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ABSTRACT Internet of Things (IoT) enables a myriad of applications by interconnecting software to
physical objects. The objects range from wireless sensors to robots and include surveillance cameras. The
applications are often critical (e.g. physical intrusion detection, fire fighting) and latency-sensitive. On the
one hand, such applications rely on specific protocols (e.g. MQTT, COAP) and the network to communicate
with the objects under very tight timeframe. On the other hand, anomalies (e.g. communication noise,
sensors’ failures, security attacks) are likely to occur in open IoT systems and can result by sending false
alerts or the failure to properly detect critical events. To address that, IoT systems have to be equipped with
anomaly detection processing in addition to the required event detection capability. This is a key feature
that enables reliability and efficiency in IoT. However, anomaly detection systems can be themselves object
of failures and attacks, and then can easily fall short to accomplish their mission. This paper introduces
a Reliable Event and Anomaly Detection Framework for the Internet of Things (READ-IoT for short).
The designed framework integrates events and anomalies detection into a single and common system that
centralizes the management of both concepts. To enforce its reliability, the system relies on a reputation-
aware provisioning of detection capabilities that takes into account the vulnerability of the deployment
hosts. As for validation, READ-IoT was implemented and evaluated using two real life applications, i.e. a
fire detection and an unauthorized person detection applications. Several scenarios of anomalies and events
were conducted using NSL-KDD public dataset, as well as, generated data to simulate routing attacks.
The obtained results and performance measurements show the efficiency of READ-IoT in terms of event
detection accuracy and real-time processing.

INDEX TERMS Anomaly Detection, Cloud Computing, Event detection, Fog Computing, Internet of
Things, Intrusion Detection, Trust and Reputation.

I. INTRODUCTION

Internet of Things (IoT) refers to the ubiquitous network
of heterogeneous objects such as cameras, sensors and
drones [1]. These objects are able to interact and to com-
municate with each other while relying on Internet proto-
cols or other protocols addressing schemes [2] (e.g. IPv4,
IPv6, IEEE 802.15.4, ZigBee, LoRaWAN) and specific mes-
saging protocols (e.g. COAP, MQTT). The ultimate goal
is to implement a common goal that would make up the
so-called IoT applications (e.g. weather forecast, HVAC-
Heating, Ventilation and Air-Conditioning, access control).
The applications domains of IoT technologies are multiple.

Precision agriculture, smart transportation and healthcare are
among the several examples. IoT is adjustable to almost any
technology capable of providing relevant information such
as about the performance of an activity or about the related
environmental conditions.

A. CONTEXT AND MOTIVATIONS

IoT systems are often critical and latency-sensitive [3]. The
information needs to travel fast from the objects to the
software through the gateways and the network. Furthermore,
these systems have to be efficient and reliable to manage
handling critical tasks. For instance, for natural disasters
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management, IoT systems must detect interesting events
which are related to the purpose for which the IoT infras-
tructure was designed (e.g. fire, floods, gas leakage) as soon
as possible and make sure not to miss any of them due
to prospective anomalies. Anomalies can be classified into
two categories: (i) Anomalies related to technical or inner
system issues (e.g. communication failure or noise, object
failure or malfunction), and (ii) anomalies related to the
system integrity and security (e.g. malicious attacks, intruder
objects). At run-time, IoT systems may face one or both
anomalies at the same time. In this particular case, the system
accuracy can be easily compromised, and this could cause
damaging effects, important material loss, information theft
and even injuries or people death. Therefore, it is critical
to detect these anomalies, process them as soon as possible
and maintain the system in good condition all the time. For
instance, when technical issues occur, the system should be
able to detect them and recover in an autonomous fashion
(e.g. select and switch to another cluster head if the current
one breaks down). Similarly, in case of security threats,
the system should be able to detect them while minimising
the damage (e.g. isolate and disconnect a malicious node
broadcasting erroneous data). Accordingly, it is critical to
provide efficient surveillance systems that are able to detect
such events and anomalies on real-time, raise alerts in a mini-
mum delay and implement appropriate actions to improve the
system reliability and then the detection accuracy (e.g. fire for
fire detection applications, intrusion for monitoring systems).
Interesting events and anomalies are generally considered in
the literature as outliers [4].

In the relevant literature, several work already proposed
to integrate Anomaly Detection Systems (ADS) in IoT (e.g.
see [5]–[8]). However, ADS are generally introduced as
standalone systems with their own management and data
storage. This induces many efforts to connect the ADS to the
IoT system compared to built-in ADS system. Furthermore,
ADS can be themselves subject to failures and attacks, and
then fall short to accomplish their mission. Reliability tools
adopted to supervise IoT sensors and networks should be
reused. It is worth mentioning that the reliability overhead
must be minimal since the considered context (i.e. IoT) is
often limited in terms of computing and energy resources [1].

B. CONTRIBUTIONS AND RESULTS
This paper introduces a Reliable Event and Anomaly De-
tection Framework for the Internet of Things (READ-IoT
for short). This framework enables accurate detection of
outliers thanks to the adoption of a common management
system and an optimal processing workflow. The proposed
approach relies on cascaded (2 steps) activation of detection
components. First, a rule-based static detection is considered.
Then, based on the output of the first detection, machine
learning capabilities are used to complement the detection
process. The cascaded detection allows to characterize the
detected outliers. Specifically, known outliers are detected
thanks to a rule-based detection, and then machine learning

processing permits further investigation and characterization
of unknown outliers.

READ-IoT framework proposes an integrated solution for
ADS and EDS. There are at least four advantages to this
integration:

• Building a common and unique management system:
the same provisioning strategies and mechanisms used
for both subsystems ADS and EDS provides admin-
istrators with unified and practical procedures. Obvi-
ously, this considerably decreases the operating cost
and complexity of IoT systems. Basically, the detection
components are deployed following a common opti-
mized deployment plan aiming at reducing latency and
selecting trusted deployment devices. Other common
management components are QoS management and risk
calculation that are shared between ADS and EDS.

• Improving the cooperation between subsystems: since
they are integrated, the two subsystems can interact in
real-time without building third-party bridges between
them. When the ADS detects anomalies from a device
or a network, the EDS has to be informed in real-time
to ignore non-trusted sources of information. The built-
in management system, the unified processing workflow
and the common communication infrastructure elim-
inate the need for a ’system integrator’ between the
subsystems.

• Improving the data accessibility: by being able to read
data from each subsystem (ADS and EDS) in a central-
ized way, the data is seen as one-piece. This is crucial for
efficient decision making. QoS data is gathered, and IoT
sensors and networks trust evaluation is build. Having
related data from both systems in a centralized way al-
lows for drawing a more complete and accurate view of
the observed system compared to separate observations.

• Improving the system reliability: data integration fed
from both EDS and ADS allows for building a common
risk management. Untrusted data sources are discarded
from the deployment plan, and the system reliability is
then immediately improved.

To address real-time constraints, READ-IoT is designed in
the hybrid cloud/fog system. It relies on adaptive resource-
aware deployment that takes into account the resources type
(i.e. cloud or fog), location with regard to the IoT application
(i.e. in core network, or at the edge, close to the data sources),
as well as, workload over these resources (i.e. available mem-
ory, processing capabilities and network bandwidth). For
validation and evaluation purposes, the READ-IoT frame-
work was implemented, and several real life IoT applications
were provisioned over it. The performed experiments show
that: (1) combining both event and anomaly detection in IoT
systems improves the system reliability, (2) the cascaded
activation of rule-based and machine learning processing
qualifies better the detected outliers, (3) the reputation-aware
deployment enforces ADS and EDS reliability and then the
detection accuracy and (4) the resource-aware provisioning
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over hybrid cloud/fog environments enables addressing real-
time constraints and reduces reliability overhead.

