
HAL Id: hal-03624283
https://laas.hal.science/hal-03624283

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VNF-based network service consistent reconfiguration in
multi-domain federations: A distributed approach �

Josué Castañeda Cisneros, Saúl Eduardo Pomares Hernández, Sami Yangui,
Julio Pérez Sansalvador, Lil Rodríguez Henríquez, Khalil Drira

To cite this version:
Josué Castañeda Cisneros, Saúl Eduardo Pomares Hernández, Sami Yangui, Julio Pérez Sansalvador,
Lil Rodríguez Henríquez, et al.. VNF-based network service consistent reconfiguration in multi-domain
federations: A distributed approach �. Journal of Network and Computer Applications (JNCA), 2021,
195, pp.103226. �10.1016/j.jnca.2021.103226�. �hal-03624283�

https://laas.hal.science/hal-03624283
https://hal.archives-ouvertes.fr

VNF-based network service consistent reconfiguration in multi-domain

federations: A distributed approach☆

Josué Castañeda a,*, Saul E. Pomares Hernandez a, b, Sami Yangui a, Julio C. Pérez Sansalvador c,

Lil M. Rodríguez Henríquez c, Khalil Drira a

a
LAAS-CNRS, Université de Toulouse, France. INSA, F31400, Toulouse, France

b
INAOE, 72840, Santa María Tonantzintla, Puebla, Mexico

c
INAOE-Cátedra CONACyT, 72840, Santa María Tonantzintla, Puebla, Mexico

Keywords:

Consistent reconfiguration

Shared network services

Multi-domain orchestration

Network function virtualization (NFV)

Virtual network functions (VNF)

A B S T R A C T

The Network Function Virtualization (NFV) virtualizes the network appliances — such as routers and firewalls —

with software running on commercial off-the-shelf servers. In NFV specification, Network Services (NS) are

composed of multiple Virtual Network Functions (VNF) enabling elastic and finer lifecycle management oper-

ations such as scaling. For adapting resources to the VNF-based network services evolving context, these oper-

ations require to execute, on the fly, a reconfiguration plan supervised by a central orchestrator. This is the single-

domain reconfiguration, where the orchestrator has global up -to-date information, ensuring the correct execution

of the lifecycle management operations. Moreover, in practice, NS can be implemented by composing VNFs in a

cross-domain schema called a multi-domain federation. In this case, the reconfiguration is more challenging since

there are multiple orchestrators, one by domain, that manage collaboratively shared network services. Sharing

network services creates functional and non-functional dependencies among these services that must be

considered for ensuring the consistency of the lifecycle operations. The consistent reconfiguration of shared

network services in distributed multi-domain federations is called the NFV Dependent Reconfiguration problem.

However, despite being identified as an important challenge by the NFV community, no related so - lution has yet

been proposed. In this paper, we focus on the NFV Dependent Reconfiguration problem. We introduce a distributed

approach to guarantee consistency during dependent reconfiguration. The approach is

composed of a distributed multi-domain model that establishes the interactions among the federation’s entities,

and a causally-consistent distributed orchestration algorithm based on such a model. We verify the algorithm

viability using, as a case study, the scaling of shared VNF-based network services as defined by the current NFV

standard architecture. To the best of our knowledge, the proposed distributed orchestration approach is the first

that supports the consistent execution of dependent reconfiguration operations for VNF-based network services.

1. Introduction

Network Function Virtualization (NFV) is a concept that decouples

network services from underlying hardware (Mijumbi et al., 2016). Such

decoupling enhances flexibility during the deployment of network ser-

vices, by creating them with multiple Virtual Network Functions (VNFs)

which offer functionalities such as routing or deep packet inspecting

(Mijumbi et al., 2016). Moreover, the services’ life cycle management,

which changes dynamically over time, becomes elastic as VNFs can be

replaced, moved, or scaled on the fly. Traditionally, this reconfiguration

is done by a single central orchestrator.

Single-domain orchestration ensures the correct execution of life

cycle management operations, such as scaling, as the orchestrator has

the global up-to-date information of all the domain’s components (Etsi,

2019a). However, because of the rising data traffic consumption

(Forecast, 2019), the high cost to update services (Antonopoulos, 2020),

and the flattened revenue for operators (Cano et al., 2017), service

providers share services. Sharing services, in a cross-domain schema,

☆ This document is the results of the research project funded by the Consejo Nacional de Ciencia y Tecnologia (CONACYT) and LAAS-CNRS.

