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Abstract

Industrial cyber-physical systems (ICPS) are heterogeneous inter-operating
parts that can be physical, technical, networking, and even social like agent op-
erators. Incrementally, they perform a central role in critical and industrial infras-
tructures, governmental, and personal daily life. Especially with the Industry 4.0
revolution, they became more dependent on the connectivity by supporting novel
communication and distance control functionalities, which expand their attack sur-
faces that result in a high risk for cyber-attacks. Furthermore, regarding physical
and social constraints, they may push up new classes of security breaches that
might result n serious economic damages. Thus, designing a secure ICPS is a
complex task since this needs to guarantee security and harmonize the function-
alities between the various parts that interact with different technologies. This
paper highlights the significance of cyber-security infrastructure and shows how
to evaluate, prevent, and mitigate ICPS-based cyber-attacks. We carried out this
objective by establishing an adequate semantics for ICPS’s entities and their com-
position, which includes social actors that act differently than mobile robots and
automated processes. This paper also provides the feasible attacks generated by a
reinforcement learning mechanism based on multiple criteria that selects both ap-
propriate actions for each ICPS component and the possible countermeasures for
mitigation. To efficiently analyze ICPS’s security, we proposed a model checking
based framework that relies on a set of predefined attacks from where the security
requirements are used to assess how well the model is secure. Finally, to show
the effectiveness of the proposed solution, we model, analyze, and evaluate the
ICPS security on two real use cases.
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1 Introduction
With the immense connectivity and full automation provided by Industry 4.0, we wit-
ness an exponential expansion in the development and deployment of Cyber-Physical
Systems (CPS) [3] in various critical domains. From the existing variety of CPS, we
focus mainly on Industrial Cyber-Physical Systems (ICPS) that are an integration
of computation, networking, industrial and physical processes, and social actors as
agents. Nowadays, ICPS are playing progressively an important role in more critical
infrastructure, governmental, and everyday life system (e.g. water distribution system,
health-care systems, electrical power grids, oil and natural gas distribution, household
appliances, transportation systems, etc.) [18, 3]. Theoretically, they are expected to be
immune against all cyber-attacks and to be free of vulnerabilities, which is practically
difficult in daily real-life systems.

To build a more efficient, stable and robust ICPS, many features like computa-
tion, communication, and control are integrated while security is not appropriately
tackled [17, 4]; especially one of the fundamental issues is the heterogeneity between
ICPS entities while they have a variation of components with different aspects con-
nected in many ways. For example, hardware components can be sensors, embedded
systems, and actuators. Further, they might cover also different chain tools of soft-
ware for monitoring and control. Or either physical components like motors, tracks,
tanks, etc. By relying on attack surface that is defined as a subset of resources that
an attacker can exploit [13], each component and its integration might increase the
attack surface of an ICPS; and consequently contributing to the success of such an
attack. Understanding the current ICPS security trends, including vulnerabilities and
weaknesses, attacks and mitigation mechanisms could provide a deeper understand-
ing of the existing security disposition and challenges of ICPSs. ICPSs are generally
distributed across a wide range of distant geographic areas, they therefore collect a
huge amount of non-formatted messages and data for analysis and decision making.
Based on the collected information, the decisions rely generally on sophisticated ma-
chine learning (ML) techniques, which are known to consume more (execution) time
and memory. Accordingly, breaches in the information collection step could harm a
wide-scale data of distinct sensitivity level, and these can occur during the different
stages of the system’s operations (e.g. data collection and extraction, transmission and
processing, storage).

Unfortunately, most of the existing ICPS design methodologies do not consider
data protection, especially the complexity of ICPSs and the heterogeneity of its com-
ponents complicate security hardening and privacy protection [17, 4]. In particular,
with the complexity of ICPS design, threats and vulnerabilities become more diffi-
cult to detect/assess/etc as the ICPS environment is highly dynamic and new security
threats may stem easily. Additionally, it is also hard to check, identify, and trace at-
tacks, which may originate from one or more sources. One should be able to point out
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ICPS’s loopholes that make them vulnerable to different attacks and therefor devise
appropriate methods to defend against them. Further, we believe that the evaluation
of ICPS’s security throughout their life cycle is a necessary step to guarantee their
security when deployed.

This work describes the SSA-ICPS framework1 which can be used to assess the
severity of attacks in industrial cyber physical systems (ICPS) by covering the follow-
ing three parts: (1) modeling, (2) analysis, and (3) mitigation. First, the modeling part
implements a flexible and extensible library of a predefined templates of the ICPS ar-
chitectures and components, as well as a variety of the used communication protocols.
In addition, it models smart attacks retailed to each ICPS’s component. These attacks
are powerful and smart as they rely on reinforcement learning that maximizes the re-
ward (with an optimal policy search) as well as selects appropriate actions given a set
of criteria. Further, SSA-ICPS models ICPS’s behaviour where a developer selects
a proper ICPS architecture and later refines its components behaviour following a
well-guided predefined syntax. The library covers a set of predefined security require-
ments, which are needed to be satisfied on ICPS as well as a set of countermeasures,
to recover or reinforce the system when needed. The analysis part forms initially a
malicious environment by instantiating then composing the potential attacks within
the modeled ICPS. Then, it instantiates the security properties needed to be satisfied
on the composed environment (ICPS/attacks). To overcome the analysis complexity,
SSA-ICPS relies on the probabilistic model checking PRISM that helps to rapidly find
the possible attack scenarios as well as to measure the severity of the succeeded ones.
Finally, the mitigation procedure reinforces the ICPS model using a recommendation
process that selects the appropriate countermeasures configuration to be deployed for
the identified/detected attacks.

The main contributions of this paper can be summarised as follows.

• ICPS architecture that defines the main components of ICPS by covering: the
social aspect of actors, hardware (sensors, etc), software (applications, web ser-
vices, etc), and physical components (infrastructures, motors, etc). Also, the
architecture defines the way of how each component communicates, interacts,
and is composed with others.

• ICPS semantics that models the architecture in a process algebra formalism by
capturing the underlying of ICPS components, their behaviours, as well as their
composition operators.

• The ICPS requirements that express in Probabilistic Computation Tree Logic
(PCTL) formula the set of functional and security properties needed to check
and reinforce ICPS.

• A security analysis technique based on probabilistic verification that transforms
the ICPS model into the PRISM input language.

• A library of attacks related to the different aspects of components carried by the
ICPS architecture. Each attack maximizes its rewards by using reinforcement

1SSA stands for “Severity of Smart Attacks in Industrial Cyber Physical Systems."
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learning and selects appropriate actions through the use of a multi selection cri-
teria algorithm.

• A library of countermeasures that match the different attack scenarios.

• A mitigation mechanism that recovers and reinforces the modeled ICPS from
attacks.

The next section surveys existing solutions, and Section 3 provides details of the
proposed security assessment framework. Section 4 discusses the experimental results,
and finally we conclude this paper in Section 5.

2 Related work
This section reviews and discusses approaches that deal with modeling, functional anal-
ysis, and security specification techniques, as well as the communication protocols for
ICPS.

Cheh et al. [6] analyzed the safety of railway systems corresponding to different
classes of venomous actors based on to their abilities defined in the system access con-
trol. Initially, they constructed a hybrid automata that models a railway system, where
each attack capability is defined as a pattern that represents its effects when appended
to a component in the system. This combination describes the system behaviour and
the possible actions of an attacker that might be executed. Then, they used a statistical
model checking to assess the safety of the system for various input configurations of
railways. Chen et al. [7] studied the detectability of data deception in CPS by assuming
that an attack detector has access to a linear function of the initial system state and it
cannot be changed by an attacker. In this context, the attack has the power to be unde-
tectable by any dynamic attack detector under any specific constraints. The attacks are
characterized to be maintained arbitrarily for long periods without being detected. Ini-
tially, they defined the zero state by inducing only the attacks that remain dynamically
undetectable regardless the available information to the attack detector at the initial
state. Cheh et al. [6] and Chen et al. [7] consider attacks that are initiated when the
system starts the execution without showing the impact of each attack action on the
behaviour of the system functionality. Further, they do not consider how to overcome
them.

Bakirtzis et al. [5] proposed to evaluate the security level of CPS at each step of
their life cycle development with the focus on deploying and operating safety-critical
applications. To allow the analysis of vulnerabilities before deployment, they defined a
taxonomy of attributes, which is a generalized schema that can capture mainly the char-
acteristics of a safety-critical application. Then, they proposed to cover the maximum
space of attack vectors associated with the model. Thus, the possible attack vectors are
matched in order to mitigate them at the design level using SysML. Linzini et al. [9]
proposed a framework to check and evaluate attacks in socio-technical systems. The
model supports probability and cost, where the intruder model can challenge honest
agents. For analysis, they express the security properties using PCTL and PRISM to
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validate the correctness of the properties on the model. Ouchani et Linzini [13] for-
malized socio-technical physical systems as SysML activity diagrams and provided
a library of attacks taken from standard catalogs of social engineering and technical
attacks (CAPEC). Then, each diagram is analyzed separately by computing the prob-
ability of the weakest points that might host attacks. Bakirtzis et al. [5], Linzini et
al. [9], and Ouchani et Linzini [13] rely on a taxonomy of attacks without showing
how to instantiate an attack pattern for a specific use case. In addition, they focus more
on matching the countermeasures within attacks instead of measuring the severity of
attacks then select the appropriate countermeasure.

