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A B S T R A C T   
 

The Network Function Virtualization (NFV) virtualizes the network appliances — such as routers and firewalls — 

with software running on commercial off-the-shelf servers. In NFV specification, Network Services (NS) are 

composed of multiple Virtual Network Functions (VNF) enabling elastic and finer lifecycle management oper- 

ations such as scaling. For adapting resources to the VNF-based network services evolving context, these oper- 

ations require to execute, on the fly, a reconfiguration plan supervised by a central orchestrator. This is the single-

domain reconfiguration, where the orchestrator has global up -to-date information, ensuring the correct  execution 

of the lifecycle management operations. Moreover, in practice, NS can be implemented by composing  VNFs in a 

cross-domain schema called a multi-domain federation. In this case, the reconfiguration is more challenging since 

there are multiple orchestrators, one by domain, that manage collaboratively shared network  services. Sharing 

network services creates functional and non-functional dependencies among these services that  must be 

considered for ensuring the consistency of the lifecycle operations. The consistent reconfiguration of  shared 

network services in distributed multi-domain federations is called the NFV Dependent Reconfiguration problem. 

However, despite being identified as an important challenge by the NFV community, no related so - lution has yet 

been proposed. In this paper, we focus on the NFV Dependent Reconfiguration problem. We introduce a distributed 

approach to guarantee consistency during dependent reconfiguration. The approach is 

composed of a distributed multi-domain model that establishes the interactions among the federation’s entities,  

and a causally-consistent distributed orchestration algorithm based on such a model. We verify the algorithm  

viability using, as a case study, the scaling of shared VNF-based network services as defined by the current NFV  

standard architecture. To the best of our knowledge, the proposed distributed orchestration approach is the first  

that supports the consistent execution of dependent reconfiguration operations for VNF-based network services. 
 

 

 

1. Introduction 

Network Function Virtualization (NFV) is a concept that decouples 

network services from underlying hardware (Mijumbi et al., 2016). Such 

decoupling enhances flexibility during the deployment of network ser- 

vices, by creating them with multiple Virtual Network Functions (VNFs) 

which offer functionalities such as routing or deep packet inspecting 

(Mijumbi et al., 2016). Moreover, the services’ life cycle management, 

which changes dynamically over time, becomes elastic as VNFs can be 

replaced, moved, or scaled on the fly. Traditionally, this reconfiguration 

is done by a single central orchestrator. 

Single-domain orchestration ensures the correct execution of life 

cycle management operations, such as scaling, as the orchestrator has 

the global up-to-date information of all the domain’s components (Etsi, 

2019a). However, because of the rising data traffic consumption 

(Forecast, 2019), the high cost to update services (Antonopoulos, 2020), 

and the flattened revenue for operators (Cano et al., 2017), service 

providers share services. Sharing services, in a cross-domain schema, 

 
 

 

☆  This document is the results of the research project funded by the Consejo Nacional de Ciencia y Tecnologia (CONACYT) and LAAS-CNRS. 

* Corresponding author. 
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allows providers to increase their revenue and lower expenditures for 

both capital and operational expenses (Yousaf et al., 2019). Thus, the 

operators are willing to share resources, for example, by sharing VNFs 

(Malandrino et al., 2019). To enable such joint deployments, providers 

transition from single to multi-domain environments. In a multi-domain 

environment, each domain has its orchestrator that manages all re- 

sources in its domain (Etsi, 2014). By exchanging messages, orchestra- 

tors coordinate among them and create a distributed multi-domain 

federation (Etsi, 2019b). 

Distributed multi-domain federations improve the NFV architecture, 

introduced by the European Telecommunications Standards Institute 

(ETSI), by sharing resources among service providers. They extend the 

providers’ capacities (i.e. market share) despite the limited resources of 

each service provider in the federation. Orchestrators deploy services in 

multiple domains. The services adapt to new users’ requirements (Taleb 

et al., 2019; Saraiva de Sousa et al., 2019). Federations also offer resil- 

iency properties, such as scalability, increased performance, and 

robustness against failures (Katsalis et al., 2016a). Thus, in distributed 

multi-domain federations, VNF-based network services are shared among 

many orchestrators and their life cycle is no longer managed by a single 

orchestrator. 

In a Federation, unlike single-domain orchestration, many orches- 

trators manage lifecycle tasks of VNFs and network services. These tasks 

include instantiating, reconfiguring, and monitoring the network ser- 

vices. Yet, federations bring new challenges for decentralized and 

asynchronous operations (Katsalis et al., 2016a). Thus, the orchestrators 

coordinate preventing unwanted side-effects (e.g. partial service fail- 

ures). The orchestrators try to guarantee functional and non-functional 

properties of the services by reconfiguring shared services (Cisneros et 

al., 2020). This reconfiguration must be consistent among all 

orchestrators. 

Ensuring consistency in shared network services entails having the 

same up-to-date information of each orchestrator before and after they 

execute a life cycle management operation. Before executing any oper- 

ation, orchestrators must coordinate themselves to prevent unwanted 

behavior of network services. The orchestrators generate grants to notify 

and validate a reconfiguration operation when a network service has 

external dependencies. Each grant’s recipient verifies the internal con- 

sistency in its domain by checking if the management operation affects 

other network services. 

The current specification of NFV federations claims to ensure no 

undesired effect occurs while reconfiguring takes place, but no order or 

timing constraints exist between two consecutive grants (Etsi, 2018a). 

Thus, grants can be executed non-deterministically, in any order, without 

satisfying the service’s external dependencies. Such execution could bring 

inconsistencies and lead to greater costs to the provider. For example, 

during the scaling of a shared service managed by many or- chestrators, 

the service could be redundantly scaled and could also have deprecated 

connections. Thus, it is necessary to enforce a correct grant ordering for 

shared service reconfiguration to prevent inconsistencies induced by 

unsatisfied shared services’ dependencies. Such correct grant ordering is 

the founding principle of the distributed approach of man- aging the 

consistent dependent reconfiguration problem for VNF-based network 

services in distributed multi-domain federations. 

The state-of-the-art for service reconfiguration in NFV focuses on 

migrating VNFs while optimizing resources such as energy, time, and 

latency in a single domain (Eramo et al., 2017; Yang et al., 2018; Wang 

et al., 2018). Other works focus on the network update problem (Shin et 

al., 2015). These works enforce consistent updates by satisfying in- 

variants; yet, they also focus on single domains where no coordination is 

required and concentrate at the network level. Some Service Oriented 

Architecture solutions try to address the reconfiguration challenges for 

VNF-based network services; however, they are not fully compatible since, 

unlike web services that are remotely called, VNFs need to be instantiated. 

As far as we know, solutions at the service-level, that consider 

coordination among orchestrators address only the problems of 

placement and chaining tasks in NFV (Pham and Chu, 2019; Li et al., 2018; 

Ghaznavi et al., 2017; Sun et al., 2018). All previous solutions are 

unsuitable for the dependent reconfiguration because they assume a static 

configuration for VNF-based network services. For dynamic tasks in multi-

domain environment, only the current ETSI NFV standard specifies an 

algorithm to scale shared network services (Etsi, 2019b). However, it does 

not consider non-deterministic network conditions and consistency issues 

that arise when dealing with dependent services. 

In this work, we consider on the fly dynamic dependent reconfigu- 

ration of network services. We consider non-deterministic networks and 

dependencies among shared services. Based on such dependencies, we 

coordinate reconfiguration by ordering grants sent by orchestrators. Our 

contributions are as follows: 

A Distributed NFV Multi-Domain Orchestration model is introduced 

that establishes the interactions among ETSI defined components in a 

federation to support the life-cycle management of VNF-based shared 

network services (Section 6.1). 

An inconsistent pattern for the NFV dependent reconfiguration is 

identified and formally defined from a temporal and logical perspective 

(Section 6.3, 6.4) 

A Causally-consistent orchestration algorithm is presented based on 

the proposed orchestration model to prevent inconsistencies that may 

occur when VNF-based network services have external de- pendencies 

(Section 7). 

The viability of the approach is shown via simulations using the scaling 

of VNF-based shared network services as the target operation. For this, 

we measured the inconsistencies, time to reconfigure, and message 

overhead and compared them to the current reconfiguration algorithm 

(Section 8). 

The paper is organized as follows: The preliminaries are presented in 

Section. The related work is discussed in Section 3. The problem and a 

use case are shown in Section 4. Section 5 contains the system model. We 

formalize the inconsistencies while reconfiguring network services in 

Section 6. Our solution is presented in Section 7. Evaluation and results are 

presented and discussed in Section 8. Finally, our conclusions and insights 

for future work are presented in Section 9. 

2. Preliminaries 

In this section, we present the concepts required for the dependent 

reconfiguration of VNF-based network services in distributed multi- 

domain federations. For the rest of the paper, we use the terms VNF- based 

network services and network services interchangeably, accord- ing to 

ETSI. 

