Robot
Framework [2], a keyword-driven test automation framework. In
the test architecture of Naïo, Robot Framework reads the mission
file, launches the SUT, the simulation, connects the SUT and the
simulator using a messaging system, sends the mission commands
to the robot, provides a runtime oracle, interrupts the simulation
if needed, and writes a test report. Please note that an oracle is a
mechanism to check if the robot behaves as expected, and gives a
pass or fail verdict to the test, depending on if there are violations.
During the simulation, the SUT writes a log with its perception.
With our contribution, now the simulator also records a log—the
ground truth—which can be compared to the SUT log.

After the simulation is finished, the analysis phase starts, in
which the simulator and SUT logs are compared to check for pos-
sible misbehavior or wrong perception regarding the position,
orientation, speed, etc. If a failure is detected during the comparison
or at runtime by the oracle of Robot Framework, the test report is
also used to analyze what happened to the SUT, since it contains
information about the failure. The log of the SUT can also be
replayed with a 2D offline replayer, different from the simulator,
that shows a simplified version of the actions of the SUT. With
continuous integration, when a bug is detected and a fix attempt
is pushed as a code commit, the testing procedure is started again
with the same test case to test if the bug has been fixed.

It should be noted that the SUT—Dino-core—is in C++, but the
simulator is developed using Python in combination with Bullet
for real-time physics simulation.

Test suite management. Since a new test suite is generated
each time, a python scheduler manages its creation and other
operations, but we did not include it in Figure 4.

Our experience and contribution regarding the design of the data
models, the automation of the execution, logging, and analysis of
the generated tests is explained in the following subsections.

site.com

NginxOrchestrator

Robot framework

Analyzer

Dino-Oracle

SUT*

Dino-core

Simulator

Naio Micro-Simulator

Logs

Auto report
generator

Generator

TAF

Figure 4: Testing architecture for Dino.

Figure 5: The UML class diagram of the Dino robot.

4.3 Design of the data model
To create instantiated test cases, TAF needs a template containing
the model of the world and mission. We initially started the
modeling by adapting a model of a previous agricultural robot case
study of the same company [13]. The model was already complex,
so we removed and changed parameters. Later we started with a
new simple model, and we added parameters iteratively. We started
the modeling from the two test cases provided by the company, i.e.,
one row and two rows, and the corresponding Robot Framework
script. From there, we created the data model and the export for
TAF. We modeled the test cases in order to create generic fields
with an arbitrary number of rows and with more diversity. The
model was enriched with new parameters, like the inclination of
the rows, the longitude offset of the crops, etc.

The model uses a tree structure to represent the test case ele-
ments. As shown in Figure 5, the root node is named Test_case and
is composed be the Robot and the World (the vegetables field). This
World is composed by a Row element, which has multiplicity (the
“*”), meaning that there could be multiple Row elements. Row is
composed by the Crop element. Each element has its own parame-
ters, e.g., row_length. Constraints linking elements of the test case

5

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Sartori et al.

are also modeled, like the maximum length difference between one
row and the next. This model has been translated in XML inside
the TAF template.

After this brief description of the structure, it is worth reiterating
that creating the template is an iterative process. Discussions are
needed with the developers, and the execution of new tests can
give more insight, which is used to improve the model and the
UML class diagram, which can be one starting point for writing the
template. Transposing a UML class diagram to a TAF template is
straightforward. The difficulties are having a UML diagram that
respects the specification requirements, and properly modeling
the constraints. For this case study, the final template has 63 lines,
9 nodes, and 2 constraints. Its complexity is manageable, as the
structure is still easy to visualize, the constraints are few and not
complex to write. For the comparison of the testing campaign, a
restricted template has been chosen, which focuses on the fields in
possession of the company, where it is possible to test the robot
and compare the execution to the simulated executions. More
information about how to build the template are described in the
TAF paper [12].

We then focused on the TAF export, which transforms the in-
stantiated test cases in input files for the simulation, i.e., map.geojson
and mission.robot. The company uses Robot Framework with a
system of keywords to manage the test cases, so, to interface
with Robot Framework, we modified the TAF export to create
mission.robot files with the proper keywords.