Mitchell and Chen [11] used stochastic Petri nets to develop an analytical model
that can capture the interactions between the adversary and the defense models of CPS
by focusing on three failures: attrition, perversion, and exfiltration. Agrawal et al. [2]
try to design more secure CPS by relying on two categories of attacks. The attacks
from outside were considered as a threat model, which might not be able to connect
to an insider threat with the physical access to a CPS. At the same time, they included
an attack detection mechanism for an insider attack with a physical access to a CPS.
Thus, the dynamics of the system are exploited to detect adversaries based on the laws
of Physics. Rocchetto et al. [15] proposed to extend Dolev-Yao’s attacker model in
order to analyze the security of CPS. A set of rules are used to define potential actions
of attackers with respect to messages exchanged between parties during a protocol
execution. Also, it allowed additional orthogonal interaction channels between parties.
Physical properties such as locations and distances were included in the rule set. The
previous approaches focus more on attacks related to physical properties instead of
looking how to exploit technical vulnerabilities to command the physical processes
remotely.

Rocchetto et al. [16] proposed a class of attacks that can retrieve, update, actuate,
and command physical processes. The physical layer is designed to include attack vec-
tors and their associated mitigation mechanisms that cover the attackers’ capabilities
by relying on a taxonomy that classifies and compares attacker actions. Finally, they
select a set of attacker profiles that they consider them more powerful. Puys et al. [14]
assessed the security of industrial systems by considering attackers that have already
shown their ability to abuse some security breaches to earn access into the industrial
systems. To find such attacks, they took into account different parameters especially
the behaviour of the process, the safety properties to be ensured, and the possible po-
sitions and abilities of attackers. Both contributions try to find potential attacks from
a predefined classes without a mitigation process. Further, they do not estimate the
sevirity of each attack.

Xiaoxue et al. [10] described the existing threats that are dependent to the security
and safety of CPS that are modeled by using a hierarchical method of division and inte-
gration. They proposed a quantitative analysis and modeling approach to express threat
propagation using a probabilistic colored Petri net model that includes basic models,
rules, logical operators and transitions as a menace breeding between nodes. The
weights of the connections in the attack model are computed using a mixed-strategy
attack-defense game approach by solving the Nash equilibrium. Adepu and Mathur [1]
designed attacker models dedicated to CPS by generating a parameterized attack mod-
els in order to capture both physical and cyber attack abilities. For each class of attacks,
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they look for the common possible parameters between cyber and physical attributes.
Ouchani [12] proposed to analyze the functional correctness of IoT in a mixed environ-
ment. A formal model is proposed to cover various aspects such objects and services.
For the analysis part, the approach relied on the PRISM probabilistic model checking
by transforming an IoT model into PRISM source code, and expressing the functional
properties in PCTL. The model covered the main components of IoT systems, however
the framework suffers from the model checking inherited limitations and the security
properties are not specified. Those contributions presented a formal modeling for CPS
without showing how it has been developed. Further, the developed attacks are generic
without relying on the provided models.

With respect to the reviewed approaches, the present work try to capture the un-
derlying semantics of ICPS, and develop an automatic way to generate the behaviour
of a concrete model. Further, it develops an extensible library that can be updated for
attacks and countermeasures. Furthermore, it relies on PRISM model checker to assess
the security of ICPS.

3 The security assessment framework
The SSA-ICPS framework depicted in Figure 1 assesses the severity degree of attacks
in industrial cyber physical systems (ICPS) by covering the modeling, the security
analysis, attacks, and mitigation of ICPS. For the modeling part, SSA-ICPS develops
a predefined library of flexible and extensible templates for the ICPS architectures,
components, and communication protocols. Further, it models different smart attacks
related to every ICPS component. To precisely describe an ICPS’s behaviour, a user
has only to rely on the library to design a complete ICPS as well as to specify the
behaviour of each component following a well-guided predefined syntax. Addition-
ally, it covers the set of security requirements needed to be satisfied as well as a set of
countermeasures to recover and reinforce the system under development. The analysis
module instantiates first the possible attacks specific to the modeled ICPS so to com-
pose them together to form a malicious environment. Also, it instantiates the security
properties to check if they are valid or not within this composition. To overcome the
analysis complexity, SSA-ICPS has an acceleration procedure that makes the checking
process much easier and helps to rapidly find all possible attack scenarios as well as to
measure the severity of each succeeded one. Finally, to reinforce the ICPS model, the
recommendation process produces the possible optimal countermeasures configuration
for the attacks.

3.1 System’s model
This section describes the formal model that takes into consideration the ICPS archi-
tecture previously discussed (see Figure 1) as a composition of interconnected nodes:
physical objects (devices and controllers, e.g. sensors and buildings), mobiles applica-
tions, cloud and computing online services, and social agents (people).
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Library (ICPS, Attacks, Requirements, Countermeasures)

Nodes Behaviours Architecture Counter
measures

Composition

Security Re-
quirements

Attacker

Analyzer

ICPS Components

ICPS Engine

SSA-ICPS Results

Severity measure

Recommendation
System

Attack scenario Security report

1⃝

2⃝

3⃝

4⃝

1⃝ ICPS instantiation
2⃝ Security instantiation

3⃝ Results generation

4⃝ Security reinforcement

Figure 1: SSA-ICPS framework.

3.1.1 Node

This is the main entity describing an ICPS, and it is defined as tuple
⟨id, attr, Actuator,Σ, Beh⟩, where:

• id is a fixed set of insignia idϵ, · · · , idi, · · · ∈ id identifying nodes where idϵ is
the empty node.

• attr : id → 2T evaluates the attributes of a node, such that T = {p, c,m, d, r}
where p, c, m, d, and r stand respectively for physical, container, movable, de-
stroyable, and reproducible.

• Actuator : id → loc × 2id × id × B is a function that evaluates the tuple
⟨loc, cont, key, locked⟩ specifying the status of a node idi by returning respec-
tively its: location, contained objects, key, and if it is locked or not.

• Σ is a finite set of atomic actions that a given node can execute, where:

Σ ={Start,Terminate,Send(idi, idj),Receive(idi, idj),
Update(idi, idj),Lock(idi, idj),Unlock(idi, idj),

Move(l, l′) : idi, idj ∈ id and l, l′ ∈ loc}.

Start and Terminate starts and terminates the process of a node, Send(idi, idj)
and Receive(idi, idj) sends and receives idi to/from idj , Update(idi, idj)
updates idi by idj , Lock(idi, idj) and Unlock(idi, idj) lock and unlock idi
with idj , respectively.

• Beh : id→ L returns the expression written in the language L that describes the
behaviour of a node. The syntax of L is given by:
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BStart |Terminate | α · B | α · B +g α · B | α · B +p α · B | α · B + α ·
B | α · B|αα · B | α · B||α · B, where α ∈ Σ and “ · “ composes sequentially
the actions, and +g is a guarded choice decision, +p is a probabilistic decision,
+ is a non deterministic choice, |α is a synchronization on the action α, and || is
the interleaving operation.

3.1.2 Node’s behaviour

To characterize the behaviour of a node, say n, we first define its state and how this
can change as a labeled state transition system ⟨S, s0,−→⟩ where S is all possible states
of n, s0 ∈ S is its initial state, and −→⊆ (S × L × µ × S) is the closure transition
relation between states labeled by l ∈ L and executed with a probability p ∈ µ (µ
is a probabilistic distribution). A transition → defines the changes of a node n and
represented by a set of operational semantics rules. For example, the SRT rule describes
the initial execution of a node n.

Bn = Start.B
′

n SRT
⟨idn,−, ⟨−,−⟩,−⟩ startn−−−−→ ⟨idn, B

′

n, ⟨−,−⟩,−⟩

The rule UP updates sending a value [[m]] of the variable x by a value [[m′]] in a
node n.

Bn = Update(x, [[x′]]).B
′

n ∧ x ∈ cont(n)
UP

⟨idn,−, < −, {x, [[x]]} >,−⟩ upx−−→ ⟨idn, B
′

n, < −, {x, [[x′]]} >,−⟩

The rule SYN describes a node n sending a value [[m]] of a variable x to another
node n′ carried by the variable y.