2.1. VNF-based network services 

Network services are the building units for next-generation network 

applications. Under the NFV concept, multiple VNFs compose a network 

service according to one or more forwarding graphs (Etsi, 2018b). 

Network services belong to distinct classes according to their users via the 

service’s access points. Dedicated network services belong to a single 

domain and only have VNFs as internal dependencies. Composite ones 

belong to at least two different domains and have external dependencies 

as network services (Etsi, 2018c). The external dependencies are also 

called nested services as the provider combines them to create a com- 

posite service (Etsi, 2018d). EXternal dependencies are managed by 

multiple administrative domains, unlike internal domains that belong to 

a single domain. 

Fig. 1 shows a composite service (C) that has two dependencies (A, B). 

In this example, the two dedicated network services that belong to the 

composite network service are offered by different domains. The service 

C has internal and external connection points to deliver features to 

consumers. Detailed information about the dedicated network services A 

• 

• 

• 
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Fig. 1.  EXample of a composite and two dedicated network services. 
 

and B is unavailable to the orchestrator that manages of service C, such 

as topology, lifecycle management policies (e.g. scaling rules) and 

communication endpoints. This is because the services A and B are 

external dependencies managed by other administrative domains. The 

limited knowledge of orchestrators outside their administrative domain 

enables providers to share their resources without compromising the 

orchestrators’ privacy or autonomy. For example, orchestrators can setup 

complex service function chains without access to detailed infor- mation 

of other orchestrators (Liu et al., 2020). 

2.2. Distributed multi-domain orchestration 

Harnessing the benefits of network services requires control to sup- 
port their lifecycle. Under the NFV paradigm, the Network Functions 

Virtualization Orchestrator – simply orchestrator – manages the network 

service’s lifecycle tasks (i.e. building, instantiating, executing, reconfi- 

guring, and monitoring) (Etsi, 2018c). The orchestrator also administers 

all the systems and networks operated by a single organization (Etsi, 

2019a), it also handles the Virtual Infrastructure Manager and VNF 

Manager to support all the VNFs that compose the services. Multi-

domain orchestration extends the capacities of the single orches- trator by 

offering network services within the same organization and facilitating 

these services to another network operator (Etsi, 2019b). Three types 

of architectures support the multi-domain orchestration as defined by the 

ETSI Standard: Centralized, distributed, and hybrid (Rosa et al., 2015; 

Katsalis et al., 2016a). Centralized solutions establish a global 

orchestrator that coordinates other orchestrators via vertical calls. 

Distributed architectures lack a central coordinator and orches- trators 

communicate to support the network services’ lifecycle. Hybrid ones 

create hierarchies where orchestrators coordinate both horizon- tally and 

vertically. All the previous architectures enable a federation. 

2.3. Distributed multi-domain federations 

A Federation is a collective group of service providers who share 

resources to support complex network services (Baranda et al., 2020). 

This reduces the costs of each individual provider and extends the ca- 

pacities despite the limited resources of each provider. Thus, orches- 

trators access the network services of different providers by negotiating 

the limited resources among them. This creates shared network services 

that can be used by multiple services in the federation. Composite ser- 

vices in such federations can be shared services and also have these type 

of services as external dependencies. Thus, for the rest of the paper, we 

use the terms composite and shared services interchangeably. Due to 

shared services in a distributed multi-domain federation, the orches- 

trators coordinate to overcome the limited knowledge of each partici- 

pant. On the one hand, these federations offer flexible, scalable, and 

extendable network services; on the other, they add overhead to the 

service’s life-cycle management. We consider closed federations that 

reject new participants to enter; thus, lowering the overhead, but 

keeping the benefits of a federation. 

2.4. Life-cycle management of network services in multi-domain 

federations 

Network services must meet their required Service Level Agreement 

despite changes in the network. Such a service reconfiguration triggers, by 

energy consumption, fault tolerance, higher revenues, or improve- ment of 

the QoS (Kim et al., 2016; Eramo et al., 2017, 2019; Yang et al., 2018; Wang 

et al., 2018; Liu et al., 2017). The ETSI standard identifies different tasks at 

the service-level, such as scaling, migrating, and restoring a network 

service to meet the service level agreement re- quirements of a composite 

service (Etsi, 2019c). In multi-domain feder- ations, ETSI defines a special 

communication reference point between orchestrators, called the 

orchestrator to orchestrator or-or (ETSI, 2020). This reference point is 

shown in Fig. 2 where the orchestrators can setup a network service for a 

content delivery network by chaining four VNFs: 

(1) A translator (TRA), (2) streamer (ST), (3) encoder (ENC), and finally 
a (4) decoder (DEC). This four VNFs are managed by different orches- 

trators as shown in Fig. 2. For example, the NFVO–C manages the DEC 

VNF; while the NFVO-A manages both TRA and ST VNFs, respectively. 

The orchestrators coordinate over the or-or point, used for the ex- 

changes between orchestrators in different administrative domains. This 

reference point enables interfaces to support complex multi-domain 

tasks via grant messages (Etsi, 2018a). According to the ETSI stan- 

dard, the following tasks in multi-domain environments require coor- 

dination by sending grants over the or-or reference point: 

Scale Network Service: Increase/decrease internal and/or external 

dependencies. This work focuses on this task for reconfiguration. 

• Terminate Network Service. 

• Heal Network Service: Recover a service after an error. 

• Subscription/Notification. 

In this work, we consider closed federations where a fiXed number of 

trusted orchestrators expose connections points of their shared network 

services. Orchestrators communicate with each other via messages since 

distributed multi-domain federations lack global references. Thus, there 

is a flexible hierarchy according to each service that enforces the use of 

coordination among the orchestrators because of limited knowledge. Fig. 

2 shows an example. The orchestrator NFVO–C plays the role of a 

consumer and provider of network services. The VNF Managers in each 

administrative domain interact with their orchestrator; yet, the or- 

chestrators are not aware of the constituent VNF instances of the shared 

service instance and do not interact with the VNF Managers of other 

administrative domains. This is the case for orchestrator NFVO–C and the 

VNF managers of NFVO-A and NFVO–B, respectively. 

3. Related work 

We discuss the relevant work for the dependent reconfiguration task. 

First, we present single-domain reconfiguration algorithms, focusing on 

the scale of VNFs. Then, we present reconfiguration algorithms for multi-

domain environments and highlight the drawbacks of the current state-of-

the art solutions. Finally, we briefly describe how our proposed 

• 
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Fig. 2. Network Services federation provided using multiple administrative domains. An orchestrator can be both a provider and a consumer of other services. A 

VNF-based network service is created by chaining the VNFs in the order specified by the numbers. 
 

model and algorithm extend the state-of-the art for VNF-based service 

reconfiguration in multi-domain environments. Fig. 3 shows how we 

organized the related work. Our work is positioned in the colored branch 

with the bold font for multi-domain VNF-based shared network services. 

3.1. Reconfiguration of VNF-based network services in single-domain 

environments 

The reconfiguration of network resources focuses on three tasks of 

 

 

Fig. 3.  Taxonomy for network service reconfiguration. Our work is positioned in the lower branch with NFV multi-domain shared network services. 
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the life cycle management of network services. The orchestrators execute 

tasks such as migrating, updating, and scaling VNFs. The problem of 

migration focuses on the new placement of a VNF while optimizing 

resources such as energy, time, and latency in a single domain (Eramo et 

al., 2017; Yang et al., 2018; Wang et al., 2018). Other works focus on the 

network update problem that changes a VNF descriptor to include more 

functionalities (Shin et al., 2015). Scaling with NFV allows operators to 

resize network services at runtime to handle load surges with 

performance guarantees (Adamuz-Hinojosa et al., 2018). In this work, we 

focus on the VNF scaling as it is the closest related to our work. We 

classified the related work for scaling shared resources in a single domain 

as either reactive (i.e. monitor the traffic) or proactive (i.e. predict future 

traffic). 

3.1.1. Single-domain reactive works 

Most of the works in the literature consider dedicated services that 

belong to a single network service despite having VNFs in distributed 

data centers. Auto-scaling orchestration mechanisms have been pro- 

posed to minimize the cost of scaling a service while meeting end-to-end 

delay (Nadjaran Toosi et al., 2019; Duan et al., 2017). These works 

propose heuristic algorithms with monitoring algorithms to scale the 

VNFs. As far as we know, only two works in the literature consider 

shared resources for a single domain. The first work proposed a 

latency-aware mechanism (Sarrigiannis et al., 2020). It offers a sched- 

uling algorithm for the initial placement and reallocation of VNFs. The 

second work proposed a VNF scaling on-line algorithm that considers all 

the costs associated with provisioning network resources (Tong et al., 

2020). It achieves an upper-bounded competitive ratio. The major 

drawback of reactive works is the negative impact of the reconfigura- 

tion. Since they only reconfigure services when they capture a problem, 

the service must be halted or temporally degraded while the changes 

take place. Proactive scaling mechanisms were proposed to mitigate the 

negative impact of reconfiguration. 