From the export, TAF generates a part of the expected behav-
ior, like the commands to send to the robot, the GUI keywords
returned by the robot, and the timeouts checks for the weeding
time, which have to be included in the mission.robot. We modeled
the timeouts as constraints, which are linked to the test case, and
more specifically, to the robot speed, and number and length of the
rows.

4.4 Automation of the execution
The Robot Framework procedure managing the simulation was
hard-coded, so we modified its library and keywords system to
accept new and diverse test cases.

To pass from a predefined number of test cases to a test suite,
a python scheduler was created to manage the creation of the
test suite, the connection with the existing architecture and Robot
Framework routine, and the moving and storing of the simulation
files for reproducibility. We created the specification requirements
and the first versions of the python scheduler, while subsequent
versions were developed by a third party company.

4.5 Logging and analysis
Logging. The company relied on the Robot Framework report and
the SUT log for diagnostic. The log of the simulator, the ground
truth, was absent. Since it is necessary for a more complete analysis,
we added logging capabilities to the simulator.

We designed the simulator log to include the same elements that
were perceived by the SUT, like position (x, y, z), orientation, speed,
etc., and to synchronize the recordings with the Unix timestamp,
since the simulator timestamp would be relative to the initial time
of the simulation.

Analysis and the oracle. There can be an online oracle, which
checks the behavior during the runtime, and a post-processing
oracle, which operates on the logs after the simulation is finished.

The online oracle relies on the properties inside themission.robot
file to check the expected behavior, thus, we worked with Naïo en-
gineers to define the expected behavior of the SUT for the new test
cases. We then developed the TAF export to create a mission.robot
that would update the expected behavior for each new test case.

The online oracle usually checks fewer properties than the post-
processing oracle, so it can be useful to have a post-processing
oracle. Since the company did not have a post-processing oracle,
we wrote its specification requirements, which will be used in the
future for deeper analysis. The specification requirements take into
account the information on properties, triggers, data, thresholds,
and detection. Examples: Dino does not exit a specific area during
a U-turn mission phase, or the maximal angle covered by U-turns
does not exceed an angle threshold.

The results of the additions described in this and the previous
subsections are narrated in the next subsection.

4.6 Results
We performed a comparison campaign in April 2021 to see the
effect of our contribution to the testing architecture. We compared
the results of the simulation-based testing and field-testing in two
fields of the company, with the SUT being the production version
of the robot software, running on 200 robots. The generation was
restricted to be able to generate environments just like these two
fields of the company, i.e., one field of 8 straight rows of 60m
and one field of 14 sinuous rows of 20m. The simulation-based
testing consisted of 500 runs. The results were: 445 successful
missions, giving a success rate of 89%. For the 55 missions that
failed, there are two types of errors. The first type are errors due to
the Robot Framework implementation, which was expected, since
the architecture is still in development. The last type is due to a
bug in the guidance system of Dino, which goes in a fail-safe state
and stops the mission early during a U-Turn. This bug has been
confirmed in the field-testing. This is an encouraging result to push
for the automation of the generation of more diverse test cases,
that could save time and lead to finding bugs harder to find in a
physical test.

Regarding the performance of simulation-based testing, the gen-
eration of 125 test cases with TAF, with the restricted template, took
7 seconds. This time depends on the complexity of the template,
meaning that a field with more constraints could require more time
to find suitable test cases. The test execution of a single test of
the campaign, with 8 long rows, takes ≈18 minutes, comparable
to a field-testing run, since it runs in real-time. In comparison,
field-testing took one day to run 20 missions, since the robot has to
be transported to the field and set up for the tests. The time needed
for the tests in simulation of this campaign is greater than the few
minutes needed for the original tests provided by the company, that
have maximum 2 short rows. Nonetheless, the company sees the
outcome of the campaign as a positive result and wants to integrate
more diverse test cases in the Continuous Integration in the future.
The company is interested in continuing the improvement of the
simulation-based testing due to its advantages, because it can: be

6

Integration of Test Generation Into Simulation-Based Platforms: An Experience Report AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

parallelized, run alone and automatically (without developers being
physically present), go faster than real-time, run 24/7, run a variety
of different fields, with every possible condition, with execution
time proportional to the complexity of the instantiated field.