Bn = Send(n′, x).B
′

n ∧ x ∈ cont(n) ∧ [[x]] = m ̸= ϵo

Bn = Receive(n, y).B
′

n′
SYN

⟨⟨idn,−, < −, {x, [[x]]} >,−⟩, ⟨idn′ ,−, < −, {y,−} >,−⟩⟩ sndrcvx−−−−−→
⟨⟨idn, B

′

n, < −, {x, [[x]]} >,−⟩, ⟨idn′ , B
′

n′ , < −, {y, [[x]]} >,−⟩⟩

The set of all operational semantics rules are given in Appendix 6.1.

3.1.3 ICPS Architecture

The ICPS architecture is the main structure carrying a ICPS system. In harmony, it
regroups all nodes together. It is modeled by a directed graph where the vertices are
the set of nodes and edges are their interaction. Formally, the ICPS architecture is a
tuple ⟨V,E, π, CM⟩, where:

• V = N is a finite set of nodes: n0, · · · .

• E ⊆ N × N is a finite set of links between nodes, such that for every e ∈ E
there is a pair of channels eij = ⟨ni, nj⟩ and eji = ⟨nj , ni⟩.
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• π : E −→ Prot returns the communication protocol for an edge in E.

• CM : N ∪ E −→ C returns the proper countermeasure to a node or an edge.

The communication protocol synchronizes and organizes the communication and
the interactions between nodes. However, we have also defined many communica-
tion protocols depends on the nature of each node. Formally, prot ∈ Prot is the
tuple ⟨Proto,s, P rots,s, P roto,o, P roth,o⟩ where Proto,s ensures the communication
between objects and services, Prots,s between services, Proto,o between objects,
Proth,o between social actors and abjects.

For Prots,s, we would take the example of Modbus protocol described with a set of
action and events Σ′, where we have: Σ′ = {startL(m), sendL(a1, a2,m1), recieveL(a2, a1,m2)}.
The action startL(m) is the initialisation of the protocol, sendL(a1, a2,m1) denotes
sending the messagem1 from agent a1 to a2, recieveL(a2, a1,m2) means receivingm2

by a2 from a1. The label L gives the order of events. Further, we consider the execu-
tion of the behaviour as a session, and formally it is defined as a tuple s = ⟨id, σ, φ, ε⟩,
where id is the identifier of the session, σ are the initiator and the responder, φ are the
values of the variables, ε is a set of events.

Let prot ∈ Prot be the specification of a protocol and A is the set of active ses-
sions. The basic operational semantics rule of Prot are given in Table 1. The Start
rule states that a new session can only be created if its identifier has not been used yet.
The send rule shows that if the session executes the send event then the message will
be added to the buffer Bs and executes the next event ε. The receive rule expresses
that there is a session where the next event is receive and Br contains a message. The
latter will be removed from the buffer Br to proceed the execution of the next event ε.

s = (id, σ, φ, ε) ∈ Prot id /∈ A

⟨Bs,Br,A⟩ start( s )−−−−→ ⟨Bs,Br,A ∪ {s}⟩
start

e = sendL(a1, a2,m1) (id, σ, φ, [e].ε) ∈ A

⟨Bs,Br,A⟩ send(s)−−−→ ⟨Bs\{m},Br

⋃
{m},A⟩

send

e = recieveL(a2, a1,m2) (id, σ, φ, [e].ε) ∈ A m ∈ Br

⟨Bs,Br,A⟩ recieve(s)−−−−−→ ⟨Bs\{m},Br

⋃
{m},A⟩

recieve

Table 1: A session operational semantics rules.

We defined the operational semantics rules using a labelled transition system ⟨S, S0,−→
⟩, where S is the set of all states in the system, S0 is the initial state and −→⊆ (S ×
L× S) is the transition relation between states labeled by L, where L ∈ labels(Σ′)
and labels is a function that returns a label for each action of Σ′.

Figure 2 depicts the architecture of an ICPS using ICPS-graph, where C is
a multi-protocol client, S1 and S2 are Modbus and OPC-UA servers, P is a pro-
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grammable logic controller (PLC), Se is a sensor, V is a valve, and M is a motor. All
nodes are connected through digital (e.g. Modbus, OPC-UA) and analogic channels.

S1

C

P

S2

V

Se M

Prots,s Prots,s

Prots,s Prots,s

Proto,o

Proto,o

Proto,o

Figure 2: ICPS Graph.

3.1.4 Countermeasures

To harden a system against various attacks, we use a suitable security measure. A
countermeasure could take different forms, such as recommendations about how to
modify the architecture of the system, how to assure the security of the system or
a software, and/or how to add or modify physical measures (e.g. door digital code,
firewall, etc.). Formally a countermeasure c ∈ C is a tuple ⟨id,N,Σcm, Behcm⟩,
where:

• id is a finite set of tags id1, · · · , idi, · · · , idn identifying a software or physical
measures.

• N is a finite set of nodes.

• Σcm is a set of actions can be executed by a countermeasure cm, where:

Σcm ={Start,Terminate,Filters(neti, netj),
Scan(ni),Crypt(ni, nj),Decrypt(ni, nj),Auth(ni),

CheckPers(ei),Lock(ni, dj),Unlock(ni, dj) :

neti, netj ∈ Net, ni, nj ∈ Node, ei ∈ E and kj ∈ Key}

Start and Terminate starts and terminates the process of a countermeasure,
Filters(neti, netj) filters and controls incoming and outgoing network traf-
fic between neti and netj based on predefined security rules, Scan(ni) scans
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the node ni (e.g. computer) from malwares, Crypt(ni, nj) encrypts the com-
munication between the nodes ni and nj , Decrypt(ni, nj) decrypts the com-
munication between nodes ni and nj , Auth(ni) uses an authentication method
(e.g. password) for the node ni, CheckPers(ai) exams the personalty of an
employee ei, Lock(ni, kj) and Unlock(ni, kj) locks and unlocks ni with nj ,
respectively.

• Behcm: CM −→ Lcm returns the behaviour of a countermeasure. The syntax
of Lcm is given by: BStart ·B |Terminate | α ·B | α ·B +g α ·B, where
α is an action and “ · “ composes sequentially the actions, and +g is a guarded
choice decision.

3.2 Attacker model
Based on the literature, Dolev-Yao attacker model [8] is the most powerful one that
can access and manipulate arbitrarily all the network traffic. This attacker model is
usually employed for the identification attacks (e.g, Web Application). It can intercept
messages and analyze them if he possesses the corresponding keys for decryption.
Also, it can generate messages from his knowledge, and send them as any honest or
impersonate agent.

However, this attacker model suffers from the state explosion and affects only the
network layer as a main-in-the-middle. Our proposed attacker model is an improved
version using the reinforcement learning and the multi-criteria analysis, where the at-
tacker can perform all type of attacks (i.e. network, physical, software, and social
engineering). In addition, we avoid the state explosion problem by relying on the re-
inforcement learning based on the multi-criteria analysis that makes the decision more
deterministic and smart.

Hence, we describes the potential attacks proper to ICPS components and their
interactions. As shown in Figure 3, the ICPS attacker model has two components:
1) Data contains knowledge, personality and skills, and 2) the Analyzer that is an in-
ference based engine generating attacks according to data, the received inputs, and its
skills and inference levels. The attacker model could be one from the internal em-
ployer who works inside or outside (e.g. disgruntled employees or a social engineering
victims), a malicious software, or any node with powerful capabilities and techniques.

The ICPS attacker depicted in Figure 3 takes as input the channel Chan, the
physical access Phy, and the human interaction Hum. Chan means that the at-
tacker intercepts the message between the ICPS components. Phy means that the
attacker has physical access (e.g. open a door). Hum means that the attacker interacts
or communicates with an employ from inside.

3.2.1 Data

The data ω of the attacker is a tuple ⟨K,P, S⟩, where K represents its knowledge, P
is the personality of the attacker, and S is the set of skills.
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Analyzer

Knowledge
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Skills

Goal

Attack (A)

Data
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Physical
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Phy
Human in-
teract
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Figure 3: ICPS attacker model.

Knowledge

This is the core component of the attacker model. It contains the system model (M),
a secure information (Sec), and algorithms of control or security techniques (Alg).
Formally, the knowledge of the attacker (K) is a tuple, K = ⟨M,Sec,Alg⟩. Conse-
quently, the knowledge in data can change according to the type or the level of attack-
ers.

Personality

To fulfill the personality requirements, we rely on the well know theory from psy-
chology called the big five personality traits, and also known as the five-factor model
(FFM). Each factor represents a type of personality (Openness to experience, Consci-
entiousness, Extra-version, Agreeableness, Neuroticism) and the highest factor from
the five above is the personality of the person. In our work, we are interested in the
last factor Neuroticism, because the people who have a high level in this factor have
emotions like: anger, anxiety, depression, and vulnerability. Formally, the personalty
is a vector Per, where each element is an emotion e in the state i.