3.1.2. Single-domain proactive works 

Proactive works predict future traffic and try to scale network ser- 

vices or VNFs to address these changes. While some works were pro- 

posed for dedicated  services (Jia et al., 2018; Xu,  2020), we focus on 

shared services. For shared VNF-based network services, several works 

have been published. The first work proposed a traffic model based on 

Gated Recurrent Units (Tong et al., 2020). After the prediction, many 

independent agents explore the network to get optimal placement. 

Another work proposed a log-linear Poisson auto-regression model to 

forecast the traffic (Hu et al., 2020). Based on the model’s output, an 

evolution-based algorithm scales automatically the VNFs. Similarly, an 

adaptive scaling mechanism based on Q-learning and Gaussian Pro- cesses 

to train a single agent was proposed (Arteaga et al., 2017). The agent learns 

the scaling policy despite traffic variations. Another inter- esting work that 

extends previous works by allowing tenants to refuse scaling was 

proposed (Rahman et al., 2020). The method offers a negotiation phase 

where, based on the predicted traffic and goals for each tenant, under the 

same domain, the VNFs are scaled. 

All the previous approaches rely on a single administrative domain 

under a global orchestrator. The advantages of such deployment are ease 

of use and simple life cycle management. However, this approach has 

drawbacks, such as scalability, security, and limited flexibility. In practice, 

multiple administrative domains want to keep autonomy from a single 

orchestrator. Decentralized solutions face the shortcomings of the global 

deployments (Chen et al., 2010). 

3.2. Reconfiguration of VNF-based network services in multi-domain 

environments 

Decentralized approaches achieve better performance since the or- 

chestrators distribute traffic among participants (Nanda et al., 2004). 

Since NFV falls into the Definition of IT services at large (Katsalis et al., 

2016b), VNFs can be provisioned as any other type of services. Service-

Oriented Architecture (SOA) principles (e.g., service abstrac- tion, 

discoverability, and composability) ensure the viability of an ecosystem of 

network services, such in multi-domain environments, concerning the 

NFV paradigm (Yi et al., 2018). Thus, first, we present the SOA 

reconfiguration solutions. Then, we describe why these solu- tions do not 

fully align with the NFV paradigm. Finally, we describe the NFV 

reconfiguration solutions for VNF-based network services. 

3.2.1. Service-oriented architecture reconfiguration for network services 

Before NFV, in the domain of web services, choreographies have been 

proposed to handle the reconfiguration of a service. A service 

choreography achieves service composition without centralized control 

through a protocol via observable events (Leite et al., 2013). The 

collaborative protocol, encoded in the choreography, ensures correct- ness 

properties such as deadlock prevention, conformance to message 

specification, and realizability (Kattepur et al., 2013). Some works propose 

a coordination protocol to reconfigure services where a shared global 

state is maintained without a central orchestrator (Kazhamiakin et al., 

2006; Salaün and Roohi, 2009). Works can either remove faulty 

components by choosing the optimal and correct candidates from a limited 

pool of options (Boudries et al., 2019), or bring new function- alities on the 

fly and add them to the existing chaining (Moo-Mena and Drira,  2007;  

Hnětynka  et  al.,  2006).  Previous  works  adapt  network services to 

changes in the environment; however, they exclude consis- tency issues 

brought by dependencies among the services that arise while 

reconfiguring services like in NFV. 

The VNF life-cycle task was inspired by SOA (Yangui et al., 2016); 

however, discrepancies between web services and VNFs make SOA so- 

lutions inappropriate to address VNF-based network services tasks (el 

houda Nouar et al., 2021). For instance, unlike web services, VNFs are 

not remotely invoked but must be downloaded and executed locally in 

different administrative domains. The VNFs, and by extension VNF-based 

network services, include technical details such as the sup- ported 

technologies, the configuration settings, and their operation management 

for each task. Moreover, the service choreography in SOA lacks elements 

present in NFV such as the orchestrator who has a well-defined workflow 

for the life cycle of network services (Etsi, 2019a). Another challenge 

present in the NFV context is the heteroge- neity of VNFs (Bouras et al., 

2017), unlike web services that only consider input and output 

parameters. Finally, since administrative domains have different 

capabilities (e.g. CPU, RAM, bandwidth) the reconfiguration operation for 

VNF-based network services must consider such resources to ensure 

functional and non-functional re- quirements (Xu, 2020). Thus, solutions 

for reconfiguring VNF-based network services with a focus on consistency 

need to be explored in the NFV context, considering both internal 

(hidden) and external (observable) events. 

3.2.2. Network Function Virtualization reconfiguration for VNF-based 

services 

NFV reconfiguration for network services under multi-domain con- 

siders federations that share resources by negotiating among many 

participants (Pham and Chu, 2019). Some works consider multiple 

administrative domains but the services are still dedicated. Deep learning 

was proposed in a proactive orchestration algorithm to predict traffic and 

scale VNF instances (Subramanya and Riggio, 2021). Unlike in single 

domain orchestration that only considers dedicated network services, 

multi-domain federations generally create composite services by sharing 

resources (Etsi, 2018c). As far as we know, only a few works have 

considered the scaling of composite network services under multi-domain 

orchestration. The ETSI NFV standard specifies an algo- rithm to scale 

composite network services (Etsi, 2019b). The algorithm proposes a 

workflow based on grants to coordinate orchestrators. A custom platform 

was deployed using the ETSI standard to scale com- posite services 

(Baranda et al., 2020). The previous works handle the 
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≡ 
composite scaling of services in ideal conditions (e.g. messages are or- 

dered, no latency in transmission, zero messages lost). However, in real 

conditions, the non-deterministic conditions of the network and limited 

information of each orchestration bring new challenges, such as pre- 

venting inconsistencies (Vaquero et al., 2019). Preventing in- 

consistencies is a desired property when reconfiguring VNF-based 

network services as it prevents unwanted effects from rippling across the 

federation. However, currently, there are no formal models to identify and 

prevent inconsistencies while reconfiguring composite VNF-based 

services. 

3.3. Synthesis 

The review of the relevant literature shows that many works consider 

a centralized solution. Others, non-centralized, consider approaches not 

completely compatible for NFV. Some solutions do not consider sharing 

services. These limitations reduce the applicability of solutions as pro- 

viders want to: have autonomy and privacy for their domains, achieve local 

interoperability, and share resources to extend their market share. The 

ETSI standard orchestration algorithm addresses some of these 

limitations; however, it considers ideal conditions to reconfigure network 

services without timing constraints. Moreover, currently no grant message 

exchange pattern has been identified to prevent in- consistencies. In this 

paper, we extend the state-of-the art by proposing a distributed multi-

domain orchestration model that, unlike the state-of- the art, considers 

non-deterministic network conditions where services can have multiple 

dependencies. The model allows to formally identify an inconsistency 

pattern for dependent reconfiguration of VNF-based network services, 

that is missing today in the literature. To prevent this pattern, we 

propose a causally consistent orchestration algorithm to prevent 

inconsistencies while doing dependent reconfiguration. 

4. The NFV dependent reconfiguration problem 

Dependent reconfiguration of VNF-based network ser-vices in multi- 

domain federations considers the internal VNFs, the services, and the 

external dependencies. A service’s reconfiguration can be simple if the 

service has zero external dependencies (i.e. dedicated service); other- wise, 

it is dependent (i.e. composite service). Consider the composite service C 

shown in Fig. 4, the service has two external dependencies in service A, B. 

Shared external dependencies introduce new challenges on the service’s 

reconfiguration tasks, such as scaling. For example, Fig. 5 shows a 

composite scaling with a single dependency (i.e. one de- pendency is 

shared by two services). The NFVO–C orchestrator manages a composite 

service so with two external dependencies s1 managed by 

NFVO–B, and s3 ≡ s2 managed by NFVO-A, respectively. It is important 
to note that the other orchestrators, namely NFVO–C and NFVO–B, 

ignore that s3 s2 is a shared external dependency of both s0 and s1 because 

of their limited knowledge constrained to the local domain of each 

orchestrator and must send grants to prevent service disruption when 

scaling a service with external dependencies/nested services. These 

grants allow the orchestrators to coordinate the composite scaling. The 

composite scaling is as follows: 

1. Initially, the NFVO–C orchestrator sends a Scale Nested (event c1) 

operation to orchestrators NFVO-A and NFVO–B via a multi-cast 

message m1 to scale services s1 managed by NFVO–B, and s3 managed 

by NFVO-A, respectively. A Scale Nested instruction denotes the 
petition to scale a nested network service that is an external 
dependency. 

2. The orchestrator NFVO–B receives message m1 with the scale Nested 

instruction (event a1). Since the service s2 is an external dependency 

of service s1 managed by NFVO-A, the NFVO–B sends a grant G1 so 

scale service s2 to NFVO-A. 

3. Assume that the scale Nested instruction, sent by message m1, arrives 

first to NFVO-A (event b1). Since s1 is an external dependency of service 

s3, NFVO-A sends a second grant G2 to NFVO–B. 