* Corresponding author.

E-mail addresses: jcastane@laas.fr (J. Castañeda), spomares@inaoep.mX (S.E. Pomares Hernández), yangui@laas.fr (S. Yangui), jcp.sansalvador@inaoep.mX

(J.C. Pérez Sansalvador), lmrodriguez@inaoep.mX (L.M. Rodríguez Henríquez), drira@laas.fr (K. Drira).

mailto:jcastane@laas.fr
mailto:spomares@inaoep.mx
mailto:yangui@laas.fr
mailto:jcp.sansalvador@inaoep.mx
mailto:lmrodriguez@inaoep.mx
mailto:drira@laas.fr

2

allows providers to increase their revenue and lower expenditures for

both capital and operational expenses (Yousaf et al., 2019). Thus, the

operators are willing to share resources, for example, by sharing VNFs

(Malandrino et al., 2019). To enable such joint deployments, providers

transition from single to multi-domain environments. In a multi-domain

environment, each domain has its orchestrator that manages all re-

sources in its domain (Etsi, 2014). By exchanging messages, orchestra-

tors coordinate among them and create a distributed multi-domain

federation (Etsi, 2019b).

Distributed multi-domain federations improve the NFV architecture,

introduced by the European Telecommunications Standards Institute

(ETSI), by sharing resources among service providers. They extend the

providers’ capacities (i.e. market share) despite the limited resources of

each service provider in the federation. Orchestrators deploy services in

multiple domains. The services adapt to new users’ requirements (Taleb

et al., 2019; Saraiva de Sousa et al., 2019). Federations also offer resil-

iency properties, such as scalability, increased performance, and

robustness against failures (Katsalis et al., 2016a). Thus, in distributed

multi-domain federations, VNF-based network services are shared among

many orchestrators and their life cycle is no longer managed by a single

orchestrator.

In a Federation, unlike single-domain orchestration, many orches-

trators manage lifecycle tasks of VNFs and network services. These tasks

include instantiating, reconfiguring, and monitoring the network ser-

vices. Yet, federations bring new challenges for decentralized and

asynchronous operations (Katsalis et al., 2016a). Thus, the orchestrators

coordinate preventing unwanted side-effects (e.g. partial service fail-

ures). The orchestrators try to guarantee functional and non-functional

properties of the services by reconfiguring shared services (Cisneros et

al., 2020). This reconfiguration must be consistent among all

orchestrators.

Ensuring consistency in shared network services entails having the

same up-to-date information of each orchestrator before and after they

execute a life cycle management operation. Before executing any oper-

ation, orchestrators must coordinate themselves to prevent unwanted

behavior of network services. The orchestrators generate grants to notify

and validate a reconfiguration operation when a network service has

external dependencies. Each grant’s recipient verifies the internal con-

sistency in its domain by checking if the management operation affects

other network services.

The current specification of NFV federations claims to ensure no

undesired effect occurs while reconfiguring takes place, but no order or

timing constraints exist between two consecutive grants (Etsi, 2018a).

Thus, grants can be executed non-deterministically, in any order, without

satisfying the service’s external dependencies. Such execution could bring

inconsistencies and lead to greater costs to the provider. For example,

during the scaling of a shared service managed by many or- chestrators,

the service could be redundantly scaled and could also have deprecated

connections. Thus, it is necessary to enforce a correct grant ordering for

shared service reconfiguration to prevent inconsistencies induced by

unsatisfied shared services’ dependencies. Such correct grant ordering is

the founding principle of the distributed approach of man- aging the

consistent dependent reconfiguration problem for VNF-based network

services in distributed multi-domain federations.

The state-of-the-art for service reconfiguration in NFV focuses on

migrating VNFs while optimizing resources such as energy, time, and

latency in a single domain (Eramo et al., 2017; Yang et al., 2018; Wang

et al., 2018). Other works focus on the network update problem (Shin et

al., 2015). These works enforce consistent updates by satisfying in-

variants; yet, they also focus on single domains where no coordination is

required and concentrate at the network level. Some Service Oriented

Architecture solutions try to address the reconfiguration challenges for

VNF-based network services; however, they are not fully compatible since,

unlike web services that are remotely called, VNFs need to be instantiated.