Additionally, even if the testing campaign was restricted to the
generation of virtual fields that had a comparable physical field
usable by the company, with the TAF template, it is possible to
generate completely different fields, in order to test other situations
and corner cases. Preliminary results with the extended template
have shown promise in finding new bugs, and the generation of
more diverse test cases will be explored in future works.

This subsection concludes the description of the first case study,
whose lessons learned are available in Section 6. The next section
will present the second case study.

5 PEDESTRIAN PERCEPTION CASE STUDY
This case study was provided by SICK AG, a global manufacturer
of sensors and sensor solutions for industrial applications, with
headquarters in Waldkirch, Germany. This section presents an
overview of this second case study, and our work on the integration
of the generation of test cases with parametrizable behavior of
dynamic agents. Compared to the previous case study, this case
study cannot be presented with a similar level of detail, due to the
Non-Disclosure Agreement. An important difference is also that
we focus on scenario generation with dynamic agents (pedestrians
and vehicles), and not on simulating the SUT. The lessons learned
are shown in Section 6.

5.1 Overview
This case study is about an infrastructure-based perception system,
designed by SICK AG, with the objective of monitoring a complex
urban road intersection and tracking the agents idling or transiting
on the roads, sidewalks, and pedestrian crossing. An example of
the simulated intersection is visible in Figure 6. Compared to the
previous case study, the environment is dynamic, due to the pedes-
trians and vehicles on the intersection. The object data potentially
supports connected vehicles, e.g., autonomous vehicles (AVs), that
will traverse the intersection. This enables the connected vehicles to
avoid undesirable situations or cross at the maximum speed, if the
intersection is free. The study was conducted in simulation, which
mimics a real life intersection with various agents, e.g., pedestrians,
cars, busses, or bicycles. The goal of our work was to integrate
the generation of diverse test cases with dynamic agents, in order
to generate more varied sensor data within the simulation. From
the point of view of the perception system, the dynamic agents
(vehicles and pedestrians) in front will occlude the line of sight, and
consequentially, hide the dynamic agents in the back, making the
detection and tracking more difficult. Thus, stressing the perception
system, which is the goal of the testing.

5.2 The testing architecture
The company provided a simulation environment with four prede-
fined test cases. Compared to the previous case study, the SUT—the
tracking software—was not provided, thus, the analysis phase was
not performed. The AVs were also not simulated. Regarding the sim-
ulator, SICKAG used a customized simulation framework, with own

Figure 6: Simulation of the road intersection. Source SICK
AG [3]

modules, API, and modules for sensor data recording. The company
records the ground truth of the agents inside the simulation, and
compares it to the perception of the tracking system, to assess the
correctness of the tracking. They also perform statistical analysis
to assess the tracking performance. The testing procedure was
requiring manual activities performed by the user, like launching
the simulations, data recording, starting the tracking, or starting
the analysis process.

For the generation phase, the company had its predefined test
cases. We started from their framework, and we added the genera-
tion of test cases with parametrized dynamic agents, using TAF, as
shown in Figure 7. TAF transforms the test cases in JSON files. In
addition, C# scripts were created manually, but in the future, the
plan is for TAF to generate them automatically. The JSON and C#
scripts are the output of the generation phase, and the inputs for the
simulation phase, as shown in Figure 7. Regarding the simulation
phase, the SUT (not used in this case study) will track the dynamic
agents and send the data to the autonomous vehicles, which will
use the data to modify their speed. The AVs were also not simulated
in this case study. The simulation framework, to add features, like
dynamic agents assets, uses third-party modules and customized
modules, which make use of simulation objects. To interface with
the existing framework, we had to take into account the existing
objects and modules inside the simulation framework. Thus, we
wrote C# scripts that the SICK AG simulation framework used to
control the agents’ new behavior, made sure that the agents were in-
stantiated correctly, and that the scenarios were executed properly.
The scripts were connected to third party modules available for the
simulation framework. During the simulation, the framework of
the company records the object data, which will be used during the
analysis.

The analysis phase was not performed for this case study, but
it consists in comparing the effectiveness of the tracking software
to the ground truth, which contains the agents instantiated by the
simulator and their parameters (position, speed, etc.). Additionally,
statistical analysis is performed to characterize the confidence inter-
val and distribution of the tracking. This is important to understand
if the SUT is suitable for the Operational Design Domain, if the

7

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Sartori et al.