4. The orchestrator NFVO–B validates, scales the service s1 (event a2), 
and sends a positive acknowledgment to NFVO-A. The orchestrator 

NFVO-A receives the positive reply via message m2 and triggers a scale 

event for service s3 (event b2). 
5. After scaling the service s3, NFVO-A sends an acknowledgment to 

NFVO–C via message m3. NFVO–C stores the positive answer (event 

c2). 

6. NFVO-A gets the first grant G1 from NFVO–B (event b3); but, it will 

not scale the service s2 since the scaling already took place by 

executing event b2 since service s2 and service s3 are the same (i.e. 

s3 ≡ s2). Thus, NFVO-A sends a positive reply to NFVO–B via message 
m4. 

7. NFVO–B receives the positive reply from NFVO–B (event a3); how- 

ever, it will also not scale network service s1 since it has already 

scaled it by executing event a2, and sends a positive reply to NFVO–C 

via message m5. 

8. Finally, NFVO–C scales the composite service s0 after receiving two 

positives replies from NFVO-A and NFVO–B. Because of the depen- 

dent reconfiguration, there were three scale operations (event c3). 

The exchange of messages, as defined by the ETSI NFV standard, 

suffices to achieve consistent reconfigurations in an ideal scenario where 

no messages are lost and the orchestrators synchronize via global ref- 

erences. However, in real scenarios, orchestrators lose, send, and deliver 

messages asynchronously and out of order. Such network properties 

lead to inconsistencies during the network services reconfiguring 

operations. For example, Fig. 6 shows an inconsistency during another 

 

 

Fig. 4. Complete composite service C with two external dependencies (i.e. services A, B) as shared services. Both external dependencies have internal dependencies as 

VNFs (i.e. TRA, ENC, DEC, and ST) linked by connection points. 
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Fig. 5. The orchestrators consistently scale a composite service that is shared among them. In this execution of the composite scale operation, only three scale op- 

erations are done. 

 
possible execution of a dependent. 

reconfiguration (the order of the operations is different, here the grant 

G1 is executed before the scale nested operation). The example shows four 

scale operations, where the fourth is redundant as only three operations 

suffice to reconfigure the shared network service. The extra scale 

operation happens because the asynchronous message delivery leads to 

an execution that does not satisfy the dependent relations of the shared 

network services. Figs. 5 and 6 illustrate a single dependency between a 

pair of services; however, in general, network services can have multiple 

dependencies that have the possibility of one or more inconsistencies. An 

inconsistency increases costs for the provider; even worse, with a long 

chain of network services, the cost compounds along all the chains which 

could violate the service level agreement. Not only does cost increase, but 

the network services can also be left on partial or total failure. Thus, is 

necessary to impose an execution order to prevent inconsistencies while 

doing dependent reconfigurations with shared external dependencies for 

VNF-based network services. To introduce our proposed execution order, 

first, we present the system model for the rest of the manuscript. 

5. System model 

The orchestrator handles the life cycle management of network 

services. This includes internal dependencies such as VNFs and network 

services. Thus, we define a management relation as follows: 

Definition 1. (Relation is-managed by) The relation ~ identifies the 

management of domain d for either a Virtual Network Function (VNF), 

v, or a service, s, according to: 

1. If v ~ d ≡ True, means the VNF v is instantiated at domain d. 

2. If s ~ d ≡ True, means the service s has either: (i) 

only internal dependencies managed by the domain d (ii) if there are 

external dependencies, there is at least one VNF dependency v such that v ~ 

d and all other external dependencies are managed by other domains. 

Fig. 2 (see Section 2.4) shows an example of the is-managed by 

relation. In this example, the orchestrator NFVO–C manages the DEC VNF 

(i.e. DEC ~ NFVO–C True). For the VNF-based service, the is- managed by, 

as stated by Definition 1, relation holds for all orchestrators since all the 

orchestrator manage external dependencies, exposed as services. 

 
5.1. Basic concepts in distributed systems 

In a distributed system, entities communicate with each other by 

exchanging messages. It is assumed that there is no global reference and 

transmission delay is bounded but arbitrary. A distributed system is 

composed of the sets P, M, E which belong to the set of processes, 

messages, and events, respectively. 

Processes: Programs and instances running simultaneously that 

communicate with other programs. Each process belongs to the set of 

processes of P. A process p P communicates with another process p’ 

P by  message  passing  over an asynchronous, non-deterministic, 

and reliable network. 

Messages: Abstraction of any type of message which contains data 

structures. Each message in the system belongs to the set M. 

Events: An event e is an action performed by a process p P. All 

events in the system belong to the set of events E. We consider two 

types: internal, external. An internal event occurs at a process locally 

hidden from other processes. An external also happens in the process 

but can be seen by other processes affecting the global system state. 

For external events, send and delivery events are considered. A send 

event emits a message m    M executed by a process. Delivery events 

identify the execution performed of received messages by a process. 

 
5.2. Causal order 

Distributed systems need shared references, such as the physical time, 

to decide correctly how to execute transactions. But, because of the lack of 

global references, the difficulty arises to find if an event takes place 

another. Thus, the distributed systems need another reference to 

• 

• 
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Fig. 6. Redundant dependent reconfiguration during a scaling-out operation when the Grant messages arrive in a different order. In this execution, four scale 

operations are done. This entails costs to the service provider while three only are necessary. 

 
circumvent the absence of synchronized clocks. 

Logical time introduces an execution order between events based on 

a partial order known as the Happened-Before Relation that establishes a 

precedence order between two events in the following way (Lamport, 
1978): let e and e′ be two events causally related. According to the 

happened-before relation, e happened before e′ if there is a transference of 

information from e to e′. Thus, according to the relation, e must be 
processed before e’. Formally, the Happened-Before Relation denoted 

“→“, is defined as follows: 

Definition 2. (Happened-Before Relation) The relation → is the 

smallest relation on a set of events E satisfying: 

1. If e and e′ are events belonging to the same process and e originated 

before e′, then e → e′. 

2. If e is the sending of a message by one process and e′ is the receipt of 

the same message by another process, then e → e′. 

3. If e → e′ and e′ → e′′, then e → e′′. 

Formally, the message causal delivery based on the happened-before 

relation is defined for the distributed model as follows: 

Definition 3. (Causal order delivery in distributed models) ∀((send 

(e), send(e′)) ∈ E, send(e) → send(e′) ⇒ delivery(e) → delivery(e′) for any two 

internal events e, e′      E. We denote Ê      {E, →} as the set of events 

causally ordered. 

 
6. Modeling dependent reconfigurations in distributed multi- 

domain orchestration 

In this section, we extend the distributed system model presented in 

Section 5. We evaluate the NFV dependent reconfiguration problem from 

a temporal/event point of view and identify key information to support the 

consistent dependent reconfiguration of VNF-based network services. 

 
6.1. Distributed multi-domain orchestration model for Network Function 

Virtualization 

We present the system model. Fig. 7 shows the relation between all the 

entities of the distributed multi-domain orchestration system model. The 

federations have two or more domains. Each domain manages both 

network services and VNFs. Depending on their dependencies, services 

can be external or internal. Internal dependencies have only VNFs or other 

services managed by a single administrative domain. EXternal 

dependencies are managed by different administrative domains. All these 

domains’ orchestrators coordinate through messages. For internal 

dependencies, a scale message suffices. For external dependencies, the 

orchestrator must acquire a grant from all the other domains. 

We develop the distributed multi-domain orchestration model by 

adapting the sets of processes P, messages M, and events E (defined in 

Section 5.1) to the NFV context by adding and defining the sets of events 

and messages which are specific for the model specification. Before the 

Definition, we introduce a set of entities used during the reconfiguration 

operation. 
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Fig. 7. Relations between the entities of the distributed multi-domain orchestration system model. The Federation on top composed of domains that manage services 

and VNFs. 

 
Domains: The collection of systems and networks operated by a single 

organization. In the case of multi-domain federations we denote this 

set as D   {d1, d2, …, dp}. The number of domains p is known beforehand 

since we considered a close federation. 

Virtual Network Functions (VNFs): The basic components to 

instantiate complex network services. We follow the ETSI standard 

by using the abstraction of Virtual Network Function Components that 
enable the VNF to operate. The super-set of VNFs V is composed of 

disjoint setsV1,V2, …,Vp where ∀v ∈ Vi, v ~ di where v is a VNF and 

di is the i-th domain in the federation. Each v ∈ V is defined as a 
function f ∶ x ⇒ y where x, y are input and output traffic flows, 

respectively 

Network services: The entities which offer complex solutions by 

aggregating VNFs with unspecified connectivity between them or 

according to forwarding graphs. A forwarding graph describes a to- 

pology of network services by referencing a pool of connection points 

and Services Access Points. The network service set is composed by a 

set of processes S = {s1, s2, …, sk}. Each service s is associated with a 

domain d ∈ D denoted as s ~ d. Internal dependencies Is of a network 

service s are either VNFs v ∈ V or network services s’ ∈ S such that ∀v, 

s’∈ Is, v ~ d, s’ ~ d where s ~ d. Similarly, external dependencies Γs 

are only network services such that ∀s’ ∈ Γs, s’ ≁ d where s ~ d. The 
set of total dependencies of service s is denoted as Δs     Is     Γs. Let Ωs 

be the set of orchestrators that manage the external dependencies of 

service s such that o    Ωs, s’    Γs |s’ ~ o. Network services in the set 

S can be either of type dedicated or shared according to their de- 

pendencies. We formalize this with the following: 

 

Definition 4.     (Shared and dedicated network services) The service, 
s, managed by orchestrator o, belongs to the type shared if it is an external 

dependency of another service s’ unmanaged by the same orchestrator  o:    

s’     s,  o’     O  |s’ ~  o’,  o       o’,  s      Γs’;  otherwise,  is dedicated. 