As far as we know, solutions at the service-level, that consider

coordination among orchestrators address only the problems of

placement and chaining tasks in NFV (Pham and Chu, 2019; Li et al., 2018;

Ghaznavi et al., 2017; Sun et al., 2018). All previous solutions are

unsuitable for the dependent reconfiguration because they assume a static

configuration for VNF-based network services. For dynamic tasks in multi-

domain environment, only the current ETSI NFV standard specifies an

algorithm to scale shared network services (Etsi, 2019b). However, it does

not consider non-deterministic network conditions and consistency issues

that arise when dealing with dependent services.

In this work, we consider on the fly dynamic dependent reconfigu-

ration of network services. We consider non-deterministic networks and

dependencies among shared services. Based on such dependencies, we

coordinate reconfiguration by ordering grants sent by orchestrators. Our

contributions are as follows:

A Distributed NFV Multi-Domain Orchestration model is introduced

that establishes the interactions among ETSI defined components in a

federation to support the life-cycle management of VNF-based shared

network services (Section 6.1).

An inconsistent pattern for the NFV dependent reconfiguration is

identified and formally defined from a temporal and logical perspective

(Section 6.3, 6.4)

A Causally-consistent orchestration algorithm is presented based on

the proposed orchestration model to prevent inconsistencies that may

occur when VNF-based network services have external de- pendencies

(Section 7).

The viability of the approach is shown via simulations using the scaling

of VNF-based shared network services as the target operation. For this,

we measured the inconsistencies, time to reconfigure, and message

overhead and compared them to the current reconfiguration algorithm

(Section 8).

The paper is organized as follows: The preliminaries are presented in

Section. The related work is discussed in Section 3. The problem and a

use case are shown in Section 4. Section 5 contains the system model. We

formalize the inconsistencies while reconfiguring network services in

Section 6. Our solution is presented in Section 7. Evaluation and results are

presented and discussed in Section 8. Finally, our conclusions and insights

for future work are presented in Section 9.

2. Preliminaries

In this section, we present the concepts required for the dependent

reconfiguration of VNF-based network services in distributed multi-

domain federations. For the rest of the paper, we use the terms VNF- based

network services and network services interchangeably, accord- ing to

ETSI.

2.1. VNF-based network services

Network services are the building units for next-generation network

applications. Under the NFV concept, multiple VNFs compose a network

service according to one or more forwarding graphs (Etsi, 2018b).

Network services belong to distinct classes according to their users via the

service’s access points. Dedicated network services belong to a single

domain and only have VNFs as internal dependencies. Composite ones

belong to at least two different domains and have external dependencies

as network services (Etsi, 2018c). The external dependencies are also

called nested services as the provider combines them to create a com-

posite service (Etsi, 2018d). EXternal dependencies are managed by

multiple administrative domains, unlike internal domains that belong to

a single domain.

Fig. 1 shows a composite service (C) that has two dependencies (A, B).

In this example, the two dedicated network services that belong to the

composite network service are offered by different domains. The service

C has internal and external connection points to deliver features to

consumers. Detailed information about the dedicated network services A

•

•

•

3

Fig. 1. EXample of a composite and two dedicated network services.

and B is unavailable to the orchestrator that manages of service C, such

as topology, lifecycle management policies (e.g. scaling rules) and

communication endpoints. This is because the services A and B are

external dependencies managed by other administrative domains. The

limited knowledge of orchestrators outside their administrative domain

enables providers to share their resources without compromising the

orchestrators’ privacy or autonomy. For example, orchestrators can setup

complex service function chains without access to detailed infor- mation

of other orchestrators (Liu et al., 2020).

2.2. Distributed multi-domain orchestration

Harnessing the benefits of network services requires control to sup-
port their lifecycle. Under the NFV paradigm, the Network Functions

Virtualization Orchestrator – simply orchestrator – manages the network

service’s lifecycle tasks (i.e. building, instantiating, executing, reconfi-

guring, and monitoring) (Etsi, 2018c). The orchestrator also administers

all the systems and networks operated by a single organization (Etsi,

2019a), it also handles the Virtual Infrastructure Manager and VNF

Manager to support all the VNFs that compose the services. Multi-

domain orchestration extends the capacities of the single orches- trator by

offering network services within the same organization and facilitating

these services to another network operator (Etsi, 2019b). Three types

of architectures support the multi-domain orchestration as defined by the

ETSI Standard: Centralized, distributed, and hybrid (Rosa et al., 2015;

Katsalis et al., 2016a). Centralized solutions establish a global

orchestrator that coordinates other orchestrators via vertical calls.