Figure 7: The testing procedure. The orange part on the left
is the addition of LAAS-CNRS (TAF and C# scripts), while
the blue part on the right is the part of SICK AG.

scenarios are inside the specifications, and if there are failures in
the SUT.

5.3 Design of the data model
SICK AG provided four test cases with predefined parameters
value for the agents, like the path to take, the starting time, speed,
etc. From the provided case studies, we started investigating the
generation phase bymodeling a class diagram of the test case and
the agents’ parameters, which were included in a TAF template (of
which, a simplified snippet is in Listing 2). The TAF template is
the starting point on the left of Figure 7. To manage the dynamic
agents at runtime, it was necessary to create a parametrizable
behavior that could be defined during the generation with TAF. The
behavior includes the selection of the path to take, direction, starting
time, starting speed, etc., related to the various dynamic agents,
e.g., pedestrians, vehicles, cyclists, and idle pedestrians. While
iterating the modeling and executing the test cases, we observed
that some vehicles and pedestrians spawned too close to each other,
resulting in collisions, like in Figure 8. For this reason, we modeled
constraints to not have spawning times too close for the agents.
An example of this type of constraints for pedestrians is visible in
Listing 2, starting from line 6. Apart from constraints related to
the starting time, the other constraints are related to the starting
path and position. The result, for this case study, is that the final
template has 54 lines, 4 nodes, and 5 constraints. Compared to the
agricultural robot case study, this template has a simpler structure,
but more constraints, in order to avoid unwanted scenarios. We
then created a TAF export function, which would create a JSON
file containing the parametrized behavior of the agents. After being
created by the TAF export, the test cases instantiate pedestrians
and vehicles that take the possible paths, at different times, along
the sideways and road lanes.

1 <root name="test_case">

2 <node name="pedestrian" min="5" max="15">

3 <parameter name="path" type="string" values="PathA;

PathB;PathC;PathD"/>

4 <parameter name="starting_time" type="integer" min="1"

max="30"/>

5 <parameter name="starting_speed" type="real" min="1.5"

max="2.0"/>

6 <constraint name="spawn_pedestrian" types="forall;

forall"

7 expressions="IMPLIES(i DIF j, pedestrian[i]\

starting_time DIF pedestrian[j]\ starting_time)"

8 quantifiers="i;j"

9 ranges="[0, pedestrian.nb_instances -1];[0 ,

pedestrian.nb_instances -1]"/>

10 </node>

11 </root>

Listing 2: snippet of the TAF XML template for the SICK AG
case study

5.4 Results
The integration of the generation phase with TAF was successful. It
generated more diverse test cases, created scenarios to occlude the
view of the SUT with agents, and made the tracking more difficult.
The test cases, managed by the scripts, respect the constraints. The
test cases were tested with a maximum of 20 walking pedestrians,
10 vehicles, and 8 idle pedestrians. Quantitative measurements of
the performance are not available for disclosure.

6 LESSONS LEARNED AND TAKEAWAYS
This section lists the lessons learned, the takeaways, and the ex-
amples and experiences that led us to the recommendations. They
are framed in three topics: the test data models (generation), the
automation of the execution (simulation), and analysis. To ease the
reading, we will refer to Naïo for the robot case study and to SICK
AG for the pedestrian perception case study.

6.1 Lessons learned in designing test data
models

Data models are intertwined. We started with the idea that
the generation of the environment, mission, and expected behavior
could be decoupled, but in practice, they are all coupled. For Naïo,
they are coupled inside the Robot Framework files. There can be
case studies in which they can be separated, but it is not a safe
general assumption.

Iterative and incremental building of test data models. The
building of the model should be iterative and incremental, as it is
done in a classical or agile development process. It is particularly
important to build prototypes of test data models and validate them
with runs in simulation, because of effects that are difficult to foresee
before running the test case. For instance, there can be effects of
the modeling that require adding more constraint to make the test
cases run as expected in the simulation. It was the case for the SICK
AG case study, where the identification of physical constraints is
not obvious and has an impact on the spawning time of vehicles.
An illustrative example is that the vehicles have a physical volume,
so it is not possible to spawn two cars in the same starting position
with a small delay, as shown in Figure 8. To avoid such situation, it
is necessary to add a constraint in the model about the spawning
time.