Fig. 2 (see Section 2.4) show an example of shared and dedicated 

services. In this example, the DEC VNF is shared among all the domains as 

shown in Fig. 2. Moreover, this VNF is exposed as service B which 

makes it a shared service as shown in Fig. 4. All other VNFs can be 

exposed as dedicated services. 

We now extend the model presented in Section 5.1 to meet the ETSI 

standard for multi-domain orchestration as follows: 

 
Messages: We extended the concept of abstract messages in distrib- 

uted systems, described in Section 5.1, with the specific types required 

for reconfiguration of network services. All messages have the 

following parameters: m {(sender, receiver, data, type)}. We consider 

the following type of messages: 

– Scale: Increase or decrease the number of instances that belong to 

either a VNF or Network Service. 

– Response: Acknowledgment of a complete scaling operation of an 
external dependency. 

– Notification: To signal the sender of a Scale message there has been 
an update in the lifecycle management. 

– Grant: Permission to scale external dependencies. 

• Events: As mentioned in Section 5.1, there are two types of events: 
internal and external ones. The set of internal events Einternal is the 
following: 

– VnfMScaleRequest (v, data) denotes the orchestrator’s request to 

the VNF Manager to initiate the scaling of VNF v specifying data. 

– VimChangeResource (v, data) is the event that the orchestrator 

sends to the Virtual Infrastructure Manager to change either pro- 

cessor, storage, or network information of the VNF v according to the 

data. 

– VimModifyConnectivity(v, data) refers to the changing of 
connection points of VNF v by the Virtual Infrastructure Manager. 

– VimInstantiate(v, data) denotes the instantiation or shutdown of 

VNFs v ∈ V for a particular service according to the data. 

– CheckCompositeNSConsistency(s) denotes the verification  before 

the scaling of service s. Since we consider the complete ETSI or- 

chestrator’s architecture as a single process for ease of under- 

standing, all the details of this event are abstracted in a single 

execution; however, in reality, multiple entities play a role in this 

message. 

– ScaleNS(s) denotes the scaling of the dedicated network service s 
whose only dependencies are internal and belong to the set Vp 

managed by orchestrator op. 

The external events considered are send, receive, de - livery and the 

set is denoted as Eexternal = Esend ∪ 

Ereceive Edelivery. Since we consider a single orchestration per domain, 

we re-write the is-managed by relation (see Definition 1, Section 5) as s ~ 

o for any service s ∈ S and orchestrator o ∈ O. 

The set of send events Esend is the following: 

• 

• 

• 

• 
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– ScaleCompositeNS (s, data) denotes the petition to scale the composite network 

service s by using parameters in data, this could trigger multiple 

ScaleNestedNS or SdNSLCMGrant events by the external dependencies 

of s. 

– ScaleNestedNS (s, data) denotes the petition to scale a nested network 
service s by using parameters in data, this will trigger a grant 

SdNSLCMGrant(s’) request event for the external dependency s’ ∈ Γs. 

– SdNSLCMGrant(s’) refers to the request coming from orchestrator o to 

verify and scale service s’ |s’ ~ o’, s’ Γs, o o’. This event can trigger 

multiple ScaleCompositeNS, ScaleNestedNS SdNSLCMGrant events, 
respectively. 

The set Ereceive is composed of the following events: 

– RecResponseNestedNsScaling(s’). This message is received by orches- 

trator o O that manages service s which has service s’ as an external 

dependency. It denotes the answer (positive or negative) to a pre- 

vious SdNSLCMGrant related to nested service s’ |s’ ∈ Γs. 

– RecResponseCompositeNsScaling(s’). This message   is   received   by 

orchestrator o    O that manages service s which has service s’ as an 

external dependency. It denotes the answer (positive or negative) to 

a previous SdNSLCMGrant related to composite service s’ |s’ ∈ Γs. 

– RecNSLifecycleChangeNotification({start, result},   s’)   refers   to   the 
acknowledgment or result from orchestrator o’ to o that has sent an 

happens during the composite scaling of e if and only service s has an 

external dependency s’    Γs such that    s’’    Γs’, s’’    Γs. In other words, 

both network services share an external dependency; thus, the joint set Γs 

Γs’ ∅. 

We illustrate an example of the conditions required for a dependent 

reconfiguration as described in Definition 5 for a composite service by 

extending the example shown in Fig. 4. Fig. 8 shows an example of the 

composite service G. This service has three nested services in C, E, and F, 

respectively. Each nested service has its own internal and external de- 

pendencies, as shown by the differences between service A and B. Since 

the two nested services C and E share an external dependency (i.e. shared 

service) they will trigger a dependent reconfiguration in case one 

orchestrator decides to reconfigure the shared service B. The orchestra- 

tors exchange grants by executing events in the set Eexternal (i.e. 

SdNSLCMGrant and DlvNSLCMGrant). In the case of dependent recon- 

figuration executed during the scaling for shared network services in 

multi-domain federations, the delivery of DlvNSLCMGrant events must be 

respected to consistently execute the reconfiguration. 

 
6.3. Modeling inconsistency in NFV dependent reconfiguration of network 

services from a temporal perspective 

Consider the diagram of Fig. 9. It shows the relevant events during a 

dependent reconfiguration (see Definition 5) according to the ETSI 

standard. In this scenario, the topology is composed of four orchestra- 
tors. According to our model (see subsection 6.1), the set of processors 

event of type ScaleNestedNS(s’) or ScaleCompositeNS(s’) such that s’ 

~ o’ and s’ |s’ ∈ Γs for any service s ∈ S. 

The set Edelivery has a unique event: 

– DlvNSLCMGrant(s’) denotes that an orchestrator o’ ∈ O delivered a 

Grant message sent by a SdNSLCMGrant(s’) event. It identifies the 
execution performed by the orchestrator o’ associated to service s’ 

managed by orchestrator o’. After delivery, o′ will send a notification 
to the sender of the grant. 

The set E for events (see Section 5.1) is augmented. We consider 
internal and external events as defined by the sets Einternal, Eexternal, 

respectively such that Ê = {E ∪Einternal ∪ Eexternal, →}. For simplicity, 

we represent the send events of set Esend: ScaleCompositeNS, ScaleNes- 

tedNS, SdNSLCMGrant as (s). The delivery event of set Edelivery 

DlvNSLCMGrant as delivery(s) for any service s ∈ S. This set is causally 

ordered by the → relation (see Definition 2). 

 
6.2. Dependent reconfiguration of network services in distributed multi- 

domain federations 

A dependent reconfiguration happens when an orchestrator requests 

a reconfiguration for service s and has external dependencies such that the  

set Γs  =∕ ∅. In this case,  multiple grant requests are sent  to orches- 

trators bounded by |Γs|. According to the ETSI standard, the following 

steps are required for a dependent reconfiguration (we don’t consider 
notifications or answers) (Etsi, 2019b): 

1. Scale a composite network service. 

2. Scale nested network services. 

3. Request grants to scale external dependencies. 

4. Validate requests, check feasibility, and consistency of grants. 

We formally define the dependent reconfiguration as follows: 

Definition 5. (Dependent reconfiguration) Let s ∈ S be a composite 

service that has at least one external dependency such that Γs ∅ managed 
by orchestrator o      O. Let event e      E be of type Scale- 

CompositeNS executed by orchestrator o. A dependent reconfiguration 

for this scenario is O = {o—1, o0, o1, o2}. The update begins when 

orchestrator o—1 sends a message m0 to o0 where m0 = (o—1, o0, ex0 = 

{(s0, data)}) and s0 ~ o0 and exx0 is a ScaleCompositeNS. Validation and 

feasibility are checked on event e00; this entails validating the parame- 

ters sent, the authority of the sender, and checking the feasibility for the 

VNF Manager to scale all the VNFs. In the case the service has external 

dependencies, the orchestrator sends a multi-cast message m1 = (o0, (o1, 

o2), e01 {((s1, s2), data)}) where e01 is of type Scale nested. If an orchestrator 
receives a Scale nested event, it will also validate the request as shown in 
event e11. If the service has an external event, it will send a 

grant through a message as shown in m2 and will wait for a positive 

acknowledgment before scaling takes place; if there are no external 

dependencies, a scaling will take place. In the event of receiving a grant, 

the orchestrator checks the consistency of all network services affected by 

the grant as shown in event e21 and sends a notification through 

message m3. If network services are affected, the orchestrator can 

request a scale composite instruction and begin another dependent 

reconfiguration. 