Per =

e1
e2
...
en

where ∀i ∈ [1, n], ei =
1 positive
0 absence
−1 negative

Goal

An attack is a set of actions or small attacks where each action has a goal, and formally
a goal G is a set G = {g1, g2, . . . , gn}. An attacker must achieve all goals where gi is
an expression specifying a state of nodes.
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3.2.2 Analyzer

Since a given attack A is a set of actions, the choice of this set depends on the set of the
selected criteria. We use Markov Decision Process (MDP) and a multi-criteria analysis
to model the decision of the attacker as well as the reinforcement learning to select the
optimal sequence of actions to maximize the attacker assets. Algorithm 1 describes
how the attacker could choose an action based on its goal while minimizing the cost.

Algorithm 1 Generation attack actions.
1: Input: Mmdp //The system behaviour with a

graph structure.
2: Output: π //The attack se-

quence of actions.
3: ∀s ∈ S : U(s) = 0;
4: λ = 0.5;
5: update = 1;
6: while update > ϵ do //Update the cost U

to achieve s.
7: for (s ∈ S) do
8: U(s) = R(s) + λ max

a∈A(s)

∑
s′∈S

P(s′, s, a) × U(s′); //Measure

the cost of a state s.
9: update =

∑
s′∈S

|U(s)− U(s′)|;

10: end for
11: end while
12: π(s) = argmax

a

∑
s′∈S

P (s′, s, a)× U(s′); //Select the path maxi-

mizing the reward.

Algorithm 1 takes as input a Markov Decision Process model Mmdp to produce
the set of actions π. Mmdp is a tuple Mmdp = (S,A, s0,R,P, γ), where:

• S is a set of finite states s2, s2, etc.

• A is a set of finite actions a1, a2, etc.

• s0 is the initial state.

• R(s) is a reward function that returns the utility for each state s.

• P(s, a, s′) the probability of being in the state s′ after executing the action a
from state s.

• γ is a discount factor 0 < γ < 1.

To achieve a state si in the model representing a sub-goal gi, the attacker should
execute an action ai according to a sequence of decisions based on data. R(s) is
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calculated with respect to the Weight Sum Method as follows

R(s) =

m∑
j=1

wjcij , i = 1, 2, ..., n

whre c is a set of criterion to select an action and w denotes the relative weight of
importance of c. The probability of a transition P(s, a, s′) depends on the value of
R(s′) and the sum of all the R(s′) for the successors of the state s. P(s, a, s′) =

R(s′)∑
∀s′∈succ(s)

R(s′)

The selection of a transition depends of the utility of each state and the accumulated
reward. In our case, the attacker will choose the actions to earn more rewards.

3.3 ICPS Engine
The ICPS engine contains two main parts. The first part is the analyzer that measures
the severity of attacks and their scenarios. Further, it reports bugs and existing vul-
nerabilities. The second part relies on the security report to recommend the optimal
countermeasures. It also provides hints the best practices for the developed ICPS sys-
tem.

3.3.1 ICPS Analyzer

For the analysis, we rely on the probabilistic symbolic model checker PRISM that
verifies probabilistic specifications over probabilistic models. A specification can be
expressed either in the probabilistic computation tree logic (PCTL) and a model can be
described using PRISM language.

A model can be a discrete-time Markov chains, continuous-time Markov chains,
and Markov decision processes (MDPs). Alternatively, a model can be a probabilistic
timed automata. PRISM also supports probabilistic automata. PRISM verification is
efficient, since it stores models as binary decision diagrams and multi-terminal BDDs.
To overcome the state explosion problem, PRISM has built-in symmetry reduction and
implements some iterative numerical analysis like Jacobi and Gauss-Siedel.

In general, a given PRISM program is a composition of a set of modules. A module
is evaluated over a fixed number of local variables, of type Boolean or integer. Whereas
the state of a given module is formulated as the evaluation of its local variables, the
global state of a PRISM program is the evaluation of all variables, local and global,
for all modules. Further, the composition and the communication between PRISM
modules adopt the operators developed by the CSP process algebra.

Basically a PRISM module defines the kernel behaviour of a PRISM program. At
this end, the behaviour of a module is a collection of commands that can be proba-
bilistic or Dirac. Textually, a probabilistic command is expressed by [α] g → p1 :

u1+...+pm : um, such as pi are probabilities (pi ∈]0, 1[ and
m∑
i=0

pi = 1), α is a label ex-

pressing the name of the actionα, g is the guard represented as a propositional logic for-
mula over all variables, local and global, and ui describes the update (new value) for an
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ensemble of variables. A given update expressed by (v′j = valj)& · · ·&(v′k = valk),
assigns only values vali to local variables vi. So, for a given action α, if the guard g
is valid, then the update ui is enabled with a probability pi. In general, the guard is
an expression consisting of the evaluation of all variables that are connected explicitly
with the propositional logic operators. The Dirac case where p = 1 is a special case
command expressed simply by: [a] g → u.

Syntactically, a module named M is delimited by two keywords: the module head
“module M”, and the module termination “endmodule”. Further, we can model
costs with a reward moduleR delimited by keywords “rewardsR” and “endrewards”.
A reward module is composed from a state reward or a transition reward. A state re-
ward associates a cost (reward) of value r to any state satisfying g and it is expressed
by g : r. A transition reward is specified by [a] g : r to express that the transitions
labeled a, from states satisfying g, are acquiring the reward of value r.

Finally for the analysis, a PRISM program P proper will be generated to the pro-
vided ICPS formalism. For that, we introduced the function TP that assigns for each
ICPS node behaviour its proper PRISM code fragment that is bounded by ’module
node name’ and ’endmodule’ and the semantic rules of each action is expressed
by a PRISM command.

For the semantic rule of any entity, its premises represent the guard of the entity
PRISM command, whereas the update describes the consequence of the rule. For ex-
ample, oo2 is an atomic proposition showing the the object o possess o2, la and lo
present the locations, and po3 precises the physicality attribute of o3. The variables and
propositions are evaluated first to describe the initial state of nodes by relying on the
tuple obtained by the Actuator proper to each entity. TP implements this transforma-
tion for each entity depends its category, and here we consider the transformation of
rules already presented in Section 3.1.

TP (α) =



[Syno2 ]oo2 ∧ o1o3 ∧ ¬po2 ∧ ¬po3 → (o′2 = o2);

[Syno2 ]oo2 ∧ o1o3 ∧ ¬po2 ∧ ¬po3 → (o′3 = o2);

iff:Send(o1, o2) ∈ Σo1
o ,Receive(o3, o2) ∈ Σo2

o .

[Tako1 ]la = lo ∧ oo2 ∧ ¬locko ∧ po2 → (a′o2 = ⊤);

[Tako1 ]la = lo ∧ oo2 ∧ ¬locko ∧ po2 → (o′o2 = ⊥);

iff:Receive(o, o2) ∈ Σa.

[loco1 ]oo1 ∧ oo2 ∧ ¬ko1 ∧ po1 = po2 → (k′o1 = ⊤);

[loco1 ]oo1 ∧ oo2 ∧ ¬ko1 ∧ po1 = po2 → (o′o1 = ⊤);

iff:Lock(o1, o2) ∈ Σo
o.

More details about the function TP are provided in Appendix 6.2.

3.3.2 Security requirements

To specify ICPS security requirements and policies we use PCTL syntax presented as
follows
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ϕ ::= ⊤ | ap | ϕ ∧ ϕ | ¬ϕ | P▷◁ p[ψ] | R[ψ]
ψ ::= Xϕ | ϕU≤ kϕ | ϕUϕ

where the term “⊤” means true, “ap” is an atomic proposition, k ∈ N , p ∈ [0, 1],
and ▷◁∈ {<,≤, >,≥}. The operator “∧” represents the conjunction and “¬” is the
negation operator, P is the probabilistic operator, and R is the reward operator. Also,
“X”, “U≤ k”, and “U” are the next, the bounded until, and the until temporal logic
operators, respectively.

3.3.3 ICPS Recommendation

To provide a secure and valid system model, we designed a recommendation strategy
to reinforce the model’s system. It is based on the defense-attack tree by extending
Markov Decision Attack Trees with counter-measures. Each path of the attack tree
is labelled with a countermeasure. Formally a recommendation, say r, is the tuple
⟨M,C ,Φ⟩, where:

• M is the attack tree instantiated from the MDP.

• C is a finite set of countermeasures c1, · · · , ci, · · · cn

• Φ : P −→ C returns for a path pi a countermeasure ci. P is the set of paths and
sub-path proper to M.