Take into account simulator features in data models. Dur-
ing the modeling, a first abstract model could be done (as it is done
with Operational Design Domains—ODD—) but some ideas and
elements may not be implementable due to simulation features and
limits. For Naïo, we can model, but not generate some missions,
because they require features that are not available in the simulator,
e.g., we cannot initialize the robot at an arbitrary position in the

8

Integration of Test Generation Into Simulation-Based Platforms: An Experience Report AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

Figure 8: Cars collision due to missing time constraints.

middle of the field, because the company is still developing the
simulator and the robot has to start outside the field. For SICK
AG, some objects from the simulator framework impose how some
objects should be modelled. For instance, pedestrians’ paths and the
modules that provide the path-related functionalities are only run
when paths are predefined, thus, the paths have been integrated in
the test model.

Constraints should be handled in the data models. The
constraints should always be first considered to be integrated in the
template, where they are handled by the solver and connected di-
rectly to the other parameters. For Naïo, we inserted one constraint
for the maximum weeding time, a timeout, in the export, which
coupled instantiation and export. This was due to a restricted view
of the model, that looked just at the inputs. In retrospect, we should
have considered the outputs too, and we should have integrated it
in the template.

Data models constraints should consider expected outputs.
For the data model, it is restrictive to consider just the inputs, as
some expected outputs of the simulation should be considered
and should have corresponding constraints included in the model.
For instance, for Naïo we needed to generate weeding timeouts
(which are not inputs) for the oracle. The timeouts were related
to the expected behavior and were created using constraints that
connected the robot speed, row length, and rows number.

Use simple scenarios, not complex ones. Even if it sounds
obvious, most of the faults can be found with many simple scenarios
and not with complex ones. Besides the fact that simpler tests are
easier to develop, maintain, and analyse, they also are more reliable
and deterministic.

Generation is not limited to simulator input files. In most
of the cases, the generation has to produce static simulator-specific
input files, but also additional scripts when a behavior is required
for the test input. For Naïo, this means adapting the TAF export to
create a Robot Framework mission.robot file containing the mission,
commands for the robot, and timeouts. For SICK AG, C# scripts
were developed to be used by the simulation framework to load the
JSON file and instantiate and manage dynamic agents.

Automatic generation requires development resources. Adding
the generation phase is still not plug and play. Moving from pre-
defined test cases to new automatic test suites requires a test suite
management system and a scheduler to coordinate the various steps

of the testing. Even if simulators already integrate such features
(e.g., scenario_runner in CARLA simulator [7]), they are usually
not integrating facilities like constraint solving. For both of our
experiment, no test input generator was available on the market or
in the research community to be directly used.

6.2 Lessons learned for the automation of the
execution

Simulation-based testing brings non-determinism.
Simulation-based testing is complementary to field-testing and
presents its own issues and limits. It can present non-determinism
related to the toolchain [9], to the decisions taken by the SUT [11]
or to the design of the tests. We have observed that the toolchain
can introduce spurious failures, like in the simulation campaign
for Naïo, where, out of the 500 tests run, 51 tests failed due to
simulator or framework related issues. To diagnose and avoid these
issues, a trend is to use the same exact configuration files, virtual
environments, and use containers like Docker (to avoid dependency
hell). A related issue is the failing of the test due to the wrong
synchronization between the SUT and the simulator, since the
testing architecture and simulator are in development.

We also observed failures due to phantom processes or memory
not being cleaned properly, which would manifest after running
more than 100 test cases or with TAF not being able to instantiate
test cases. In the last case, a reboot solved the issue.

We have also observed flaky (unstable) tests for this SIL testing,
even if they are usually a classic problem for other testing fields.
If the test environment is stable, rerunning the unstable tests and
redesigning them solved the issues.