C. STRUCTURE OF THE MANUSCRIPT
Section II introduces background information. Section III
reviews the related work in the literature. Section IV de-
scribes the READ-IoT framework architecture. Section V
discusses the designed algorithms and models for ADS, EDS
and placement. Section VI shows the developed prototype
architecture and tools. Section VII details the evaluation
experiments scenario and results. Finally, Section VIII con-
cludes the paper and presents the work perspectives.

II. BACKGROUND INFORMATION
This Section introduces fundamental and background infor-
mation that are necessary for the understanding of this work.

A. IOT FOR SURVEILLANCE SYSTEMS
IoT applications assist enterprises and organizations to re-
alize the potential of the Internet of Things. Businesses
are relying on IoT applications to optimize workflows and
enhance the control of operations at each step of the supply
chain [10]. In the particular case of surveillance systems,
IoT turns security surveillance into smart safety and security
management [11]. In the near past, Closed-Circuit Television
Systems (CCTV) were the most common used technology
in surveillance. However, such systems can only display and
record video footage. They do not understand what they are
watching and are not able to do anything about it. Nowadays,
the IoT surveillance systems are able to automatically detect
threats (e.g. smoke, intrusion) and make the right calls to
process them. They rely on machine learning and computer
vision capabilities [12]. IoT surveillance applications con-
sume smart devices data traveling from the edge of the
network, execute appropriate programs, and produce added
values services (e.g. visualization, prediction) and/or suitable
actions for actuators such as robots and drones.

Fig. 1 depicts a classical IoT system architectural
overview [13]. The same is valid for surveillance applica-
tions. It consists of the following entities:

• IoT nodes (e.g. Sensors and Actuators): Sensor Nodes
(SN) are responsible for gathering and collecting data
such as temperature, humidity, gas and motion. Actuator
Nodes (AN) as fire extinguishers are IoT devices that
may be used to react to detected events.

• Cluster Heads (CH): responsible for receiving and for-
warding data from a given set of IoT nodes (cluster)
to IoT gateways. They can be involved in monitoring
and analyzing tasks. Furthermore, they may be equipped
with cameras to survey the whole cluster zone.

• IoT Gateways: responsible for making the bridge to
cloud servers and might be involved in analysis task.

• Cloud: responsible of data analysis and storage.

FIGURE 1. IoT system reference topology

B. CLOUD AND FOG COMPUTING

The American National Institute of Standards and Technol-
ogy (NIST) defines cloud computing as a novel model for
enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g.
networks, servers, storage resources, applications, services,
etc.) [14]. These resources should be swiftly provisioned
and released with minimal management effort and according
to the pay-as-you-go model [18]. Cloud computing can be
defined as a specialized distributed computing paradigm.
This paradigm differs from the traditional ones since: (1) it is
massively scalable, (2) it can be encapsulated as an abstract
entity that delivers different levels of services to customers
outside the cloud, (3) it is driven by economies of scale, (4)
it can be dynamically configured (via virtualization or other
approaches) and (5) it can be delivered on-demand [14]–
[17]. The associated service delivery models to cloud com-
puting are Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS) and Software-as-a-Service (SaaS). Applica-
tion providers use platforms offered as PaaS, to provision
applications. These applications are offered to end-users (or
possibly to other applications) as SaaS. Platforms add ab-
straction to the infrastructure offered as IaaS. The infrastruc-
ture is the actual dynamic pool of virtualized resources used
by applications [9].

Cloud computing is not completely suitable to provision
IoT applications [10]. The major limitation is related to the
connectivity between the computing cloud resources in the
core network and the devices at the edge. On the one side,
communications between IoT applications in the cloud and
their related object is achieved through the Internet. On the
other side, IoT applications are latency-sensitive [19]. Fog
computing is a computing paradigm that has been recently in-
troduced to tackle these limitations [20]. It extends the cloud
architecture and provides additional computing resources at
the edge of the network, close to the object [20], [41]. The
ultimate goal is to reduce the latency and processing delays
for applications such IoT when being provisioned over hybrid
cloud/fog environments.
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C. ANOMALY AND EVENT DETECTION SYSTEMS

In this work, ADS (Anomaly Detection System) is distin-
guished from EDS (Event Detection System). The two ter-
minologies can be confused in the literature to designate the
detection of rare and exceptional events [42]. ADS consists
in the identification of what can prevent a system from
accomplishing its specified functions like nodes failures, er-
rors, malfunctions and security attacks. EDS rather concerns
the identification of events of interest and is identified in
the specifications of an IoT surveillance system, like the
detection of fire, flood, unauthorised person intrusion, etc.

For the purpose of anomaly detection, there are three
main approaches: (1) rule-based detection, (2) anomaly-
based detection and (3) reputation systems [53]. Rule-based
approaches rely on pre-defined rules to classify captured
packets as normal or abnormal. Although they detect well-
known anomalies in high accuracy, they are unable to detect
new attacks so as the attack signature database should always
be updated [27]. Anomaly-based approaches are generally
based on machine learning algorithms. They are used to de-
tect anomalies and malicious activities after a training phase
to construct a model that distinguishes normal from abnormal
data [5], [28]. Although these approaches can detect new at-
tacks, they have the disadvantage of generating false positives
in a higher rate rather than rule-based approaches. Reputation
systems generally rely on monitor nodes to supervise and
evaluate their neighbors activities. Trust values are affected
to each node. They are calculated according to the node
observed behavior like data aggregation and routing [29],
[30]. When a trust value is under a well-defined threshold,
the associated node is considered malicious. Each approach
has its key strengths and drawbacks. Therefore, hybrid ap-
proaches combining the previous mentioned approaches [31],
[32] were adopted in order to maximize the detection rate
(DR), minimize the false positive rate (FPR) and preserve
energy consumption.

Several ADS [7], [8] are used in recent IoT systems to
detect anomalies and malicious nodes in the network and
provide countermeasures to mitigate them. Consequently,
they are considered as a solution to improve the system
reliability. Nevertheless, how to make sure that they are
themselves reliable? This "hen and eggs" issue shows that,
in addition to the integration of EDS and ADS, additional
reliability enforcement techniques are needed. In this current
work, a trust management system is built on top of ADS and
EDS for reliability enforcement.

D. SUBSYSTEMS INTEGRATION FOR BETTER
RELIABILITY

Generally speaking, software integration consists of data
integration, process integration and analysis and decision
integration [21]. Putting the subsystems together aims at im-
proving business processes and simplifying the administrator
work. Systems integration targets the optimization of three
parameters:

• Time: using several systems equals the necessity of
switching from one platform to another in order to
perform specific business tasks.

• Data: the greatest advantage of systems integration is
improved data accessibility. Since data is considered
as a whole, system integration leads to better decision-
making and business growth in general.

• Management costs: by using just one management ap-
plication instead of several, administrators spend less
time introducing data to the system, deploying and
updating functional processes and thus, reducing energy
consumption and engineering cost.

In the context of reliability, a lot of works concentrate
on the integrated reliability systems of both software and
hardware [22], [23]. In addition to the advantages listed
so far, subsystem integration allows for the detection of
more failures than the subsystems separately. For example,
software failures generated by hardware failures and hard-
ware failures caused by software failures are detected in the
integrated subsystems and not detected if the subsystems are
separately considered [24]. Other works integrate anomaly
and failure detection subsystems of multi domains in a sin-
gle system [25]. The integration allows the optimization of
resources and the reduction of management cost. IoT is itself
considered as an integrated set of subsystems for observing
different targets and different domains. However, manage-
ment subsystems are still considered as ’silos’ with different
targets and tools. In this work, we propose the integration
of ADS and EDS in a common system to profit from the
subsystem integration advantages in terms of resource opti-
mization, management optimization and improved reliability
of the overall system.