Figure 4 depicts an Markov Decision Attack Tree extended by countermeasures.
The red node is the goal of the attack, blue nodes are the sub-goals or steps of an attack
whereas the green nodes are the countermeasures for each path of an attack. R is the
reward to achieve the state of a node. (P), (1−P), (1) are the probabilities to execute
an action.

Goal

R1 R2 Countermeasures
Action2 (P = 1)

Action1 (P)

R3

R5 R6 Countermeasures
Action7 (1)

Action4 (P)

R4 R7 Countermeasures
Action6 (1)

Action5 (1− P)

Action3 (1− P)

Figure 4: Markov Decision Attack-Defense Tree.

4 Experimental results
This section describes the implementation of our approach and its validation on two
real use cases. The experiments were carried out on a PC with Intel Core i5-7200U @
2.50GHz processor and a RAM of 8.00 GB.
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Tool Architecture
Figure 5 depicts the overall architecture of the proposed framework. It implements four
packages: (i) the user interface to interact within the kernel of the tool, (ii) the model
builder to create and composite the system model and the attacker, (iii) the verification
engine to check and reinforce the system in case of successful attacks, and (v) the
library that contains templates, attackers, and countermeasures.

Figure 5: ICPS Tool Architecture.

User interface

The graphical interface allows a user to interact with our tool through four services.
Template service is connected with the library and it is used to create the system model
by relying on specific templates like nodes and protocols. Syntax Checker checks the
syntax of our language which is used to define the model service. The language is de-
fined in Section 3.1 and we will see how to model a system with it in our case studies.
Simulation shows the execution of the system and Report presents information about
the generated PRISM model, the attacks scenarios, attacks impacts, and countermea-
sures.

Model builder

The main objective of this component is to build the system model in interaction with
the attacker. We build the model system from templates and nodes behaviours after that
we compose the model system with the attacker through synchronization channels.
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Engine

It is the main part in our tool, it contains two components, Model checker to verify
the security requirements and to generate the attacks scenarios and Recommendation
service to reinforce the system model by proposing a list of suitable countermeasures.

Library

It contains the templates of nodes, protocols, countermeasures and attack models.

4.1 Case study 1: Utah water-supply
The proposed framework is validated on Utah water-supply2 system (see Figure 6),
which is designed by Logan to enable building an interconnection between Trenton and
Amalga systems to guarantee water supply during emergency situations. This system
connects numerous sensors to monitor the pressure from water sources to tanks and
from tanks to both towns by measuring tank level, chlorine water level, flood conditions
and chlorine gas leaks at the building hosting the system. Also, the system controls a
set of pumps and valves.

Figure 6: Water-Supply system.

We parameterized the system with a set of variables of type Boolean and integer
to define the status of the monitoring and control dashboard. The set of Boolean vari-
ables that controls the pumps and valves is Vp = {Pump, V alve1, V alve2, SysRun},
where SysRun is used to initiate the system, Pump and V alve1 defined to fill the
tank, and V alve2 introduced to distribute the water from the tank to the agglomeration.
To better monitor the status of sensors, Vd is used to define each flag and data that evalu-
ate a sensor’s measure, where: Vd = {TankLevel, F lood, ChlLeaks, ChlInwater, Pres}.
TankLevel returns the level of the tank, Flood evaluates if there is any flooding in the
building,ChlLeaks to check if there is chlorine gas leaks at the building,ChlInwater
measures the level of the chlorine in the water, and Pre returns the measured pressure

2https://s.campbellsci.com/documents/us/case-studies/64utah-SCADA.pdf
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of the water. Further in an emergency situation, the worker can manually start or stop
the pump.

The formal model

In the water-supply system presented in Figure 6, two servers s1 and s2 are accessible
through the client c (a unique client deploying multi-protocols). os1p is the object of the
vector Vp controlled by the OPC-UA server s1. The os2d is the object of the vector Vd
controlled by the Modbus server s2. The servers s1 and s2 control the objects os1p and
os2d through the PLC p. Herein, we describe briefly the behaviours of the client C, the
servers s1, s2, and one physical node (e.g. valve).

The ICPS Model

- The behaviour of the client c.
Beh(c) = Start.(Receives,s([[od]], s2).Updates,s(op, [[o

′

p]]).Sends,s(s1, o
′

p)

+Receives,s([[od]], s2).Updates,s(od, [[o
′

d]])+Sends,s(s1, op)).Terminate.

- The behaviours of the servers.
Beh(s) = Start.(Receives,s([[o]], c).Sendo,s(o, s)
+ Receiveo,s([[o]], o).Sends,s(c, [[o]])).Terminate.

- The behaviour of the valve.
Beh(v) = Start.(Receiveo,o([[o]], p).Unlocko(v, port)
+ Receiveo,s([[o]], p).Locko(v, port)).Terminate.

The technical attacker

We consider here an attacker that gains the access to the network with the ability to
interact with an employee who has access to the room of control. Herein, we describe
briefly the different parts and the ability of this attack.

Knowledge The attacker knowledge consists of the information about the architec-
ture of the network without having any private keys or any physical access. Also he
has the algorithm to encrypt, decrypt, and hash messages.

Personality We do not define the personality of the attacker because we will not
cover the security analysis related to the social aspect within this attack. We will con-
sider it in the next attack’s case.

Skills In this case study we have defined only the communication attacks as a skills
for the attacker. So, according to his knowledge he can intercept, replay and create
messages, encrypt and decrypt if he has a private key. Table 2 specifies the attacker
skills. We have used SPi-calculus to formalise the skills of the attacker . (v i) allows
to add, save, update or get data from his knowledge.
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Table 2: Specification of the attacker’s skills

A = (v i)(canal(x).!(i⟨x⟩.0 + i(m).0 + i(pk).0 + i(sk).0
+ i(m1).i(m2).̄i(⟨m1,m2⟩).0
+ case x of ⟨m1,m2⟩ in i⟨m1⟩.0
+ case x of ⟨m1,m2⟩ in i⟨m2⟩.0
+ i(⟨m1,m2⟩).i(m3).̄i(⟨m3,m2⟩).0
+ i(⟨m1,m2⟩).i(m3).̄i(⟨m1,m3⟩).0
+ case x of {[m]}sk in i⟨m⟩.0).
(canal⟨m⟩.0 + canal⟨[{H(m)}]sk⟩.0))

Goal The goal of the attacker is to dysfunction the system by not filling the tank.

Analysis The attacker objective is described as a Markov decision tree and to cal-
culate the reward for each state we use a weight sum method. Table 3 describes the
selected criterion. D is the expected probability to not detect the attack step, 1 means
no risk to detect whereas 0 means there is a big risk to detect the attack. F means the
feasibility of the attack, 1 means that the attack is feasible and 0 not. S represents if the
attacker has the skills to realize this attack step or no, 1 means true and 0 false.

Table 3: Weight sum method settings for the attacker.
Action/criterion D F S

0.25 0.25 0.5
Intercept 1 1 1
Create msg (Modbus) 0.5 1 1
Create msg (OPC-UA) 0 0 0
Modify msg (Modbus) 0.5 1 1
Modify msg (OPC-UA) 0 0 0
Replay msg (Modbus) 0.5 1 1
Replay msg (OPC-UA) 0 0 0
Block msg 0 1 1
Social engineering 1 0 0

The Socio-technical attacker

Here we consider the attacker as an employee who works in this water-supply. For his
knowledge and skills, he has the information about all the system and the access control
of SCADA client. Further for his personality, he has a high factor of Neuroticism which
means that he is vulnerable and he could be exploited by social engineering technique.
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Security requirements

For this case study, we exhibit the following properties:

• The attacker cannot stop the system.
Φ1 : Pmax =?[F (SysRun = 0 & Attack = 1)]

• The attacker cannot stop the pump.
Φ2 : Pmax =?[F (Pump = 0 & Tank = 1)]

• The attacker cannot open the valve and the tank is full.
Φ3 : Pmax =?[F (V alv1 = 1 & Tank = 2)]

Results

The results, obtained from the verification of the code in Appendix 6.3, are summarized
in Table 4 where the symbol ✓ means an attack has been found and the symbol ✗
means that the property is safe. Further, we show the verification of each property with
respect to the category of the attack. For the technical attack, the obtained MDP model
has 215380 states (1 initial), 1169586 transitions with 997282 choices. Whereas the
obtained MDP model for the socio-technical attack has 99220 states (1 initial), 514008
transitions with 434632 choices.