According to the ETSI standard, the execution of events shown 

in Fig. 9 is valid; however, it introduces an inconsistency for 

network services being scaled. The inconsistency is created because 

service s1 managed by orchestrator o1 has outdated information after the 

scaling operation of service s’ triggered by event e23 if s’ is an external 

dependency of s1. More precisely, the inconsistency is brought by the 

execution of e20 before e22. 

One way to see this out-of-order execution is the delay brought by 

asynchronous communication and lack of global references; in turn, this 

creates a non-deterministic execution of reconfiguration operations. This 

is the temporal perspective encoded in the message sent by or- chestrators 

to signal the relevant steps of dependent reconfiguration. Upon analyzing 

the communication diagram corresponding to the execution diagram 

shown in Fig. 9, we can observe the inconsistency is created when the 

transmission time interval of m1 is greater than the transmission of time 

interval m2 plus the message forwarding time of all the grant of 

dependencies. We generalize and formalize the inconsis- tency pattern 

from a temporal perspective in the Definition 6. 

Definition 6.    (Temporally inconsistent dependent reconfiguration) 
Let s be a composite service managed by orchestrator o such that Γs ∕= ∅. 

m = {o, Ωs, ScaleNe(Γs)} be a message to scale the nested external 
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Fig. 8. EXample of the conditions for a dependent reconfiguration. The composite service G has two nested services that share service B as an external dependency. To 

reconfigure this shared service, the orchestrators must coordinate by grants. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9. Inconsistency during dependent reconfiguration for a composite service. All events concerning acknowledgments and notifications are hidden and abstracted. 

Messages arrive arbitrarily and events can be executed out of order. 

 
dependencies of s. Let m’ = {o, Ωs ∕ o’, ScaleNe(Γs ∕ s’)} be a message to 

scale all external network services except a single service s’ ∈ Γs managed by 

o’ Ωs. Let m’’ {o’, Ωs’, SdNSLCMGrant(Γs’)} be a message to grant the 

operation of service s’. Let (x) be a function that measures the time taken to 

send, receive and deliver a message x M. A temporal inconsistency during 

dependent reconfiguration is created if: 

(m’) > (m)+ T(m’’) | Γs ∩ Γs
′  =∕ ∅, s’ ∈ Γs 

A possible solution to the problem of inconsistent dependent 

reconfiguration posed by Definition 6 is to establish common temporal 

references for all orchestrators and perform the execution of operations 
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according to this reference. However, as discussed in Subsection 2.3 such 

a solution is unpractical since each orchestrator has limited knowledge. 

Furthermore, even clock synchronization algorithms such as the Network 

Time Protocol (Mills, 1991) make it difficult to perfectly synchronize 

clocks across all the network entities. 

 
6.4. Modeling the NFV dependent inconsistent reconfiguration of network 

services from an event perspective 

In this section, we discuss the inconsistency during the dependent 

reconfiguration (see Definition 5) of network services from an event 

perspective. The focus centers on the relevant events during the scaling 

operation. Similarly to Section 6 we use the execution flow presented in 

Fig. 9 as an inconsistent example. We define the conditions of incon- 

sistency as follows: 

Definition 7. (Event related inconsistency of dependent reconfi- 
guration) Let s1, s2 be two network services managed by o, o’ respec- 

tively. Let Γs1 ∕= ∅, Γs2 ∕= ∅ be the sets of external services’ dependencies 

of s1, s2 respectively. Let Ωs1, Ωs2 be the set of orchestrators that manage 
the external dependencies of service s1, s2 respectively. Let esc be a 

ScaleComposite event of network service s1 requested by an orches- 

trator ô ∕∈ Ωs1 ∪ Ωs2. Let esn be a ScaleNested event of network services 

Γs1 such that esc → esn and the scale instruction is sent to Ωs1 using the 
message m. Let e be the execution of the ScaleNested esn instruction at 
an orchestrator o ∈ Ωs1. Let eg be a Grant of network services Γs2 such 

that esn → eg and the grant instruction is sent to Ωs2 using the message m’.  

Let  e′  be  the  execution  of  the  Grant  eg at  an  orchestrator  o     Ωs2. There 
is an inconsistency if the following conditions hold: 

1. 𝖤(s, ŝ), s = ̂s ∈ Γs1 ∩Γs2 such that s ∈ Γs1,̂s ∈ Γs2, and 

2. e′ → e 

Fig. 10 shows a graphic representation of Definition 7. In Fig. 10 (I) we 

observe the composite scaling of service s1 with event esc, given that this 

service has external dependencies it sends a scale nested instruction to all 

orchestrators that manage its dependencies by esn. Fig. 10 (II) shows the 

delivery of the nested instruction at orchestrator o’. Since the external 

dependency s2 also has dependencies, it sends a grant instruc- tion to all 

the managers of its dependencies with event eg. Fig. 10 (III, IV) show the 

case when both s1 and s2 have common external dependencies. 

In Fig. 10 (III) the reconfiguration is consistent in the purple rectangle as 

the scale precedes the grant instruction. Fig. 10 (IV) shows an incon- 

sistent dependent reconfiguration as the grant operation precedes the 

scale instruction. Even if some reconfigurations are consistent, a single 

inconsistent reconfiguration is sufficient to bring the whole service 

down. More, precisely, inconsistencies bring both partial and total 

failures for network services reflected on greater cost for the providers. 

A key property for any reconfiguration is to be consistent and stop 

the conditions of Definition 7. To prevent them at least one condition 

from Definition 7 must remain unsatisfied. A federated environment 

makes preventing Condition 1 challenging as the core of these envi- 

ronments is sharing resources plus is difficult to ensure due to the 

limited information each orchestrator has. Thus, the goal is to prevent 

Condition 2 from happening; that is, a nested scaling should always 

precede a grant operation. Our proposed algorithm identifies and pre- 
vents the second condition from happening via causal consistency. 

 
7. Consistency management in dependent reconfigurations 

Based on the formalization presented in Section 6, we show how the 

presented algorithm allows us to capture the causality and avoid 

inconsistency of network services during dependent reconfigurations, 

such as scaling in NFV. First, an overview of the algorithm is presented 

in Subsection 7.1. Then, a simplified workflow of the algorithm is shown in 

subsection 7.2. We showed all details of functions in AppendiX A. 

 
7.1. Algorithm overview 

Our algorithm complies with the ETSI standard procedure to provi- 

sion network services (i.e. we consider the same definitions for VNFs, 

services, messages, events); however, we propose a new orchestration 

algorithm to reconfigure composite/shared VNF-based network services 

not considered in the standard. The federation’s orchestrators execute the 

algorithm when they send and receive standard instructions as defined by 

ETSI. The algorithm bifurcates with multiple function calls because of 

asynchronous calls while reconfiguring shared services. The recursive 

nature of our solution handles the dependencies of network services by 

emitting grants as messages among orchestrators. The or- chestrators 

deliver the messages in causal order preventing in- consistencies (see 

Definition 7). Each orchestrator in the federation 

 

 

Fig. 10. Inconsistency during dependent reconfiguration for a composite service. An orchestrator executes scale and grant events of a shared external dependency out- 

of-order. 
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executes the following algorithm to support the causal delivery of 

messages according to the dependencies in the service’s descriptors. We 

summarize it as follows: 

Input: The set of messages presented in Section 6.1 and a vector clock 

create a tuple that communicates to other orchestrators the changes 

seen so far from the sender. 

* internalDependenciesToScale: The list of all VNFs and network 

services waiting to be scaled. They are stored to prevent scaling 

them and then receiving a failure for an external dependency. 

– Network Service: 
* ID: The service unique identifier. 

* dependencies: The list of dependencies of the service. In case of 

scaling, all must confirm the scaling otherwise the operation is 

• EXecution:   All    reconfiguration    messages    are    asynchronously aborted. 

disseminated and no upper bound on delay is considered. Whenever 

an orchestrator o sends a LifeCycleManagement message m to the 

orchestrator o’, it never blocks and waits for an acknowledgment 

message of the delivery of m. The clock of each orchestrator is in- 

dependent of each other such that there is no synchronization with 

another orchestrator, thus, the execution is fully asynchronous. 

Data Structures: We consider two data structures: orchestrators and 

network services. 

– Orchestrator: 
* ID: The unique identifier of the orchestrator. 

* vectorClock: Control information that stores the dependency 

information between messages being exchanged. The size of the 

vector is equal to the number of orchestrators in the federation. 

Each element of the vector clock of orchestrator o is a tuple of 

the form (oid, logical_clock) which records the last messages seen 

by o. 

* pendingOperations: The external dependencies that wait for the 

confirmation of the scaling operations. 

* externalOrchestrators: The list of all orchestrators in the 

federation. 