Many software architecture solutions allow for achieving
subsystem integration [26]. In our work we adopt an ar-
chitecture where data storage is centralized, a publish/sub-
scribe broker is adopted as a communication middleware for
real-time interaction and a common management system is
integrated for ADS and EDS deployment, monitoring and
update.

III. RELATED WORK
Our contributions are related to three main fields of research
in IoT systems: Hybrid fog/cloud provisioning, Event and
Anomaly detection systems and Trust and Reputation sys-
tems. Recent works in each domain are described hereafter.
READ-IoT is shown to take the best practices and techniques
in IoT for a reliable and efficient ADS and EDS integration
while related works generally address one single subsystem
at one time.

A. IOT APPLICATIONS PLATFORMS IN CLOUD/FOG
ENVIRONMENTS
Many works provide an overview of the core issues, chal-
lenges and general frameworks for IoT services orchestration
over Edge, Fog and Cloud [33]–[36]. Authors in [37] pro-
pose a novel optimization model minimizing the total cloud
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provider cost to serve client requests by shifting some of the
work to the fog Node. The model is formulated as a Mixed
Integer Linear Problem (MILP) with an objective function
minimizing the total computational cost (load) of requests
using performance and QoS parameters. In [38], authors
propose an architecture entitled SoFA, which is a Spark-
oriented Fog architecture that leverages Spark functionalities
to provide higher system utilization. This method leverages
the remaining processing capacity of edge devices.

The authors in [39] propose hydle, a hybrid deployment
framework for surveillance system. The hybrid deployment
is based on using different data source types (WSN and
MWSN) and hosting nodes (fog and cloud nodes). The ap-
proach has been evaluated in a surveillance application using
incremental layered Deep Learning-based image processing.
Results show processing delay optimization using a hybrid
fog and cloud provisioning with different network and pro-
cessing metrics. In [40], authors propose an architecture for a
Platform as-a-Service (PaaS) to automate applications provi-
sioning in a hybrid fog/cloud environment. This architecture
was used in [41] to provide a demo of the proposed PaaS by
deploying an IoT healthcare application components across
fog and cloud nodes. The demo also depicts the support of
the whole application life cycle (i.e. developing, deploying
and managing).

The proposed solutions are proven efficient, and the un-
derlying principle consists in resource-aware deployment
and orchestration for reducing resource consumption and
processing delays. In our work, the deployment is also driven
by targets’ trust level in addition to resource availability.
Another difference is the adoption of the same hybrid de-
ployment for both EDS and ADS.

B. ANOMALY AND EVENT DETECTION SYSTEMS IN IOT
Authors in [43] propose a pattern-sensitive partitioning
model for IoT sensors data streams capable of paralyzing data
processing in order to achieve a high detection accuracy for
event pattern in a minimum delay. Authors in [44] extend
Sipresk, a big data analytic platform, to detect, classify and
report events in Ontario highways in a minimum delay.
In [45], authors propose an anomaly detection system for
asynchronous events coming from a fleet of devices. The
system defines an analysis workflow for each specific use
case, and it is deployed as a Cloud Web service exposing
all functionalities via REST API. Authors in [46] propose
a novel anomaly detection method, called Fog-Empowered
anomaly detection, using an efficient hyper-ellipsoidal clus-
tering algorithm. They also use a fog computing architecture
to minimize latency in anomaly detection. In [47], authors
propose a Deep-Learning algorithm to detect malicious traf-
fic in IoT networks. The IDS was proven efficient against
various attacks in IoT networks and was deployed as a
standalone device in the network. A lightweight distributed
IDS in a three-layered IoT architecture including the cloud,
fog and edge layers was proposed in [48]. Authors in [49]
propose SVELTE, a distributed intrusion detection system for

IoT that detects communication attacks in 6LoWPAN net-
works using RPL as a routing protocol. Recent works [50]–
[52] focus mainly in detecting anomalies for large scale
systems using Big Data technologies. In our previous work,
READ [53], a reliable event and anomaly detection system
for WSN was proposed. Although the proposed system was
proven to be reliable ensuring a high detection rate and
low energy consumption, it focuses only on WSN and does
not consider IoT challenges as security attacks where the
gateway is connected to cloud servers, and IP protocol is
used. In our recent work [54], an anomaly detection system
that considers both WSN and IoT anomalies detection using
machine learning components depending on nodes capabili-
ties is proposed. However, similar to the other cited works,
ADS is used for reliability but the reliability of ADS itself is
not addressed. In this work, the reliability of both the ADS
and EDS is enforced with reputation-based deployment.

C. TRUST AND REPUTATION SYSTEMS IN IOT
Trust and reputation systems are mainly used for monitoring
task in WSN and IoT systems. They rely on monitor nodes or
watchdogs that are used to supervise and evaluate their neigh-
bors behaviours. Trust values are calculated for the nodes
based on their observed activities, and then decision for data
aggregation or routing is taken based on this evaluation [55],
[56]. Many works address the problem of finding the com-
promise between resource consumption and reputation cal-
culation like in [57] where monitors are periodically changed
to optimise their energy. Other works aim at automating the
reputation management to reduce administration cost like
in [58] where authors present an architecture pattern for
trusted orchestration management (TOM) in edge and cloud
using a blockchain-based security solution. In READ-IoT,
the reputation system enforces both EDS and ADS reliability.

We present in Table 1 the main anomaly and event de-
tection solutions listed in this section. We summarize the
main key points and strengths of these works and classify
them following three main criteria: The system goal (Event
or anomaly detection) and deployment reliability techniques.

The related work study shows clearly that IoT systems
are designed either as EDS or ADS. To our knowledge,
few works propose an integrated solution as we propose
in READ-IoT. Furthermore, ADS systems are deployed for
reliability, but they are supposed to be reliable themselves.
This table highlights, therefore, the contribution of our work
compared to related ones: an integrated ADS and EDS with
an enforced reliability.

IV. READ-IOT DESIGN
This Section describes the READ-IoT framework design. It
first introduces the system architecture with its different lay-
ers and components. Then, it details the several designed pro-
cedures that supports every single phase of the IoT applica-
tions life-cycle. The design is based on the service computing
life-cycle model introduced in [59]. This reference stipulates
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TABLE 1. Summary of recent related work about anomaly and event detection in IoT

Detection Reliable Deployment
Work reference Key points/Strengths Event Anomaly Static Dynamic Risk

driven
Resource
driven

Sharkh et al. [37] Optimized hybrid fog/cloud
provisioning

X X X

Ben Abdallah et al.
[39]

Efficient incremental layered
DL-based image processing

X X X

Yangui et al. [40] Support of the whole IoT ap-
plication life cycle

X X X

Cramer et al. [45] Cloud Web service via REST
API

X X

Lyu et al. [46] Efficient hyper-ellipsoidal
clustering algorithm at fog
resources

X X X

Thamilarasu et al.
[47]

Efficient DL algorithm for IoT
anomaly detection

X X

Rettig et al. [51] Online Anomaly Detecting for
streaming application

X X X

Abdellatif al. [57] Adaptable and energy efficient
monitoring for WSN (limited
to WSN)

X X X X

Pahl et al. [58] Block-chain based solution for
a trusted orchestration in fog
and cloud

X X X

that services and applications, including IoT applications
provisioning process consists of three phases: (i) Develop-
ment, (ii) deployment and (iii) management. The READ-
IoT architecture specification is inline with this model. The
development phase consists of developing, testing and build-
ing the application executables. Application executables in-
clude all the files needed to execute the application once
deployed (e.g. source code, configuration files). The READ-
IoT framework provides the developer with an appropriate
Integrated Development Environment (IDE), as well as, all
the necessary libraries and resources implementing the re-
quired machine learning algorithms for anomaly detection,
reputation management, etc. These libraries are offered as
adapted development kits that could be used to assist devel-
opers at development time. The deployment phase consists
of: (1) Allocating and making ready the READ-IoT resources
(e.g. object, hosting containers, storage services) needed to
host and execute the end-user application and (2) uploading
its executables over these resources. The management phase
consists in: (1) Activating the deployed IoT application in
order to make it available, (2) executing it when receiving
requests and (3) performing appropriate management opera-
tions when needed at run-time (e.g. migrate, scale up/down).