Table 4: The verification results.
Action/ Technical Verification Social-Technical Verification

Criterion Attacker Time (secs) Attacker Time (secs)
Φ1 ✗ 0.365 ✗ 0.115
Φ2 ✓ 0.226 ✗ 0.088
Φ3 ✓ 0.377 ✗ 0.092

In theory, the technical attacker cannot violate the property Φ1 because the OPC-
UA server controls the SysRun variable. Thus, the only way to break the property
Φ1 is to manipulate the social attacker, which obviously is not possible as the technical
attacker does not have social engineering skills. As well the social attacker does not
violate any property because we supposed that he could violate the properties only if
he was manipulated by social engineering skills. The result of attacks proper to Φ2 in
Figure 7 shows the convergence of the probability evaluation from 0 to 0.15 after two
steps, then it increases up to the maximum value of 0.25 after 10 steps. This result
shows that the risk is low when the system is turned on. Compared to the property Φ1,
the probability of attacks for Φ2 increases linearly to achieve a maximum of 0.225.

Figure 8 depicts the sequence diagram of the attacker violating Φ3. The Modbus
server sends a message to inform a client that the tank is full, and therefore the valve
needs to be closed. However, the attacker intercepts the message and modify it in order
to leave the valve open while the tank is full. This experiment shows that, even if the
non-secure protocols control only the nodes that are not more sensitive than the other
nodes, this can create vulnerabilities and destabilize the system.
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Figure 7: Attack success for Φ1 (left) and Φ2 (right).

Client Attacker Modbus OPC-UA TankLevel

start()

done

...

done

...

done

Tank=full

Tank=full

Tank= not full

Figure 8: Attack scenario against Φ3

Countermeasures As shown in Figure 9, the origin of the security breach was orig-
inally related to the specifications/implementation of Modbus protocol. Unfortunately,
this cannot be changed to OPC-UA protocol as the most deployed equipment (sensors
or other) requires the use of Modbus. Consequently, as output, the recommendation
system suggests the use of Modbus protocol under the VPN to guarantee better secu-
rity of the running system.
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Open Valve

R1 R2 digit code
open manually (P = 1)

open door (P)

R3

R5 R6 token
replay (1)

save (P)

R4 R7 vpn
send (1)

Modify (1− P)

intercept msg (1− P)

Figure 9: Markov Decision Attack-Defense Tree proper to Φ3.

4.2 Case study 2: Maroochy Shire Sewage Spill
Maroochy Shire is located about 100 kilometers north of the Queensland State Cap-
ital of Brisbane. It has 880 kilometers of gravity sewers treating an average of 35
million liters/day. The Maroochy Water Services Sewerage SCADA system consists
of 142 Sewage Pumping Stations, and each pumping station had a computerized sys-
tem capable of receiving commands from a central control center (master station) and
transmitting signals back to the center. The communication between pumping stations
and the control center was through a private two-way radio system. Figure 10 shows
the system architecture and the connection between its components. The control of
the pumping stations can be through the main SCADA station or through one of the
pumping stations access points.

Figure 10: The Maroochy Water Services Sewerage System.

The formal model

In the Maroochy Water Services presented in Figure 10, pi is a pump, sij a sensor
that measures the status of the pump pi, rk a remote terminal unit (RTU), m a master
station, a an access point, and h an agent who uses the access points with a laptop to
manage the system. We used Beh(m) to describe the behaviour of the master station
m where it can receive or send a command from/to RTU ri. Beh(ri) represents the
behaviour of the RTU ri where it can communicate with the master station m, another
RTU rj , a pump pj , an access point aj or a sensor sj . Beh(pi) is the behaviour of the
pump, it could receive a command orj from an RTU to change its state to start or stop
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running. Beh(si) represents the behaviour of the sensor to receive the status of the
pump and send it to the RTU. Beh(hi) is the behaviour of an agent using the access
point to receive and send commands.

- The behaviour of the master station m.
Beh(m) = Start.(Receive([[ori ]], ri).Update(oim , [[ori ]])+Send(ri, [[oim ]])
+ Send(rj , [[ojm ]])).Terminate

- The behaviours of the RTU ri.
Beh(ri) = Start.(Receive([[omi ]],m)+Receive([[orj ]], rj)+Receive([[oaj ]], aj)
+ Receive([[opj

]], pj).Update(oi, [[oi]]).Send(m, [[ori ]]) + Send(rj , [[orj ]])
+ Send(pk, [[ori ]])).Terminate.

- The behaviour of the pump pi.
Beh(pi) = Start.(Receive([[orj ]], rj).(Unlock(pi, opi)+Lock(pi, opi))).Terminate.

- The behaviour of the sensor Si.
Beh(si) = Start.Receive([[spj

]], pj).Update(si, [[spj
]]).Send(ri, [[spi

]]).Terminate.

- The behaviour of the agent hi.
Beh(hi) = Start.(Receive([[oaj ]], aj).Update(oi, [[oaj ]]).(Send(aj′ , [[oi]]
+ Receive([[oaj

]], aj)).Terminate.

The insider technical attacker

In this scenario, we model the attacker who hacked the system in the real world.

Knowledge The real attacker was an old employee with a strong knowledge about
the system functionalities and the used communication protocols.

Personality The attacker has a high factor of Neuroticism.

Skills The attacker has already installed the software in his laptop as well as he has
the knowledge to connect to the system, to change the state of all the pumps, and either
to enable/disable alarms. Table 5 specifies the insider attacker skills.

Table 5: Specification of the insider technical attacker.

A = (v i)(canal(x).!(i⟨x⟩.0 + i(m).0
+ i(m1).i(m2).̄i(⟨m1,m2⟩).0
+ case x of ⟨m1,m2⟩ in i⟨m1⟩.0
+ case x of ⟨m1,m2⟩ in i⟨m2⟩.0
+ i(⟨m1,m2⟩).i(m3).̄i(⟨m3,m2⟩).0
+ i(⟨m1,m2⟩).i(m3).̄i(⟨m1,m3⟩).0).
(canal⟨m⟩.0)
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Goal. The main objective of the attacker is to take the control over the station pump-
ing.

Analyzer. Table 6 describes the expected probability to not detect the attack step D,
the feasibility of the attack F, and the skills S.

Table 6: Weight sum method settings for the insider technical attacker.
Action/criterion D F S

0 1 1
Create msg 0 1 1
Replay msg 0 1 1
DoS attack 0.5 1 0

The external technical attacker #1

This attacker has less knowledge and skills than the insider attacker.

Knowledge This attacker has a knowledge about the fourth pumping station as well
as the radio communications.

Personality In this scenario of attack, we exclude the importance of the attacker
personality.

Skills This attacker knows how to find the radio frequency and how to receive and
send data over the found channel. He can do only DoS attack to saturate the channel.
Table 7 specifies the skills of the external technical attacker #1.

Table 7: Specification of the external technical attacker #1.

A = (v i)((canal(x).i⟨x⟩.0 ) + ( i(m). !(canal⟨m⟩.0)))

Analyzer. Table 8 describes the selected criterion D, F, and S previously defined.

Table 8: Weight sum method settings for the external technical attacker #1.
Action/criterion D F S

0.5 1 1
Read msg 1 1 1
DoS attack 0.5 1 1
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The external technical attacker #2

We model this attacker with another kind of knowledge and skills than the first one.

Knowledge We consider that this attacker has no knowledge about the pumping sta-
tions.

Personality We exclude in this scenario the personality description and impact on
the attack goal.

Skills As described in Table 9, the attacker has good skills on malware development,
reverse engineering, network analysis and social engineering.

Table 9: Specification of the external technical attacker #2.

A = (v i)((canalchan(x) + canalhum(x)).!(i⟨x⟩.0 + i(m).0
+ i(m1).i(m2).̄i(⟨m1,m2⟩).0
+ case x of ⟨m1,m2⟩ in i⟨m1⟩.0
+ case x of ⟨m1,m2⟩ in i⟨m2⟩.0
+ i(⟨m1,m2⟩).i(m3).̄i(⟨m3,m2⟩).0
+ i(⟨m1,m2⟩).i(m3).̄i(⟨m1,m3⟩).0).
((canalchan⟨m⟩+ canalhum⟨m⟩).0))

Analyzer. Compared to the previous cases, we consider F as a probabilistic value
(Table 10) since the feasibility of a social engineering attack does not depend only
on the skills of the attacker but also on the reactions of victims. The feasibility for
the social engineering attack is a variable x since he does not know the personalities
of the employees. In this case, we consider two scenarios depending the values of x
that can be either 0 (scenario 1) or 0.5 (scenario 2). Also, we consider that we have
five employees and one of them has a high factor of Neuroticism which means he is
vulnerable and he could be exploited by social engineering techniques. Each one of the
employee has the information about all the system and the access control of SCADA
client. Also they have a laptop and the software to access to the SCADA system through
the access points.