Distributed architectures lack a central coordinator and orches- trators

communicate to support the network services’ lifecycle. Hybrid ones

create hierarchies where orchestrators coordinate both horizon- tally and

vertically. All the previous architectures enable a federation.

2.3. Distributed multi-domain federations

A Federation is a collective group of service providers who share

resources to support complex network services (Baranda et al., 2020).

This reduces the costs of each individual provider and extends the ca-

pacities despite the limited resources of each provider. Thus, orches-

trators access the network services of different providers by negotiating

the limited resources among them. This creates shared network services

that can be used by multiple services in the federation. Composite ser-

vices in such federations can be shared services and also have these type

of services as external dependencies. Thus, for the rest of the paper, we

use the terms composite and shared services interchangeably. Due to

shared services in a distributed multi-domain federation, the orches-

trators coordinate to overcome the limited knowledge of each partici-

pant. On the one hand, these federations offer flexible, scalable, and

extendable network services; on the other, they add overhead to the

service’s life-cycle management. We consider closed federations that

reject new participants to enter; thus, lowering the overhead, but

keeping the benefits of a federation.

2.4. Life-cycle management of network services in multi-domain

federations

Network services must meet their required Service Level Agreement

despite changes in the network. Such a service reconfiguration triggers, by

energy consumption, fault tolerance, higher revenues, or improve- ment of

the QoS (Kim et al., 2016; Eramo et al., 2017, 2019; Yang et al., 2018; Wang

et al., 2018; Liu et al., 2017). The ETSI standard identifies different tasks at

the service-level, such as scaling, migrating, and restoring a network

service to meet the service level agreement re- quirements of a composite

service (Etsi, 2019c). In multi-domain feder- ations, ETSI defines a special

communication reference point between orchestrators, called the

orchestrator to orchestrator or-or (ETSI, 2020). This reference point is

shown in Fig. 2 where the orchestrators can setup a network service for a

content delivery network by chaining four VNFs:

(1) A translator (TRA), (2) streamer (ST), (3) encoder (ENC), and finally
a (4) decoder (DEC). This four VNFs are managed by different orches-

trators as shown in Fig. 2. For example, the NFVO–C manages the DEC

VNF; while the NFVO-A manages both TRA and ST VNFs, respectively.

The orchestrators coordinate over the or-or point, used for the ex-

changes between orchestrators in different administrative domains. This

reference point enables interfaces to support complex multi-domain

tasks via grant messages (Etsi, 2018a). According to the ETSI stan-

dard, the following tasks in multi-domain environments require coor-

dination by sending grants over the or-or reference point:

Scale Network Service: Increase/decrease internal and/or external

dependencies. This work focuses on this task for reconfiguration.

• Terminate Network Service.

• Heal Network Service: Recover a service after an error.

• Subscription/Notification.

In this work, we consider closed federations where a fiXed number of

trusted orchestrators expose connections points of their shared network

services. Orchestrators communicate with each other via messages since

distributed multi-domain federations lack global references. Thus, there

is a flexible hierarchy according to each service that enforces the use of

coordination among the orchestrators because of limited knowledge. Fig.

2 shows an example. The orchestrator NFVO–C plays the role of a

consumer and provider of network services. The VNF Managers in each

administrative domain interact with their orchestrator; yet, the or-

chestrators are not aware of the constituent VNF instances of the shared

service instance and do not interact with the VNF Managers of other

administrative domains. This is the case for orchestrator NFVO–C and the

VNF managers of NFVO-A and NFVO–B, respectively.

3. Related work

We discuss the relevant work for the dependent reconfiguration task.