* orchestratorID:The identifier of the service’s orchestrator. 

* originalService: The service who originally sent the scaling 

operation in case of a dependent reconfiguration. 

* type: They type of the component. It could either be a Service or 

VNF. 

• Messages: 
– NotificationLCM: This notifies the other orchestrators of a change 

in their vector clock. 

– NotificationLCMFailure: Indicates the failure in scaling an external 
service. This will abort the original scaling operation. 

– GrantLCM: Ask permission to scale an external dependency in the 
form of a composite service. 

– ScaleConfirmation: Acknowledgment of the successful scaling of a 
dependency. 

 
7.2. Algorithm details 

Fig. 11 shows the flowchart to scale a VNF-based network service. First, 

the orchestrator increments its vector clock by one. Then, it adds the 

scaling to pending operations since the network service could have 

 

 

• 

• 
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Fig. 11.  Simplified workflow to consistently scale a shared VNF-based network service. All algorithms and functions in bold are defined in AppendiX A. 
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external dependencies. After, it sends a grant to all the orchestrators who 

manage the service’s external dependencies. Finally, to ensure the causal 

delivery of messages, the orchestrator notifies the others. Algo- rithm 1 
(see AppendiX A) shows the function to scale a VNF-based network 

service. 

Once an orchestrator receives a grant request to scale a VNF-based 

network service, it executes the workflow, as shown in Fig. 11. First, the 

orchestrator receives the grant to scale the service. Then, it compares the 

received clock with its own. If it is greater by more than one value, it stores 

the grant in the list of pending operations. After, if the clock’s difference is 

one, the orchestrator checks if the service to be scaled has any external 

dependencies, — scaling them in the positive case or just the internal ones. 

In the end, the orchestrator tries to execute pending operations, thus 

ensuring events are delivered according to the causal order. Algorithm 2 

(see AppendiX A) shows the function to apply the grant to scale a VNF-

based shared network service. 

8. Implementation and validation 

We implemented our proposed algorithm to measure both perfor- 

mance and correctness criteria (i.e. zero inconsistencies while reconfi- 

guring). The following sections comprise the distributed setup (Section 

8.1), metrics evaluation (Section 8.2), experiments (Section 8.3), and 

discussions (Section 8.4). 

8.1. Distributed federation setup 

We tested our solution using Azure’s cloud infrastructure. We chose 

multiple domains from the cloud provider from the following locations: 

North Europe, West US, South Korea, East US, and the UK. For each domain, 

we instantiated a virtual machine to host the orchestrator software. All 

virtual machines have the same configuration: 2 CPUs, 30 GB of hard 

drive, 4 GB of RAM, and LinuX 18.04-LTS. Each domain has its policies, 

topology, and is managed by a single orchestrator. Nowa- days, multiple 

open-source orchestrators follow the ETSI standard like OSM (Israel et 

al., 2019), however, none implements the required in- 
terfaces to support a federation. Thus, we implemented an orchestration 

platform in Python. The source code can be found in1. 

Network Services are created by chaining VNFs, internal, and external 

services. The VNFs considered for the network services are part of Content 

Delivery Networks functions that process video such as En- coders. The 

specification for the service is stored in JSON files that contain parameters 

for network services and their corresponding VNFs. Table 1 shows the 

parameters used for all experiments. We created multiple experiments by 

randomly assigning VNFs, network services, and their constraints to the 

orchestrators in each of our domains. We also generated a random set of 

scale requests to test our solution. To simulate asynchrony in the network, 

all messages have random waiting times. 

 
 
 

Table 1 

EXperiment’s parameters and their range.  

Variable Range 

Number of services 3000 

Number of reconfigurations 10, 20, ⋯, 100 

Repetitions per experiments 30 

Number of dependencies 1–6 

VNFs per orchestrator 600 

    Random delay range [1–100]ms  

1   https://doi.org/10.5281/zenodo.3989957. 

8.2. Metrics to evaluate 

To measure the benefits and trade-offs of our algorithm we evaluated 

the following metrics: 

Inconsistencies: The number of differences when two or more or- 

chestrators have different configuration for a shared network service. 

They should be minimized or prevented while reconfiguring 

dependent network services. 

Message overhead: The number of messages sent to coordinate or- 

chestrators. Messages induce a waiting time until the appropriate one 

is received. 

Reconfiguration time: The time taken to achieve the reconfiguration. 

Ideally, this would be short; otherwise, the user of the network ser- vice 

suffers an interruption. 

Memory overhead: The amount of information stored in memory to 

coordinate the orchestrators. 

Ideally an orchestration algorithm would have zero inconsistencies 

while achieving a fast reconfiguration with few messages to coordinate the 

orchestrators. However, preventing inconsistencies has an associ- ated 

cost. Next, we measure the performance of our algorithm compared to the 

ETSI standard (Etsi, 2019b) as it is the closest work in the liter- ature as 

shown in Fig. 3 (see Section 3). 

 
8.3. Experiments 

We evaluated the performance of our algorithm and the current ETSI 

standard (Etsi, 2019b) for composite/shared services. This work is the 

closest work to ours as it includes: (i) multiple administrative domains, 

(ii) composite VNF-based network services, and (iii) dependent reconfi- 

guration. It is important to note that to support inconsistency detection we 

implemented and added vector clocks (Fidge, 1988) to the ETSI standard. 

The original implementation does not contemplate this. We consider two 

experiments. For the first experiment, we deploy multiple dedicated and 

composite VNF-based network services and reconfigure them. For the 

second experiment, we deploy only a single service reconfiguration and 

measure the effects of dependencies for each metric considered. Both 

experiments had a threshold of 60 s. If a reconfigura- tion takes longer 

than the threshold, we consider it invalid. 

8.3.1. Experiment 1. single service reconfiguration 

This experiment aims to measure the overhead of our proposed al- 

gorithm compared to the ETSI standard for a dependent reconfiguration 

of network services. In this scenario, each reconfiguration is done one at 

a time. We tested over 5500 random reconfigurations for all the services 

we generated, as shown in Table 1. We consider intervals with in- 

crements of ten, up to 100, to measure the performance of both algo- 

rithms in terms of the metrics considered (see Section 8.2). A time-out of 

60 s was set. If the time to reconfigure exceeded the time-out, we consider 

the reconfiguration as invalid. Figs. 12–16 show the results. 

8.3.2. Experiment 2. performance with respect to the number of 

dependencies 

The aim of this experiment is to measure how the overhead metrics 

increase concerning the total external dependencies. In this experiment, 

we count all the external dependencies, not only the immediate de- 

pendency. For example, if a service has 3 external dependencies and one 

of these external dependencies has also 2 external dependencies, the 

service will have 3 immediate dependencies but 5 in total. Thus, this 

experiment reveals more about the relationship between the external 

dependencies and the solution overhead. Table 2 shows the parameters 

for the experiment. Similarly to EXperiment 8.3.1 a time-out of 60 s was set 

for invalid services. Figs. 17–20 show the results for each metric 

considered. 

• 

• 

• 

• 

https://doi.org/10.5281/zenodo.3989957
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Fig. 12.  Inconsistencies per number of reconfigurations. Our algorithm obtains zero inconsistencies, unlike the standard. 

 
 

 

 
 

 

8.4. Discussion 

Fig. 13.  Average dependencies per VNF-based network service. On average, services have between 3,4 dependencies. 

 
Table 1). From the first sight, it appears there is no relation between the 

number of dependencies and the inconsistencies as shown in Fig. 13. 

Our solution gets the expected performance of zero inconsistencies; 

this is not the case for the ETSI standard. EXperiments validate the al- 

gorithm and show that the current standard gets inconsistencies while 

reconfiguring the network services. Even if network services have few 

external dependencies, the standard still has inconsistencies, as shown 

in Fig. 17. It can be seen how, despite reconfiguring a single composite 

service, when the number of dependencies is greater than two, the 

standard already has inconsistencies. 

For multiple reconfigurations, our proposed algorithm prevents in- 

consistencies, unlike the standard as shown in Fig. 12. For the standard, 

the number of inconsistencies changes over the number of reconfigu- 

rations. This variation happens as the services, for each step, were created 

and selected at random using the range of parameters (see 

However, the more detailed analysis of the second experiment, where 

we fiXed the dependencies instead of having services different de- 

pendencies, reveals that there is a relation between the them as shown in 

Fig. 17 where the number of inconsistencies grows as a function of the 

number of dependencies. Moreover, since we considered both dedicated 

and composite VNF-based network services, it is likely that for larger 

experiments a higher number of dedicated were chosen. Thus, we see the 

downtrend between steps 60–80 in Fig. 12. Nevertheless, our algorithm 

prevents inconsistencies irrespective of the number of reconfigurations, 

unlike the ETSI standard. 

Preventing such inconsistencies comes with a cost associated with it. 