Use test objectives to select the right simulator. Since the
available simulators differ greatly regarding the complexity, the
physical fidelity, and how the execution can be automated, the
selection of the toolchain and the simulator depends on the needs of
the company and on the test objectives. Naïo wants simple physics
and fast iterations (hence Bullet), because they use the simulation
for non-regression testing and acceptance testing. Previously, they
experimented with a more complex simulator, but decided to select
a simpler simulator that allowed them to fail fast, still find bugs, and
iterate fast with the CI. A simple simulator can be useful, because,
even with low physical fidelity, it has been demonstrated that bugs
can be found [14]. SICKAG, on the other hand, needs realistic sensor
data and good support to manage and integrate sensor modules,
hence they use a more mature simulator with better commercial
support.

6.3 Lessons learned for logging and analysis
Use different oracles for different needs. The oracle can be

used at runtime or for post-processing. Use an online oracle when
the interest is to stop the test as soon as a violation is detected. Use
a post-processing oracle to easily change the properties without
relaunching the simulation, and to have a more complex analysis.
The online oracle is suitable for Naïo because they want to interrupt
a test as soon as there is a failure, to save resources and time. Their
online oracle is also simpler than the post-processing oracle and
based on the commands sent to the GUI (graphical user interface)
of the robot, which could also lead to failures.

9

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Sartori et al.

It is also possible to do the analysis just in post-processing, like
in the case of the SICK AG. SICK AG has no interest in stopping the
simulation early, as they want to gather a lot of sensor data with
each simulation, and their SUT is tested after the simulation is over,
using the recorded data. They use the post-processing to analyze
complex properties and the tracking over long periods of time.

Record the ground truth for better analysis . The post-processing
oracle needs to compare the SUT log and the simulator log. For the
ground truth, it is necessary to log the data corresponding to the
subjective perception of the robot, like the position, orientation,
and speed. The logs need to have comparable coordinate systems
and timestamps. If this is not the case, like with Naïo’s framework,
then a conversion is needed. A small tolerance has to be considered
when comparing an event in the SUT and simulator logs, since
the two timestamps will never have the same value. Also, triggers
have to be inserted, in order to not record unnecessary information
before the SUT is connected to the simulator.

For dynamic agents, like with SICK AG, a list of all the objects
and agents inside the simulation has to be recorded, so it is possible
to check if they are tracked correctly later.

Do not limit the analysis to simulation and oracle. For the
case study of Naïo we could use three types of diagnostic: online,
post-processing (RF report or ground truth comparison), and a
simplified replayer for the events, which is manual and out of the
CI. This replayer is a separate tool, which is 2D and lacks some
features of the simulator, but is faster to use than a simulation, and
complements well the written reports, giving an additional option
to understand the events leading to the failure.

7 CONCLUSION
This paper presented our work and experience in integrating an
automated test case generation, provided by the tool TAF, in two
industrial simulation-based testing frameworks, with a focus on
the generation, simulation, and analysis phases. The two testing
frameworks are related to two case studies. The first one is about
an agricultural robot, by Naïo Technologies, that performs weeding
missions in a static field. The second one is about a perception
system, by SICK AG, that surveils a road crossing with dynamic
agents. The two case study provided two very different types of
test cases for us to model, and for TAF to generate. The tool TAF
is introduced with its features and capabilities, and the two case
studies are presented with a focus on their testing process and
how the addition of the automated generation changes the testing
architecture.

In both case, the integration of test case generation (with TAF),
was a success to explore more test cases, and to automatize a tedious
and limited manual process. We abstracted the experience gained
with the case studies, and we presented the lessons learned on the
design of the test data models, the automation of the execution,
logging, and analysis of the generated test cases, in order to provide
insight to practitioners of simulation-based testing.

Our future work will explore the integration of the automatic
generation in other testing frameworks with a post-processing
oracle and an analysis phase. Another direction that we plan to

follow is the addition of search-based and combinatorial algorithms,
and the transformation of the testing frameworks in testing loops,
to optimize the model parameters of the next iteration, based on the
results of the test cases previously ran, to increase the probability
of encountering failures. The last direction is to use TAF to model
and generate more complex test cases and scenarios with dynamic
agents, in which the generation of the events has to be created
before the runtime.

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement No
812.788 (MSCA-ETN SAS). This publication reflects only the au-
thors’ view, exempting the European Union from any liability.
Project website: http://etn-sas.eu/.

COVR has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 779.966.