A. HIGH-LEVEL ARCHITECTURE
Fig. 2 shows the target IoT system (READ-IoT) that includes
IoT nodes, two deployment areas (fog and cloud) for data
processing, storage and analysis, management modules and
application developers and subscribers. IoT nodes which are

organized in a cluster based topology communicate with their
relative cluster heads (CH) using different protocols (ZigBee,
LoRaWAN, 6LoWPAN, etc.). CHs aggregate and send data
to gateways (GWs) which have local storage and analytic
capabilities. Also, CHs have cameras installed to survey their
cluster zones. In fog, processing nodes are CHs, GWs, local
machines or virtual machine nodes. On the cloud, processing
nodes are virtual machines instances hosted in a cloud plat-
form with high performance and analysis capabilities. The
processing nodes permit to host and execute EDS or ADS
components following a deployment plan. The implementa-
tion of these components depends on the supervised system.
In our case, two kind of implementation are proposed: rule
based for detecting well defined events or anomalies and
machine-learning based for enforcing rule-based detection
and for new non-expected event or anomaly discovery.

On top of IoT supervision system, a management layer
contains the necessary modules that permit to monitor the
IoT nodes and network, calculate and update the best de-
ployment plan of processing components. Application sub-
scribers receive notifications and alerts for events of interest
and anomalies.

Supervised nodes and the managed system communicate
thanks to a publish/subscribe communication model follow-
ing a set of topics of an MQTT broker. Topics concern
collected data, detected events or anomalies, QoS data or
management data like deployment plans. The choice of a
publish/subscribe communication breaks any dependency be-
tween the system nodes, and then allows to easily add or
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remove sensors, gateways or cloud processing units. The
controller is the orchestrator and the contact point in the
management layer while master components are the contact
points on the processing nodes. Data and calculated infor-
mation are exchanged between master components and the
controller through the MQTT broker.

ADS or EDS components are handled with the same
deployment strategy and workflow logic which reduces their
administration cost and simplifies their deployment and up-
date.

B. PROCEDURES
The following describes procedures designed as part of
READ-IoT specification to implement the phases : develop-
ment, deployment and management.

1) Development procedure
This layer hosts an Integrated Development Environment
(IDE) that provides developers with the necessary develop-
ment tools (e.g. development kits, libraries, APIs). This IDE
permits developing, composing and testing application com-
ponents taking into account the properties and capabilities
of the target placement domain (either fog or cloud). The
developed component, planned to be deployed as part of an
application, is tested, validated then pushed to be handled by
the deployer module.

For machine learning components, developers are pro-
vided with a pipeline implementing different known super-
vised algorithms for best features selection and appropriate
algorithms choice based on accuracy metric. The training
phase and model generation should be updated based on data
manipulated in the application. The collected data should be
extracted and formatted in comma-separated values. Once a
model is generated, it should be updated in run-time based
on new arriving data. For rule based components, developers
are provided with templates implementing rules for detecting
specific attacks on WSN and IoT. The rules are updated
regularly based on newly discovered attacks.

2) Deployment procedure
Once calculated or updated, the deployment plan is com-
municated to the master nodes. A placement flow of EDS
and ADS components is described (on fog and cloud nodes).
The deployer deploys components as docker containers in
the dedicated processing nodes. Then, the containers are
run as web services. When an application execution flow
ends, results are sent by the last executed component via
MQTT publish service. In case of an anomaly, the reputation
values of nodes are updated. In case of a detected event, the
controller sends the information to the MQTT broker and
activates the actuator nodes for event handling by sending the
information to its relative gateway. Also, subscribers could
receive alerts from the broker through the event detection
topic.

3) Management procedure
The management process is handled by five main modules:
deployer, controller, QoS manger, risk manager and storage
manager.

• Deployer: A repository (e.g. docker [60] private hub)
keeps track of EDS and ADS component description
(related application, order of execution in the applica-
tion, performance requirement and desired placement)
in a registry (e.g. JSON or XML file). The deployer
calculates and updates a placement plan and deploys
components as docker containers in the dedicated pro-
cessing nodes. It uses QoS information updated by QoS
manager, the reputation of nodes updated by the risk
manager and the list of available resources (fog/cloud
processing nodes) information that is regularly updated
by the controller. At regular interval, it calculates the
best placement plan for EDS and ADS component
placement based on available resources. Then, it com-
municates this deployment plan to the controller when-
ever it is ready.

• Controller: It interacts with QoS manager and Risk man-
ager to receive information about nodes QoS and repu-
tations and update the resource registry. It interacts with
the deployer to provide resource information (availabil-
ity, QoS, reputations) and to obtain updated deployment
plan. It communicates with the master nodes to get EDS
and ADS data.

• Qos manager: This module checks and updates regularly
nodes quality of service data (availability, communica-
tion link bandwidth and busyness). The availability of
a node is verified thanks to ICMP ping messages. The
communication link is checked by both Time-to-live
ICMP ping parameter and head/get/put HTTP command
execution time using a light HTTP server. The node is
busy when a component is assigned to it for deployment.

• Risk Manager: It is in charge of calculating and updating
reputation values of supervised nodes.

• Storage manager: It subscribes to the topic raw data to
receive all published IoT data and store it in a scalable
database.

V. READ-IOT ALGORITHMS AND MODELS
This Section presents main READ-IoT algorithms (place-
ment calculation and cascaded detection) and models. The
algorithm of placement calculator deploying k components
(C1,..,Ck) over n fog nodes (FN1,...,FNn) and m cloud
nodes (CN1,...,CNm) is shown in Algorithm 1. Symbols
are described in Table 2. Mainly, execution of heavy com-
ponents as machine learning based components is carried
out in cloud [61] since more resources are needed to ensure
a faster processing time. Furthermore, the choice depends
on the communication link bandwidth to ensure a minimum
delay in sending data and receiving results from the cloud.
Only nodes with reputation score over a certain threshold
are elected for deployment in order to avoid compromised
or suspicious nodes. Reputation threshold and the execution
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FIGURE 2. READ-IoT Architecture

frequency of the algorithm are set by administrators, and
depend on application security requirements and the envi-
ronment risk. Finally, for faster execution, when the node
is busy and a component is assigned to it for deployment,
our strategy consists in favoring the free remaining nodes to
avoid overhead.

A. CASCADED DETECTION APPROACH

Fig. 3 shows READ-IoT unified processing of both EDS and
ADS. They both inherit from a parent class depending on the
application risk and execute the same workflow. They receive
data from IoT sources (SN, CH, GW) and process them
either on the fog or on the cloud following the deployment
plan. Fig. 4 depicts READ-IoT flowchart for event and
anomaly detection. The event detection process is based on
sensing data, whereas anomaly detection process is based
on communications data (actions 1 and 5). The rule based
detector permits to check whether there is an event/anomaly
or not following specific rules (actions 2 and 6). For example,
for the use case fire detection, if the temperature/humidity are
higher/lower than certain thresholds, a fire event is triggered

by the rule based detector. Therefore, the output of the rule
based detector is binary (’YES’ or ’NO’). The machine
learning detector is executed after that according to the result
of the rule based detector and depending on the use case
(actions 3 and 7).