Table 10: Weight sum method settings for the external technical attacker #2.
Action/criterion D F S

1 0.5 1
Modify Msg 1 1 1
Social engineering attack 1 x 1
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Security requirements

For this case study, we have the following properties:

• Pump 4 was running when it should not.
Φ1 : Pmax =?[F (Pump4 = 1 & Sensor4 = 0)]

• Pump 4 was not running when it should not.
Φ2 : Pmax =?[F (Pump4 = 0 & Sensor4 = 1)]

• Could the attacker stop another pump rather than pump 4.
Φ3 : Pmax =?[F (Pumpi ̸=4 = 0 & Sensori ̸=4 = 1)]

Results

Table 12 and Table 13 show the verification results of the three properties for the de-
scribed attacks, respectively. Table 11 refers to the size of the constructed MDP proper
to each attack in terms of states, transitions, and choices. From the obtained results, we
found that the insider attacker and the social-Technical attacker violate all the proper-
ties since both of them have all the knowledge, skills and the software to control the
system. Further, the external technical attacker #1 could not violate the third property
because he has only DoS attack as skills. Thus, he could not disturb the other pump
stations. Furthermore, the external technical attacker #2 could not violate all the prop-
erties because he do not have the skills and the knowledge about the system to violate
the properties but he succeeded when mastering social-technical attack techniques.

Table 11: The model complexity in the presence of the different attackers.

Action/ Insider External-Technical External-Technical External-Technical
Criterion Attacker Attacker #1 Attacker #2 (scenario #1) Attacker #2 (scenario #2)

States 29520 45980 59040 117260
Transitions 259200 440924 518400 1029600

Choices 141120 220220 282240 560560

Table 12: The verification results in the presence of the insider and the external techni-
cal #1 attackers.

Action/ Insider Verification External-Technical Verification
Criterion Attacker Time (secs) Attacker #1 Time (secs)

Φ1 ✓ 0.109 ✓ 0.393
Φ2 ✓ 0.221 ✓ 0.491
Φ3 ✓ 0.301 ✗ 0.537

Figure 11 shows the success of the insider attacker and the external-technical at-
tacker #1 for Φ1. The probability evaluation of the insider attack converges to 0.138
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Table 13: The verification results in the presence of the external technical attacker #2.

Action/ External Technical Verification External Technical Verification
Criterion Attacker #2 (scenario #1) Time (secs) Attacker #2 (scenario #2) Time (secs)

Φ1 ✗ 0.222 ✓ 0.051
Φ2 ✗ 0.297 ✓ 0.077
Φ3 ✗ 0.311 ✓ 0.092

and to 0.327 for the external-technical attacker #1. Further, Figure 12 shows the suc-
cess of the social technical attacker for Φ2 with a maximum probability value of 0.362
and 0.404 for Φ3 (right).

Figure 11: The success of insider Attacker (left) and the External-technical Attacker
#1 for Φ1 (right).

Figure 13 depicts the sequence diagram of violating Φ3 by the external technical
attacker #2 (scenario #2). The attack start by sending emails (social engineering attack)
to all agents. This phishing email contains a link to download a fake update of the
system control software. When the agent click on the link, a malware will be download
instead of the trusted software update. Then, the malware starts recording everything
(packets, keyboard inputs, etc) and send it back to the attacker. After analyzing the
received data, he patches the malware to update the commands. After that, the malware
intercepts the command, modifies and sends it to the RTU. Consequently, the pump will
be stopped.

Countermeasures Figure 14 shows the countermeasures generated for the violation
of Φ2 by the insider attacker (the bottom path), the external attacker #1 (the middle
path), and the external attacker in scenario #2 (the upper path). Each path is an attempt
from all possible flows of each attack. The origin of the security breaches were initially
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Figure 12: The success of the social technical attacker for Φ2 (left) and Φ3 (right).

Attacker Agent Malware RTU Pump

send email

open mail

click link

start

record data

send command

done

...

done

send data

Analyze Data

Generate command

send data

send command

intercept

modify command

send command

stop pump 100

Figure 13: Attack scenario against Φ3.

related to two points: 1) the insider attacker has too much power, and 2) the use of
the radio communication. The generated countermeasure rely on a defense-in-depth
strategy. First, it proposes the use of access control to alleviate an attack. In addition,
it suggests an identification and authentication mechanism to harden the access control
and issuing radio commands. Further, it prefers the use of the system monitoring to
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ensure the real time trustworthy and functionality of the system. Also, it recommends
a system and information integrity to avoid sending false commands and controlling
pumps. Furthermore, it proposes to periodically perform personality tests to assess the
employee behaviours and plan training to overcome social engineering attacks.

Stop pump

R1 R2 R3

• Access Control.

• Identification and Authentication.

• System monitoring.
flooding the targetrecord a signal

radio frequency scanner

R1 R2

• System and Information Integrity.

• System monitoring.Disable alarmconnect

R1 R2 R3 R4

• Access Control.

• Identification and Authentication.

• System monitoring.

• System and Information Integrity.

• Assess employee behaviour and Training.

replayrecordopen mail

send emails

Figure 14: Markov Decision Attack-Defense Tree for Φ2.

5 Conclusion
This paper sets the fundamentals needed for a fully automatic framework to correctly
model and analyze safely security in ICPS. We provided details of the formalism
needed for a complete ICPS architecture that captures the main structures and possible
behaviour of ICPS entities by covering the physical and information infrastructures,
services, assets, social actors, and also their activities and interactions. Further, the
formalism included the intruder with different powers regarding the aspect of each
ICPS entity. The execution of an action has a cost and guided by probabilities under
contextual conditions. At this end, the reinforcement learning aims to help an attack to
select an optimal sequence of actions in terms of reducing the cost and maximizing the
reward. The proposed formalism has also a rich and flexible semantics, which is used to
capture the ICPS functional and security requirements expressing the possibility, the
likelihood, and the cost of actions. This is designed to be easy for other extensions/re-
finements and to automatically carry the functional correctness and security analysis.
This is done using the proposed algorithm that transforms an ICPS model into the in-
put language of PRISM so to be checked against the requirements expressed in PCTL
within the presence of attacks. Finally, the effectiveness of the framework is validated
on two case studies that shows the impact of attacks and how they are mitigated.

The proposed work sets the stage for further improvements. First, we intend to
refine the contextual conditions of the proposed formalism, generate automatically the
security requirements needed for verification, and provide a countermeasure mecha-
nism that automatically reinforces the ICPS security. Also from a theoretical point of
view, we needed to automate the presented proofs for each developed step in a proof
assistant (e.g. Coq). Further, we need to accelerate the analysis procedure by introduc-
ing the parallelism for probabilistic verification. Furthermore, we intend to implement
the proposed framework as a full standing tool and later validate it on different case
studies.
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6 Appendices

6.1 Operational semantics
For anode n, rules LCK, UCK, and MOV describe respectively locking, unlocking, and
moving a node. TRT is to terminate the process.

Bn = lock(o1, o2).B
′

n ∧ ¬locked(o1) ∧ o1, o2 ∈ cont(n) ∧ p ∈ attr(o1) ∩ attr(o2)
LCK

⟨idn,−, < −, {o1,¬locked(o1)} >,−⟩ lock(o1,o2)−−−−−−−→ ⟨idn, B
′

n, < −, {o1, locked(o1)} >,−⟩

Bn = lock(o1, o2).B
′

n ∧ locked(o1) ∧ o1, o2 ∈ cont(n) ∧ p ∈ attr(o1) ∩ attr(o2)
UCK

⟨idn,−, < −, {o1, locked(o1)} >,−⟩ lock(o1,o2)−−−−−−−→ ⟨idn, B
′

n, < −, {o1,¬locked(o1)} >,−⟩

Bn = Move(l, l′).B
′

n ∧ loc(n) = l ∧ locked(lock(l))
MOV

⟨idn,−, < loc(n) = l,−,−,−⟩ upx−−→ ⟨idn, B
′

n, < loc(n) = l′,−,−,−⟩
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For the composition operators, we define the following semantic rules where P1 and
P2 represent the parallel composition rules, COM is the communication one, N1 and
N2 are the non-deterministic rules. Further, G1 and G2 represent the guarded choice
derivation rules. Finally PB1 and PB2 are the derivation rules for the probabilistic
choices. To simplify the derivation rules, we consider n1 and n2 two different nodes.

n1
α1−→ n′1 P1

n1||n2
α1−→ n′1||n2

n2
α2−→ n′2 P2

n1||n2
α1−→ n1||n′2

n1
α1−→ n′1 N1

n1 + n2
α1−→ n′1 + n2

n2
α2−→ n′2 N2

n1 + n2
α1−→ n1 + n′2

n1
α1,g−−−→ n′1 G1

n1 +g n2
α1,g−−−→ n′1

n2
α2,g−−−→ n′2 G2

n1 +¬g n2
α2−→ n′2

n1
α1,p−−−→ n′1 PC1

n1 +p n2
α1,p−−−→ n′1

n2
α2,p−−−→ n′2 PC2

n1 +1−p n2
α2,p−−−→ n′2

n1
α1−→ n′1 n2

α2−→ n′2 COM
n1|n2

C(α1,α2)−−−−−−→ n′1|n′2
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6.2 Transformation Function

TP (α) =



[SRTo]¬os → (o′s = ⊤);

iff:Start ∈ Σo

[TRTo]¬ot → (o′t = ⊤);

iff:Terminate ∈ Σo

[Syno2 ]oo2 ∧ o1o3 ∧ ¬po2 ∧ ¬po3 → (o′2 = o2);

[Syno2 ]oo2 ∧ o1o3 ∧ ¬po2 ∧ ¬po3 → (o′3 = o2);

iff:Send(o1, o2) ∈ Σo1
o ,Receive(o3, o2) ∈ Σo2

o .