REFERENCES
[1] [n. d.]. ASAM OpenSCENARIO. https://www.asam.net/standards/detail/

openscenario/ Accessed: 2022-01-11.
[2] [n. d.]. Robot Framework. https://github.com/robotframework/robotframework

Accessed: 2022-01-11.
[3] [n. d.]. SICK Germany. https://www.sick.com/de/en/ Accessed: 2022-01-11.
[4] [n. d.]. Unity. https://unity.com/ Accessed: 2022-01-11.
[5] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B.

Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn,
Antonia Bertolino, Jenny Li, and Hong Zhu. 2013. An orchestrated survey of
methodologies for automated software test case generation. Journal of Systems
and Software 86, 8 (2013), 1978 – 2001. https://doi.org/10.1016/j.jss.2013.02.061

[6] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Budapest, Hungary. 337–340.

[7] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. arXiv:1711.03938 [cs]
(Nov. 2017). http://arxiv.org/abs/1711.03938 arXiv: 1711.03938.

[8] N. Koenig and A. Howard. 2004. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3. 2149–2154
vol.3. https://doi.org/10.1109/IROS.2004.1389727

[9] Mohamed El Mostadi, Hélène Waeselynck, and Jean-Marc Gabriel. 2021. Seven
Technical Issues That May Ruin Your Virtual Tests for ADAS. In 2021 IEEE
Intelligent Vehicles Symposium (IV). 16–21. https://doi.org/10.1109/IV48863.2021.
9575953

[10] Naïo Technologies 2013. https://www.naio-technologies.com/. Accessed: 2022-
01-11.

[11] Clément Robert, Jérémie Guiochet, and Hélène Waeselynck. 2020. Testing a
non-deterministic robot in simulation - How many repeated runs ?. In 2020
Fourth IEEE International Conference on Robotic Computing (IRC). 263–270. https:
//doi.org/10.1109/IRC.2020.00048

[12] Clément Robert, Jérémie Guiochet, Hélène Waeselynck, and Luca Vittorio Sartori.
2021. TAF: a tool for diverse and constrained test case generation. https:
//hal.laas.fr/hal-03435959

[13] Clement Robert, Thierry Sotiropoulos, Helene Waeselynck, Jeremie Guiochet,
and Simon Verhnes. 2020. The virtual lands of Oz: testing an agribot in simulation.
Empirical Software Engineering (EMSE) 25, 3 (2020), 2025–2054.

[14] Thierry Sotiropoulos, Hélène Waeselynck, Jérémie Guiochet, and Félix Ingrand.
2017. Can robot navigation bugs be found in simulation? An exploratory study. In
IEEE International Conference on Software Quality, Reliability and Security (QRS).

[15] Testing Automation Framework 2019. Testing Automation Framework. https:
//www.laas.fr/projects/taf/. Accessed: 2022-01-11.

10

https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://github.com/robotframework/robotframework
https://www.sick.com/de/en/
https://unity.com/
https://doi.org/10.1016/j.jss.2013.02.061
http://arxiv.org/abs/1711.03938
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IV48863.2021.9575953
https://doi.org/10.1109/IV48863.2021.9575953
https://www.naio-technologies.com/
https://doi.org/10.1109/IRC.2020.00048
https://doi.org/10.1109/IRC.2020.00048
https://hal.laas.fr/hal-03435959
https://hal.laas.fr/hal-03435959
https://www.laas.fr/projects/taf/
https://www.laas.fr/projects/taf/

	Abstract
	1 Introduction
	2 Related work
	3 TAF: Testing Automation Framework
	3.1 TAF XML template
	3.2 TAF model constraints
	3.3 TAF export facilities
	3.4 TAF integration in a testing framework

	4 The agricultural robot case study
	4.1 System overview, environment, mission
	4.2 Test architecture
	4.3 Design of the data model
	4.4 Automation of the execution
	4.5 Logging and analysis
	4.6 Results

	5 Pedestrian perception case study
	5.1 Overview
	5.2 The testing architecture
	5.3 Design of the data model
	5.4 Results

	6 Lessons learned and takeaways
	6.1 Lessons learned in designing test data models
	6.2 Lessons learned for the automation of the execution
	6.3 Lessons learned for logging and analysis

	7 Conclusion
	Acknowledgments
	References