• For the fire detection use case, if the binary result of
the rule based detector is ’NO’, a double check is done
by ML detector to detect unknown fluctuations that are
not detected by the rule based detector. For instance,
temperatures in summer and winter are different. Also
temperatures at night and during the day are different.
So, rules may not be suitable for such changes’ detec-
tion, while a model update will detect such changes. If
the output of the rule based detector is ’YES’, there is
no need to check using the ML component. The output
of the machine learning component for the fire detection
use case is a binary class (’YES’ or ’NO’).

• For the unauthorized person detection use case, if
the rule based detector outputs ’YES’ which means a
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motion was detected, the machine learning detector is
executed following the rule based detector to identify
objects in images taken by camera, so its output will be
a class (human, animal, vehicle, etc,.). If it is the class
human, the ML detector sends the final results ’YES’,
otherwise, it sends ’NO’.

• For the anomaly detection use case, the rule based
detector is executed to detect if there is an anomaly. For
instance, if a malicious node does a selective forwarding
attack (does not forward correctly received packets), the
rule based detector outputs ’YES’ if it detects it. In
contradiction, if it outputs ’NO’, further investigation
for anomaly using the machine learning detector is
done. This component outputs ’YES’, whenever the
classifier detects an attack and ’NO’ otherwise.

Based on the received result, the decision maker sends
appropriate notifications about the event/anomaly (actions 4
and 8). Management modules rely on QoS data, resources
information and their reputation values to update the deploy-
ment plan that permits the execution of detection components
over selected nodes (actions 9,10 and 11). Also, received
data are stored in database (action 12). End users receive
notifications on events/anomalies they subscribe to (action
13).
Fig. 5 depicts the detection process for each specific use

Algorithm 1: Placement calculation algorithm
Result: Placement Plan e.g. C1 on FN1, C2 on FN3,

C3 on CN3,..., Ck on CNm

1 Inputs: resources=[FN1, ..., FNn, CN1, .., CNm],
components=[C1,...,Ck], availableNodes=[]

2 if environment is vulnerable then
3 set timeperiod = tvulenerable
4 else
5 set timeperiod = tnonvulenerable
6 end
7 while time=timeperiod do
8 for Ni in resources do
9 check-availability(Ni)

10 if Ni is available then
11 availableNodes.add(Ni)
12 end
13 end
14 Call Dijkstra_Risk_Aware(availableNodes,

components)
15 end

case. As shown in Fig. 5 (a), EDS relies on three main
components: (1) Rule Based Event Detector (RB-ED): this
component has pre-defined rules for detecting events as fires
based on configurable thresholds. As an example, when a
temperature is higher than a threshold th-t (e.g. 57 °C) and
the humidity is lower than a threshold th-h (e.g. 30%), a

fire detection event is triggered, (2) Machine Learning Event
Detector Component (ML-ED): detects events using machine
learning techniques. It is triggered by RB-ED only when it
does not detect any event, (3) Event Decision Maker (EDM):
When the event is confirmed by one of the two previous
detectors, EDM checks the source node reputation and re-
acts to detected events by sending notifications and alerts.
For unauthorized person detection, Fig. 5 (b) describes the
detection process which starts with the RB-ED component
(Motion detector). When a motion is detected, the ML-ED
permits to analyse a picture taken and verifies if a person
is present or not. The EDM sends the notification when the
person detection is confirmed. The use of a hybrid detec-
tion technique combining rule based and machine learning
results [31], [62] has the advantage of minimizing false alerts
and increasing the detection rate. Like EDS and as shown
in Fig. 5 (c), ADS relies on three main components: (1)
Rule Based Anomaly Detector (RB-AD): this component
has pre-defined rules for detecting communication anoma-
lies (CA) like hello flooding attacks, selective forwarding
attacks (SFA) and blackhole attacks (BHA) as used by [31],
(2) Machine Learning Anomaly Detector Component (ML-
AD): this component detects anomalies and attacks using
machine learning techniques e.g. One Class Support Vector
Machines (OCSVM) for WSN anomalies, Deep Learning for
IoT anomalies as described in [54]. The choice of OCSVM
and Deep Learning was motivated by lessons learned from
comparative studies and works related to this field. The
comparative study in [5] demonstrates OCSVM efficiency
in WSN anomaly detection in comparison with different
machine learning techniques for anomaly detection. When it
comes to the use of deep learning, the fact that this technique
is known in the community as very efficient in detecting
IP network intrusions was considered [63]. (3) Anomaly
Decision Maker (ADM): this component permits to react
to detected anomaly by sending notifications and alerts to
system administrators for malicious nodes eliminating. Also,
its output is used to update nodes reputations. READ-IoT
cascaded detection protocol is summarized in Algorithm 2.

B. READ-IOT REPUTATION MODEL
READ-IoT uses a reputation system that keeps track of
all nodes (data sources and deployment nodes) reputation
values using the Beta function [64]. Let s be the number
of successful past actions for a Node Ni, and let f be the
number of its unsuccessful past actions. Then, the reputation
of the node RNi can be estimated as shown in the following
equation:

RNi = (s+ 1)/(s+ f + 2) (1)

For rule-based detection, the value of s is incremented
whenever a rule is checked as successful. Inversely f is
incremented if the rule is not respected. Basically for Se-
lective Forwarding Attack (SFA), s is incremented when a
node forwards correctly a received packet. When the node
drops the packet, f is then incremented. For machine learning
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FIGURE 3. READ-IoT as a unified system

detection, s is incremented whenever a packet is classified as
normal. If the packet is classified as malicious f is incre-
mented.

Algorithm 2: READ-IoT cascaded detection Algo-
rithm

1 if environment is vulnerable then
2 set tperiodAnomaly, THsAnomaly =

tvulAnomaly , THsvulAnomaly
3 set tperiodEvent, THsEvent = tvulEvent ,

THsvulEvent
4 else
5 set tperiodAnomaly, THsAnomaly =

tnonvulAnomaly, THsnonvulAnomaly
6 set tperiodEvent, THsEvent = tnonvulEvent,

THsnonvulEvent
7 end
8 while True do
9 check (lastplacementplan)

10 if time=tperiodAnomaly then
11 call ADS (THsAnomaly)
12 /* Reputation values updated */
13 else
14 if time=tperiodEvent then
15 call EDS (THsEvent)
16 /* Notifications sent and actuators

activated */
17 end
18 end
19 end

C. READ-IOT DEPLOYMENT MODEL
The problem of latency minimizing is modeled using Di-
jkstra’s algorithm [39], [65], [66] to find the optimal de-
ployment plan that optimizes the end to end delay of de-
tection and response. In our model, in addition to the delay
constraint, the deployment risk constraint is considered to
guarantee a secure deployment based on nodes reputations
(Dijkstra_Risk_Aware). Fig. 6 describes the optimal so-
lution as the shortest path delay in executing the application

TABLE 2. Symbols and Notations

Symbol Description
Ci Component number i
Ni Cloud of fog Node number i
CNi Cloud Node number i
FNi Fog Node number i
environment The status of the surveyed environment

either vulnerable or nonvulnerable
timeperiod The time period of calculating a

new placement plan which may be
tvulnerable if the environment is
vulnerable or tnonvulnerable if it is
not

tperiodAnomaly The time period of executing Anomaly
detection components which may be
tvulAnomaly if the environment is vul-
nerable or tnonvulAnomaly if it is not