First, we evaluated the complexity of our proposed algorithm in terms of 

the number of dependencies n and orchestrators m. Then, we measure 
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Fig. 14.  Memory overhead per number of reconfigurations. Our proposed algorithm has a greater cost. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Messages sent to request grants and notify orchestrators. Our proposed algorithm obtains better performance as it prevent inconsistencies that create 

redundant messages. 
 

the performance of our proposed algorithm and compared it to the ETSI 

standard. 

The time complexity of our proposed algorithm is O(n2) where n is 

the number of dependencies. The space complexity is O(m), where is the 

number of orchestrators. It is linear since our algorithm keeps track of 

the affected orchestrators using vector clocks and stores out-of-order 

instructions as pending operations for each orchestrator. Our algo- 

rithm has greater time complexity than the ETSI standard (Etsi, 2019b) 

who has a time complexity of O n and a space complexity of O m in ideal 

conditions (i.e. one reconfiguration at a time, deterministic network). 

However, the added cost of our algorithm, in terms of time and space, 

prevents inconsistencies for dependent reconfigurations. 

Performance-wise we see how our algorithm requires storing more 

information to coordinate the orchestrators compared to the ETSI 

standard as shown in Figs. 14 and 18. Delay has an impact on the amount 

of information stored, as shown by the gap between the two lines of 

our proposed algorithm. In general, for smaller waiting times more 

messages arrive out of order and the orchestrators must store causal 

information to deliver them in the correct order to prevent the 

inconsistency pattern identified of Definitions 6,7 (see Sections 6.3 and 

6.4). The ETSI standard is unaffected by the delay as it not keeps any 

information to coordinate the orchestrators outside the grants. Delay also 

impacts to a lesser extent the other metrics when there is more than one 

service reconfiguration. This can be seen when comparing Figs. 12 
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Fig. 16. Time spent reconfiguring the VNF-based services. Our proposed solution reconfigures faster than the standard. This is in part because of the number of 

messages the standard must process, unlike ours. 
 

 
Table 2 

Parameters for the second experiment.  

Variable Range 

Number of network services 215 

VNF Components per service 1–13 

VNFs per orchestrators 30 

Random Delay [1, 100]ms 

and 17; in the first one, there are more inconsistencies when the delay is 

higher, unlike the latter. This would suggest that concurrent updates have 

a greater impact. However, we leave this for future work as pre- venting 

inconsistencies when concurrent updates take place means there 

must be a way to establish precedence, not currently captured by any 

algorithm. 

The inconsistencies increase the number of redundant messages, as 

shown in Fig. 15. The standard sends about 7 times more messages than 

our proposed algorithm when multiple services as considered. For a single 

service reconfiguration, this factor is only 2 as shown in Fig. 19. Moreover, 

it can be seen that for services with few dependencies, our proposed 

algorithm sends almost the same amount of messages. For services with 

more than 9 dependencies, the standard sends more redundant messages 

due to inconsistencies. The amount of messages sent by both algorithms 

reflects on the time spent on the reconfiguration. 
Based on the complexity analysis  of our algorithm,  we expect the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 17.  Inconsistencies per dependencies. Our algorithm obtains zero inconsistencies. For the standard, the inconsistencies increase with more dependencies. 
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Fig. 18. Memory overhead per dependencies. For our algorithm the overhead increases dependencies. For the standard, the growth is below ours. 

 
 

 

 

Fig. 19. Message overhead increases as a function of  dependencies. For services with a higher number  of dependencies, the standard behaves worst due to 

inconsistencies. 

 
time for reconfiguration of our algorithm to be greater compared to the 

standard. However, Figs. 16 and 20 show that standard behaves worst as 

it takes about double the time compared to our proposed algorithm. This 

could be explained by the number of messages that need to be processed 

by the standard compared to our proposed algorithm. As previously 

mentioned, one effect of inconsistencies is that orchestrators send more 

messages to reconfigure a network service. This can be seen by analyzing 

Figs. 17, 19 and 20. With one dependency, the standard has no in- 

consistencies; consequently, the messages sent are the same as our 

proposed algorithm. The time is also the same. As the number of 

 
inconsistencies becomes greater, the disparity between our algorithm and 

the standard is also greater. Our algorithm by preventing in- 

consistencies reduces the time it takes for a reconfiguration. For ideal 

conditions (i.e. deterministic network conditions, one reconfiguration at a 

time), the ETSI standard would reconfigure faster than our proposed 

algorithm. 

Our proposed algorithm prevents the inconsistency pattern for 

dependent reconfiguration by ordering and executing grants in the correct 

order; unlike the standard. Nevertheless, our algorithm has limitations. 

First, we assume a known set of orchestrators. This means 
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Fig. 20.  Time for a dependent reconfiguration increases with more external dependencies. 
 

that our algorithm only works in cooperative environments where the 

providers will share some information to coordinate with other or- 

chestrators. Second, currently our algorithm stores causality informa- tion 

for both dedicated and composite/shared services. To reduce some of the 

redundant information we consider as future work optimizations such as 

detecting immediate causal relations to store less information and 

reduce the number of messages sent. Third, our algorithm supports only 

sequential reconfiguration, as the HBR relation does not capture 

concurrent events. In NFV, is possible to have concurrent reconfigura- 

tions for shared services. We leave for future work the management of 

such type of reconfiguration. Our proposed model and algorithm can apply 

to other lifecycle management operations of shared VNF-based network 

services such as healing, terminating, and monitoring. More- over, since we 

followed many of the ETSI standard guidelines to implement the 

orchestration algorithm, our work can be integrated to open source 

solutions that are ETSI compliant. 

9. Conclusion 

Reconfiguration of shared VNF-based network services must satisfy 

functional and non-functional dependencies to ensure the consistency of 

these services. This reconfiguration problem, known as NFV Dependent 

Reconfiguration, was addressed in this paper, following a distributed 

approach to guarantee consistency in NFV Dependent Reconfiguration. We 

defined, implemented, and evaluated a multi-domain model that identifies 

inconsistency patterns for dependent reconfiguration and a causally 

consistent distributed orchestration algorithm based on this model. The 

model identifies and prevents inconsistencies, which reduces the cost for 

service providers by coordinating orchestrator’s activity through multi-

cast messages. The algorithm enforces a causal order for reconfiguration 

operations to satisfy dependencies in-network services. We compared our 

approach to the current ETSI-NFV reconfiguration standard. Both 

algorithms were applied and evaluated using a case study for the scaling 

of network services in a distributed multi-domain 

federation. We showed that our approach prevents inconsistencies 

while reconfiguring services by capturing only the relevant events to 

ensure a causal order. Hence, service providers can set up complex and 

shared network services using distributed orchestrators. However, pre- 

venting inconsistencies comes at a price reflected in the greater over- 

head of our solution compared to the ETSI/NFV standard by a linear 

factor. Moreover, our solution focuses on closed environments assuming 

trustful participants. In future work, we will research more refined ap- 

proaches to capture only immediate causal relations to reduce the time 

and message overhead; also, we will explore open federations where 

orchestrators can join or leave on the fly. Our approach can be extended to 

other operations in the reconfiguration, such as healing, terminating, and 

updating shared network services. 
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A. Appendix. 

Algorithm 1 

Request service scale 
 

 

 

 

Algorithm 2 

GrantLCM 

 

The orchestrator scales a component (e.g. VNF, network service) as follows: First, it validates the internal logic and policies of the request scale 

while ensuring the scaling will not violate the service’s SLA. Then, the orchestrator updates his vector clock, stores the request as a pending operation 

if the service has external dependencies, and sends the respective grant or scale request to other orchestrators as shown in Function 1; otherwise, all  
internal dependencies are scaled as shown in Function 2. Finally, the orchestrator notifies all other orchestrators in the fe deration to enforce the causal 

delivery of messages. A chain of scaling is created when dependencies of service have external dependencies themselves. 

The dependency sends a ScaleConfirmation message to the orchestrator once scaling has finished. Once the message is delivered, the orchestrator 

executes Function 3 as follows: First, the orchestrator checks if the scaling confirmation relates to a pending operation and  waits to receive all external 

confirmations. Then, after waiting for all internal dependencies scale as this ensures all-or-nothing scaling. Finally, the orchestrator acknowledges the 

sender of the scaling request by confirming everything went fine. However, if the pending operation is local, only the scaling takes place. 

Function 4 is the most complex of all functions. First, it evaluates if there is at least a single operation that can be executed when the difference of vector 

clocks of the operation and the current clock is one. If it is the case, it validates the operation by checking if  the request has the correct permissions and 

resources. In case of a valid operation, it checks the dependency type of the service or VNF referenced by the request. In case all dependencies are internals 

(usually only VNFs) it calls Function 2. For external dependencies Function 1 is called. 
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scaleEXternalDependencies 
 

 

 

 

Function 2 

scaleInternalDependencies 
 

 

 

 

Function 3 

scaleConfirmation 
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Function 4 

doPendingOperations 
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trónica,   Puebla,   in   2007,   and   the   Ph.D.   degree   in   applied 

mathematics from Manchester University, U.K., in 2016. He is 

currently a CONACYT Research Fellow with the Instituto 
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