[Tako1 ]la = lo ∧ oo2 ∧ ¬locko ∧ po2 → (a′o2 = ⊤);

[Tako1 ]la = lo ∧ oo2 ∧ ¬locko ∧ po2 → (o′o2 = ⊥);

iff:Receive(o, o2) ∈ Σa.

[Puto1 ]la = lo ∧ aoi ∧ ¬locko ∧ poi → (a′oi = ⊥);

[Puto1 ]la = lo ∧ aoi ∧ ¬locko ∧ poi → (o′oi = ⊥);

iff:Send(o, o2) ∈ Σa.

[loco1 ]oo1 ∧ oo2 ∧ ¬ko1 ∧ po1 = po2 → (k′o1 = ⊤);

iff:Lock(o1, o2) ∈ Σo
o.

[loco1 ]oo1 ∧ oo2 ∧ ko1 ∧ po1 = po2 → (k′o1 = ⊥);

iff:Unlock(o1, o2) ∈ Σo
o.

[loco1 ]oo1 ∧ oo2 ∧ ko1 ∧ po1 = po2 → ([[o1]]
′ = [[o2]]);

iff:Update(o1, o2) ∈ Σo
o.

For α ∈ Σ, we have:

1. TP (α) = ⟨lα, gα, uα⟩ where lα is the label, gα is the guard, and lα is the update
for the command in PRISM [lα]gα → (uα);.

2. TP (α.α′) = TP (α) ∪ TP (α′).

3. TP (α+ α′) = TP (α) ∪ TP (α′) s.t. gα′ = gα′ ∧ uα .

4. TP (α+g α
′) = TP (α) ∪ TP (α′) s.t. gα = gα ∧ g and gα′ = gα′ ∧ ¬g.

5. TP (α+p α
′) = ⟨lp, gα ∨ gα, ⟨(p, uα), (1− p, uα)⟩⟩.

6. TP (α||α′) = TP (α) ∪ TP (α′).

7. TP (α|α′) = TP (α) ∪ TP (α′) s.t. lα = lα′ .
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6.3 The Generated PRISM Model
For the security and performance assessment of the water-supply, the tool generates the
PRISM code presented in Listing 6.3 that is proper to the model under test. It shows
the code fragments of client, modbus, opcua, and attacker.
/ / Water − s u p p l y sys tem
/ / C l i e n t : M u l t i p r o t o c o l s
/ / S e r v e r s ; Modbus , OPC−UA
/ / PLC
/ / P h y s i c a l nodes
mdp

/ / Network v a r i a b l e s
g l o b a l A c t i o n : [ 0 . . 1 0 ] i n i t 0 ;
g l o b a l F u n c t i o n : [ 0 . . 1 ] i n i t 0 ;
g l o b a l Value : [ 0 . . 2 ] i n i t 0 ;

module C l i e n t
s c l i e n t : [ 0 . . 7 ] i n i t 0 ;

[ Sreq ] ( s c l i e n t =0) −> ( s c l i e n t ’ = 1 ) ;
[ Rreq ] ( s c l i e n t =1) −> ( s c l i e n t ’ = 2 ) ;
[SOPCUA] ( s c l i e n t =2) −> ( s c l i e n t ’ = 3 ) ;
[ROPCUA] ( s c l i e n t =3) −> ( s c l i e n t ’ = 4 ) ;
[ ] ( s c l i e n t =4) −> ( s c l i e n t ’ = 5 ) ;

[ ] ( s c l i e n t =5) −> ( s c l i e n t ’ = 6 ) & ( Act ion ’ = 4 ) & ( Func t ion ’ = 0 ) ;
[ ] ( s c l i e n t =5) −> ( s c l i e n t ’ = 6 ) & ( Act ion ’ = 5 ) & ( Func t ion ’ = 0 ) ;
[ SModbus ] ( s c l i e n t =6) −> ( s c l i e n t ’ = 7 ) ;
[ RModbus ] ( s c l i e n t =7) −> ( s c l i e n t ’ = 5 ) ;

endmodule

module Modbus
smodbus : [ 0 . . 3 ] i n i t 0 ;

[ Smodbus ] ( smodbus =0) −> ( smodbus ’ = 1 ) ;
[RPLC] ( smodbus =1) −> ( smodbus ’ = 2 ) ;
[ SPLC ] ( smodbus =0) −> ( smodbus ’ = 3 ) ;
[ Rmodbus ] ( smodbus =2) −> ( smodbus ’ = 0 ) ;
[ Rmodbus ] ( smodbus =3) −> ( smodbus ’ = 0 ) ;

endmodule

module OPCUA
sopcua : [ 0 . . 3 ] i n i t 0 ;

[SOPCUA] ( sopcua =0) −> ( sopcua ’ = 1 ) ;
[RPLC] ( sopcua =1) −> ( sopcua ’ = 2 ) ;
[ SPLC ] ( sopcua =2) −> ( sopcua ’ = 3 ) ;
[ROPCUA] ( sopcua =3) −> ( sopcua ’ = 0 ) ;

endmodule

r e w a r d s
s A t t a c k e r =1 : 1 ; s A t t a c k e r =4 : 0 . 8 7 5 ;
s A t t a c k e r =2 : 0 . 5 ; s A t t a c k e r =9 : 0 . 8 7 5 ;
s A t t a c k e r =7 : 0 . 5 ; s A t t a c k e r =14 : 0 . 8 7 5 ;
s A t t a c k e r =12 : 0 . 5 ; s A t t a c k e r =16 : 0 . 7 5 ;
s A t t a c k e r =18 : 0 . 2 5 ; s A t t a c k e r =5: 0 ;
e n d r e w a r d s

module A t t a c k e r
s A t t a c k e r : [ 0 . . 1 0 ] i n i t 0 ;
A t t a c k : [ 0 . . 1 ] i n i t 0 ;

/ / I n t e r c e p t
[ r ec i eve_modbus ] s A t t a c k e r =0 −> ( s A t t a c k e r ’ = 5 ) ;
[ send_opc ] s A t t a c k e r =0 −> ( s A t t a c k e r ’ = 5 ) ;
[ ] s A t t a c k e r =5 −> 0 . 0 9 7 : ( s A t t a c k e r ’ = 1 ) + 0 . 1 7 0 : ( s A t t a c k e r ’ = 3 ) + 0 . 0 9 7 : ( s A t t a c k e r ’ = 6 )
+ 0 . 1 7 0 : ( s A t t a c k e r ’ = 8 ) + 0 . 0 9 7 : ( s A t t a c k e r ’ = 1 1 ) + 0 . 1 7 0 : ( s A t t a c k e r ’ = 1 3 )
+ 0 . 1 5 1 : ( s A t t a c k e r ’ = 1 5 ) + 0 . 0 4 8 : ( s A t t a c k e r ’ = 1 7 ) ;

/ / Modify Modbus message
[ ] s A t t a c k e r =3 −> ( s A t t a c k e r ’ = 4 ) & ( Act ion ’ = 6 ) & ( Func t ion ’ = 0 ) & ( Value ’ = 0 ) & ( At tack ’ = 1 ) ;
[ ] s A t t a c k e r =3 −> ( s A t t a c k e r ’ = 4 ) & ( Act ion ’ = 6 ) & ( Func t ion ’ = 0 ) & ( Value ’ = 1 ) & ( At tack ’ = 1 ) ;
[ ] s A t t a c k e r =3 −> ( s A t t a c k e r ’ = 4 ) & ( Act ion ’ = 6 ) & ( Func t ion ’ = 1 ) & ( Value ’ = 0 ) & ( At tack ’ = 1 ) ;
[ ] s A t t a c k e r =3 −> ( s A t t a c k e r ’ = 4 ) & ( Act ion ’ = 6 ) & ( Func t ion ’ = 1 ) & ( Value ’ = 1 ) & ( At tack ’ = 1 ) ;
[ ] s A t t a c k e r =4 −> ( s A t t a c k e r ’ = 1 0 ) ;
[ r ec i eve_modbus_1 ] s A t t a c k e r =10 −> ( s A t t a c k e r ’ = 0 ) ;

endmodule
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