THsAnomaly Thresholds used by the anomaly de-
tection components which may be
THsvulAnomaly if the environment is
vulnerable or THsnonvulAnomaly if
it is not

tperiodEvent The time period of executing Event
detection components which may be
tvulEvent if the environment is vulner-
able or tnonvulEvent if it is not of

THsEvent Thresholds used by the event de-
tection components which may be
THsvulEvent if the environment is
vulnerable or THsnonvulEvent if it is
not

lastplacementplan The last placement plan

FIGURE 4. READ-IoT Flow chart

component flow in the hybrid fog/cloud environment and the
notification of the end user (EU). Mainly two different delays
are considered: latency in communication with a deployment
node Ni (LcNi) and latency in processing a component Cj

over the deployment node Ni (LpCjNi). The end to end
delay of deployment of an application using three compo-
nents C1, C2 and C3 in the fog/cloud environment over
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FIGURE 5. READ-IoT component flow (a: Fire detection
process, b: unauthorized person detection process, c:

Anomaly detection process)

FIGURE 6. Shortest path finding deployment

three nodes N1, N2 and N3 that may be located in fog or
cloud and with reputation values RNi that should be higher
than a predefined threshold TH is shown in the following
optimization problem:

min(End to End delay)

s.t. RNi ≥ TH, i = 1, 2, 3.
(2)

End to End delay =

3∑
i,j=1

(LcNi+LpCjNi)+LcN3EU

(3)

VI. READ-IOT AND USE CASES IMPLEMENTATION
This Section presents some details about READ-IoT im-
plementation with a description of the software tools and
evaluation metrics.

A. DEVELOPMENT IDE
EDS and ADS were developed using WING PYTHON IDE.
They were deployed as REST Web services docker contain-
ers in the hybrid fog/cloud environment as Event Detectors
(ED) or Anomaly Detectors (AD). Tensorflow and Scikit-
learn PYTHON libraries were used in developing the ma-
chine learning components. Furthermore, READ-IoT mod-

ules as deployer, controller, QoS Risk and storage managers
were developed using the same IDE. A dedicated machine in
the local network was used mainly for management purpose
(calculating and updating the placement plan).

B. PROOF OF CONCEPT
In order to validate the proposed architecture and provide a
proof of concept, a real IoT system was implemented and
deployed it in the Polytechnic School of Tunisia. Fig. 7 shows
a high-level view of the proposed prototype. Two WSN clus-
ters composed each of one Cluster Head and three different
sensing nodes (Arduino Uno nodes) were used: two motion
detection nodes based on a PIR sensor (hc-sr501 sensor)
and one fire detection node based on temperature-humidity
sensor (DHT22 sensor) and gas sensor (MQ7 sensor). The
set of used devices locations is presented in Fig. 8. Motion
detection nodes were deployed in the school garden and fire
detection nodes were deployed inside offices. The sensing
nodes communicate with their respective CH (Raspberry Pi 3
node) using ZigBee protocol based on RF modules (ZB S2C
Pro modules) which support indoor communication with a
range up to 75-100 meters and an outdoor communication
over 300 meters. The communication security is ensured by
a 128-bit AES encryption algorithm and a 4-byte message
integrity code (MIC). CHs aggregate sensing node data and
forward results to a gateway node (Raspberry Pi 3 node) lo-
cated in SERCOM Lab office in Tunisia 1. CHs are equipped
also with cameras (Raspberry PI 5MP cameras) to survey
their cluster zones. At the level of the gateway, a MySQL
Database is used to store collected data. The gateway node
communicates with a local server where three VMs with
similar capabilities (Mem: 4 GB, vCPU:1) are deployed and
ready to be used as fog nodes (FN1, FN2 and FN3) in
addition to the gateway node. The gateway is connected via
Internet to a cloud service platform (Amazon Web Services)
2 3 where three EC2 instances with different performance
capabilities described in Table 3 (CN1, CN2 and CN3) are
deployed and ready to be used as cloud nodes. Sources codes
are available at GitHub4.

C. APPLICATIONS USING READ-IOT FRAMEWORK
To validate the READ-IoT framework, three different appli-
cations were implemented and deployed: two event detection
applications and one anomaly detection application that are
described hereafter.

• The first event detection application is a fire detec-
tion application. Three main components (RB-ED, ML-
ED and EDM) are used. RB-ED triggers the ML-ED
(OCSVM based classifier) based on temperature/hu-
midity and gas sensors data. If the fire is confirmed
by at least one component, EDM is executed to send

1http://www.ept.rnu.tn/laboratoires/sercom-laboratoire-systemes-
electroniques-et-reseaux-de-communications/

2https://aws.amazon.com
3http://aws.amazon.com/es/ec2
4https://github.com/aybsyah/READ-IoT
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FIGURE 7. READ-IoT framework Implementation

FIGURE 8. Real IoT network deployed in Polytechnic School

notifications to MQTT application subscribers via the
MQTT Broker.

• The second event detection application is an unautho-
rized person detection and response application. The
RB-ED uses motion sensor data to detect intruders.
When a motion is detected by RB-ED, the camera at

TABLE 3. AWS used EC2 Instances characteristics

Name Model vCPU Mem
(GiB)

Network
Performance

CN1 t2.large 2 8 Low to Moderate
CN2 t2.xlarge 4 16 Moderate
CN3 t2.2xlarge 8 32 Moderate

CH node takes a picture of the surveyed zone and the
ML-ED (Deep Learning object detection classifier) is
triggered to analyze the picture, classify detected objects
in the picture and confirm if the motion is caused by a
real intruder (person) or a false alert generated by the
motion sensor. If an intruder is detected, EDM sends
notifications to MQTT application subscribers.

• The anomaly detection application is based on three
components (RB-AD, ML-AD and ADM). RB-AD uses
predefined rules to detect network anomalies. ML-AD
used OCSVM for WSN anomaly detection and Deep
Learning for IoT intrusion detection. When the anomaly
is confirmed by at least one of two detectors, the ADM
sends notifications to update nodes reputation values
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and blacklist malicious nodes if their reputation values
is below a predefined threshold.

In the following, each use case is presented and evaluated
separately. However, they may be run at the same time. As
an instance, Fig. 8 depicts a screenshot of cartography web
application designed to provide a global and real view of the
surveyed zone. Different attacks against nodes as well as a
fire event are detected and shown in this cartography in real-
time. The nodes under attacks are shown in red circles with
low reputation values, and event messages are shown over
source nodes (e.g. ’Fire Detected’).

VII. EXPERIMENTAL EVALUATION
This Section presents the system setup, evaluation metrics,
placement calculation, EDS and ADS evaluation.

A. SYSTEM SETUP
READ-IoT system needs two phases: a bootstrap phase and
run-time adaptation phase. In the bootstrap phase, the initial
policies settings, configurations (thresholds, applications be
provisioned), and resources are set by the administrator.
Then, the system enters a run-time adaptation phase where
any changes should be considered and treated to re-calculate
the best deployment plan in real-time ensuring a high detec-
tion accuracy and low end-to-end delay.

B. EVALUATION METRICS
To assess the efficiency of our proposed system, certain
parameters are changed in the run-time adaptation phase,
and READ-IoT is monitored how it handles these changes
dynamically and efficiently. The deployer should be able to
update the placement plan following a change in the Inter-
net Speed (communication bandwidth), nodes availability,
data size and nodes reputations. For provisioning, READ-
IoT should use the last updated placement plan ensuring
both low end to end detection and response delay and high
detection accuracy. The detection accuracy is calculated in
the following equation:

Accuracy =
TP + TN

FP + FN + TP + TN
(4)

• True Positives (TP): number of attack instances cor-
rectly classified as attacks.

• True Negatives (TN): number of normal instances cor-
rectly classified as normal.

• False Positives (FP): number of normal instances classi-
fied as attacks.

• False Negatives (FN): number of attack instances clas-
sified as normal.

To evaluate the impact of the communication link band-
width, two different Internet speed variations were used (low:
less than 512 Kbps and high: greater than 2 Mbps). Table 4
provides a summary of the used evaluation metrics (metric,
related domain, description and equation). For instance, for
the hybrid fog cloud provisioning, the metric ’End to End
delay’ was used. This metric is calculated based on two other

TABLE 4. Evaluation metrics
Domains: 1-Hybrid fog cloud provisioning, 2-Event and anomaly detection systems,
3-Trust and reputation systems
Metrics/domain Description Formulas
Communication
latency/(1)

Latency in communication with a de-
ployment node Ni (seconds)

LcNi

Processing latency/(1) Latency in processing a component Cj

over the deployment node Ni (seconds)
LpCjNi

End to End delay/(1) Delay in seconds taken after executing
all applications components and sending
notification to end user (seconds)

Equation 3

Accuracy/(2) The ratio of number of correct predic-
tions to the total number of input samples
(percentage)

Equation 4

Reputation/(3) The reputation value of nodes based on
successful and unsuccessful past actions
(percentage)

Equation 1

metrics (communication and processing latencies). Equation
3 was used to calculate this metric.

C. REAL-TIME PLACEMENT PLAN CALCULATION AND
UPDATE
Fig. 9 depicts the real-time placement calculation and update
following QoS data reception. To test the efficiency of the
process, a low Internet speed, one fog node (FN1) and three
cloud nodes (CN1, CN2 and CN3) as resources, three compo-
nents (a rule based component C1, a machine learning based
component C2 and a rule based decision making component
C3) to be hosted in the fog/cloud environment were used. Fog
nodes FN2 and FN3 were not started in purpose to minimize
memory usage at the local machine. The deployer picks the
only available fog resource FN1 to host C1. It chooses CN3,
the best cloud VM instance in performance capability to
host C2 and CN2 (second in performance capability in cloud
nodes) to host C3. Few seconds later, CN3 is shutdown,
the QoS manager that checks continuously the availability
of all resources detects that quickly within a delay of few
seconds and sends the information to the controller to update
the available resource list. Then, CN3 is deleted from the
placement plan and replaced by the next cloud node (CN2)
to host component C2 that is a machine learning component.
CN1 which was not used for placement previously joins the
deployment nodes to host the third component C3 instead
of CN2 that was assigned C2. When CN3 is up again, QoS
manager notifies the controller and a new placement plan is
calculated in which CN1 (least in performance capability in
cloud nodes) is deleted and replaced by CN3 (best in perfor-
mance capability) to host the machine learning component
C2. CN2 which was assigned C2 previously takes charge of
C3 instead.

D. EDS EVALUATION
READ-IoT was executed and evaluated with the fire de-
tection and the unauthorized person detection applications
that have three components: C1:RB-ED, C2:ML-ED and
C3:EDM. These components are executed orderly over a set
of deployment nodes in fog and cloud.

For the fire detection application, a fire is set up as shown
in Fig. 10. Table 5 depicts the end to end delay follow-
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FIGURE 9. Real-time placement plan update following QoS
data reception.

ing different deployment scenarios: fully fog deployment,
fully cloud deployment and a hybrid fog/cloud deployment.
With a low Internet speed, the best choice was to deploy
all components in the fully fog environment to avoid the
communication delay. In contrast, with a high Internet speed,
the ultimate choice was to run all components in cloud.
Furthermore, the deployment of the three components in a
hybrid environment gives an average result and a compro-
mise between the two previous scenarios since the commu-
nication task is avoided for some components deployed in
fog. Besides, Fig. 12 demonstrates the effect of machine
performance capability on the end to end delay minimization
by varying its capability and the file size used for training
and prediction by the machine learning components. These
components are considered heavier than rule based ones and
time consuming in execution especially in the training phase.
Results showed that the file size affects also the latency.
With small data files sent, cloud computing was the ultimate
solution. But, when the file size sent increases, fog computing
gives better result despite the use of the best AWS machine
in performance capability (CN3). The previous deployment
experiments shows the importance of one parameter related
to communication bandwidth which is the Internet speed
for end to end delay minimization. Therefore, READ-IoT
which checks and updates regularly the communication link
bandwidth and considers this parameter in calculating the
best placement plan gives the best result (least end to end
delay).

For the surveillance application which is an unauthorized
person detection and response application. Detection test
of persons crossing the zone where motion detectors are
installed is shown in Fig. 11. The challenge was to deploy the
Deep Learning component (ML-ED) which is a heavy and
time consuming component in execution especially in train-
ing phase. Table 6 compares different deployment scenarios
with a high Internet speed. The minimum delay was obtained
by deploying all components in cloud and running the Deep
Learning component over the best machine in performance
CN3 (fully cloud scenario3). With a hybrid deployment
scenario, the longest end to end delay was obtained when
running the Deep Learning component over the fog node FN1

FIGURE 10. Fire detection prototype

FIGURE 11. Unauthorized person detection prototype

(hybrid scenario1). READ-IoT considers deploying heavy
components over the best machine in performance. There-
fore, it gives the best result (least end to end delay).

E. ADS EVALUATION
READ-IoT is executed and evaluated with an anomaly de-
tection application that has three components : C1:RB-AD,
C2:ML-AD (DL for IoT anomaly detection and OCSVM for
WSN anomaly detection) and C3:ADM with two different
datasets.

TABLE 5. Fire detection application: end-to-end delay using
different placement scenarios.

Deployment RB-
ED

ML-
ED

EDMHigh
Speed
Internet

Low
Speed
Internet

Static (fully fog) FN1 FN2 FN3 10.44 s 10.44 s
Static (fully cloud) CN1 CN2 CN3 6.86 s 25.03 s
Static (hybrid) CN1 FN2 FN3 09.75 s 21.71 s
Static (hybrid) FN2 CN2 CN3 08.01 s 24.31 s
Dynamic (READ-
IoT)

CN2 CN3 CN1 6.34 s -

Dynamic (READ-
IoT)

FN1 FN2 FN3 - 10.44 s
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TABLE 6. End-to-end delay measurement using different
placement scenarios

Deployment Scenario RB-
ED

ML-
ED

EDM End to End
delay

Static (fully cloud sce-
nario1)

CN1 CN2 CN3 22.86s

Static (fully cloud sce-
nario2)

CN2 CN1 CN3 21.29s

Static (fully cloud sce-
nario3)

CN2 CN3 CN1 20.87s

Static (hybrid
scenario1)

CN1 FN1 CN2 67.87s

Static (hybrid
scenario2)

FN1 CN3 CN2 45.13s

Static (hybrid
scenario3)

CN1 CN3 FN1 34.24s

Dynamic (READ-IoT) CN2 CN3 CN1 20.87s

(a) Communication link bandwidth

21.9 32.8 43.7 49.2 74.9

50

100

File size (Mo)

Latency (s) Fog (VM)
Cloud-t2-large

Cloud-t2-2xlarge

(b) File size and machine performance

FIGURE 12. End to End delay varying the link bandwidth and
the data file size

1) Datasets and machine learning algorithms
The anomaly detector detects two families of IoT anomalies.
For the WSN part (Sensing Nodes, CHs and gateways), most
known anomalies are attacks as selective forwarding attacks,
black hole attacks, and hello flooding. Data generated from
Castalia 3.2 simulator for WSN environment simulation were
injected to the network. The simulation was related to the de-
ployment of 15 nodes in a field size of 100 x 100 m2 [53]. The
simulation time was 1000s. Normal data was collected when
the network is running without attacks. Then, a selective
forwarding attack was simulated, and attack data were col-
lected. The selected OCSVM features (packet rate, consumed
energy) are standardized and normalized by subtracting the

TABLE 7. Intrusion activities

Intrusion
type

Description

dos attacks on availability of services
probe monitoring or probing in order to obtain host

information
u2r unauthorized access to privileged userâs ac-

count
r2l unauthorized remote access

mean and dividing by the standard deviation for each feature.
Cross validation technique was used to select the best values
of (gamma, nu) parameters for OCSVM technique with an
allowable false alarm rate set in the validation and test phase.

When it comes to the network entities such as gateways,
servers, virtual machines, the IP protocol is used for com-
munication. Therefore, all kinds of IP attacks are considered
as anomalies that target the network. For this reason, NSL-
KDD [67]–[70] data were used in exchanged packets to
simulate different types of IP attacks. Other datasets may
be considered, but the objective of the performed evaluation
is to demonstrate the feasibility and the reliability of the
proposed approach in detecting these attacks and may be
used to detect other types of IP attacks if we provide other
datasets and consider training and generating new models.
The dataset contains data packets relative to four types of
intrusions mainly Probing, Remote to User (R2L), Denial
of Service (DoS) and User-to-Root (U2R) as described in
Table 7 in addition to normal traffic packets are injected. The
same neural network architecture in [54] was used with 3
hidden layers containing 10, 50 and 10 neural nodes in order
to identify records as normal or malicious. ReLU served as
the activation function for the hidden layers whereas softmax
was employed at the output layer.

2) Observations
The existence of two malicious nodes FN2 and CN3 was
simulated by assigning most malicious packets to these nodes
and normal packets to remaining nodes FN1, FN3, CN1 and
CN2. Table 8 shows the reputation values obtained after
running the anomaly detection application over the different
deployment nodes and varying the sample data size. The two
malicious nodes are detected by their low reputation values
with a high accuracy (over 98%) using the ML-AD (based on
Deep Learning technique) even with small sample data size.
Therefore, READ-IoT automatically eliminates these nodes
from deployment resources to avoid the risk of deploying
components on risky nodes. For WSN anomaly detection,
a selective forwarding attack is simulated by having two
malicious nodes dropping 80% of received packets (SN1 in
cluster 1 and SN5 in cluster 2). Fig. 13 depicts the source
node reputation values. The two malicious nodes are detected
as suspicious nodes by their low reputation values calculated
using the RB-AD. The ML-AD based on OCSVM confirms
the attack with a high accuracy (over 0.91). Therefore, these
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FIGURE 14. Real-time placement plan update following
reputation values reception

nodes are considered as malicious nodes and consequently
blacklisted. Fig. 14 demonstrates the placement plan update
following reputation values reception form ADS. When a
message is received by the placement calculator with repu-
tation values, CN3 which was used previously for placement
has a very low reputation value (0.0018). Automatically, the
deployer excludes it from the deployment plan and replaces
it by CN1 though it remains an available resource for usage.
Inversely, FN2 and FN3 are not available as resources since
they are not started. Fig. 15 shows the execution time for
training and prediction using OCSVM for WSN anomaly
detection and Deep Learning for IoT anomaly detection.
OCSVM showed similar plots for training and prediction
even-though training time is obviously higher than predic-
tion time. For Deep Learning the training phase was very
time consuming in contrast with a stable execution time for
prediction. Therefore, READ-IoT considers deploying time
consuming components in cloud as training machine learning
algorithms when the communication link bandwidth is high.

F. RESULTS’ SUMMARY AND LEARNED LESSONS
This work has allowed us to show READ-IoT efficiency but
also to identify some limitations. The lessons learned can be
summarized in the following points:

• Classically, EDS and ADS are separate systems, and
even if they co-exist in a single system, they are gen-
erally managed and processed with different tools and
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FIGURE 15. Comparison of ML-AD execution time varying
the sample size

TABLE 8. Deployment nodes reputation values

Sample
size

FN1 FN2 FN3 CN1 CN2 CN3 Accuracy

100 0.958 0.037 0.500 0.666 0.800 0.019 0.989
200 0.963 0.020 0.666 0.500 0.916 0.008 0.988
400 0.986 0.010 0.666 0.666 0.900 0.004 0.986
600 0.989 0.005 0.666 0.750 0.954 0.003 0.984
800 0.993 0.004 0.666 0.800 0.928 0.002 0.990
1000 0.993 0.003 0.666 0.875 0.962 0.001 0.988

technologies. READ-IoT implementation and evalua-
tion show that integrating EDS and ADS can be per-
formed with a common management system and a
common workflow processing. This is very practical to
reduce the management cost. Also, the cascaded acti-
vation of rule-based and machine-learning processing is
interesting for a better identification of outliers in both
EDS and ADS.

• ADS is a way to provide a reliability feature to EDS.
But, it needs itself to be reliable to accomplish correctly
its mission. Reputation-aware placement is showed to be
an efficient technique to enforce the reliability of both
EDS and ADS.

• Integrating both resource-aware and reputation-aware
deployment allows to find an interesting compromise
between reliability and real-time processing constraints.
The fog/cloud paradigm is the basis of such flexible
and hybrid deployment but a smart deployment plan
calculation is required to reach this goal.

• Reputation-based classification is the main technique
used in this work for reliability enforcement. En-
hancing the detection algorithms is also an efficient
technique towards reliability. Indeed, recent techniques
about reinforcement-learning machine learning algo-
rithms can adapt to system evolution and change [71],
[72]. It can be an interesting extension to our work to
adapt such algorithms and to test them on the fog and
on the cloud.

• The current work makes an implicit assumption that all
IoT parts can be under a common management control.
Indeed, all data flow go through the controller that
makes decisions about reputation, QoS and deployment
plan. This assumption does not hold when considering a
distributed IoT under different management domains. A
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collaboration between the domain managers is required
to achieve both reliability and real-time processing.

VIII. CONCLUSIONS AND PERSPECTIVES
This paper introduces a Reliable Event and Anomaly De-
tection Framework for the Internet of Things (READ-IoT
for short). The designed framework supports outliers man-
agement in IoT. It handles events and anomalies thanks to
a common and integrated rule-based and machine learning-
based detection. The ultimate goal is to reduce operating cost,
management complexity and to enhance reliability.

READ-IoT is designed and provisioned over a hybrid
cloud/fog ecosystem to address the specific IoT applica-
tions requirements such as the overhead-effectiveness and
the latency sensitivity. The provisioning process covers the
whole IoT applications life-cycle (i.e. develop, deploy, and
manage). The resources provisioning relies on a reputation-
aware deployment that takes into account the vulnerability of
the deployment at the target cloud/fog hosts.

To validate these findings and to show the feasibility of
the proposed approach, READ-IoT was implemented and
evaluated using a real-life IoT applications such as fire de-
tection and unauthorized human detection solutions. Several
scenarios of anomalies and events were conducted to experi-
ment the system efficiency of its reliability components. The
performed experiments validate the efficiency of READ-IoT
in terms of event detection accuracy and real-time processing.
It also shows that the overhead due to the integration of
cloud/fog domains is reasonable.

As for the next steps, we plan to re-architect the IoT
system management to hierarchical fashion. Indeed, in the
current work, all the considered resources are supervised
using the same rule-based and machine learning process
flows. Furthermore, the sensors are all connected to the
same publish/subscribe broker. A hierarchical management
architecture can be adopted to reuse the management layer
of the framework. The management layer centralizes all
collected data and metadata, builds the trust management
layer and defines the deployment plan. The challenge consists
in connecting efficiently the management subsystems to the
framework management layer so that the communication
latency overhead is minimized and real-time processing is
preserved.
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