First, we present single-domain reconfiguration algorithms, focusing on

the scale of VNFs. Then, we present reconfiguration algorithms for multi-

domain environments and highlight the drawbacks of the current state-of-

the art solutions. Finally, we briefly describe how our proposed

•

4

Fig. 2. Network Services federation provided using multiple administrative domains. An orchestrator can be both a provider and a consumer of other services. A

VNF-based network service is created by chaining the VNFs in the order specified by the numbers.

model and algorithm extend the state-of-the art for VNF-based service

reconfiguration in multi-domain environments. Fig. 3 shows how we

organized the related work. Our work is positioned in the colored branch

with the bold font for multi-domain VNF-based shared network services.

3.1. Reconfiguration of VNF-based network services in single-domain

environments

The reconfiguration of network resources focuses on three tasks of

Fig. 3. Taxonomy for network service reconfiguration. Our work is positioned in the lower branch with NFV multi-domain shared network services.

5

the life cycle management of network services. The orchestrators execute

tasks such as migrating, updating, and scaling VNFs. The problem of

migration focuses on the new placement of a VNF while optimizing

resources such as energy, time, and latency in a single domain (Eramo et

al., 2017; Yang et al., 2018; Wang et al., 2018). Other works focus on the

network update problem that changes a VNF descriptor to include more

functionalities (Shin et al., 2015). Scaling with NFV allows operators to

resize network services at runtime to handle load surges with

performance guarantees (Adamuz-Hinojosa et al., 2018). In this work, we

focus on the VNF scaling as it is the closest related to our work. We

classified the related work for scaling shared resources in a single domain

as either reactive (i.e. monitor the traffic) or proactive (i.e. predict future

traffic).

3.1.1. Single-domain reactive works

Most of the works in the literature consider dedicated services that

belong to a single network service despite having VNFs in distributed

data centers. Auto-scaling orchestration mechanisms have been pro-

posed to minimize the cost of scaling a service while meeting end-to-end

delay (Nadjaran Toosi et al., 2019; Duan et al., 2017). These works

propose heuristic algorithms with monitoring algorithms to scale the

VNFs. As far as we know, only two works in the literature consider

shared resources for a single domain. The first work proposed a

latency-aware mechanism (Sarrigiannis et al., 2020). It offers a sched-

uling algorithm for the initial placement and reallocation of VNFs. The

second work proposed a VNF scaling on-line algorithm that considers all

the costs associated with provisioning network resources (Tong et al.,

2020). It achieves an upper-bounded competitive ratio. The major

drawback of reactive works is the negative impact of the reconfigura-

tion. Since they only reconfigure services when they capture a problem,

the service must be halted or temporally degraded while the changes

take place. Proactive scaling mechanisms were proposed to mitigate the

negative impact of reconfiguration.

3.1.2. Single-domain proactive works

Proactive works predict future traffic and try to scale network ser-

vices or VNFs to address these changes. While some works were pro-

posed for dedicated services (Jia et al., 2018; Xu, 2020), we focus on

shared services. For shared VNF-based network services, several works

have been published. The first work proposed a traffic model based on

Gated Recurrent Units (Tong et al., 2020). After the prediction, many

independent agents explore the network to get optimal placement.

Another work proposed a log-linear Poisson auto-regression model to

forecast the traffic (Hu et al., 2020). Based on the model’s output, an

evolution-based algorithm scales automatically the VNFs. Similarly, an

adaptive scaling mechanism based on Q-learning and Gaussian Pro- cesses

to train a single agent was proposed (Arteaga et al., 2017). The agent learns

the scaling policy despite traffic variations. Another inter- esting work that

extends previous works by allowing tenants to refuse scaling was

proposed (Rahman et al., 2020). The method offers a negotiation phase

where, based on the predicted traffic and goals for each tenant, under the

same domain, the VNFs are scaled.

All the previous approaches rely on a single administrative domain

under a global orchestrator. The advantages of such deployment are ease

of use and simple life cycle management. However, this approach has

drawbacks, such as scalability, security, and limited flexibility. In practice,

multiple administrative domains want to keep autonomy from a single

orchestrator. Decentralized solutions face the shortcomings of the global

deployments (Chen et al., 2010).

3.2. Reconfiguration of VNF-based network services in multi-domain

environments

Decentralized approaches achieve better performance since the or-

chestrators distribute traffic among participants (Nanda et al., 2004).

Since NFV falls into the Definition of IT services at large (Katsalis et al.,

2016b), VNFs can be provisioned as any other type of services. Service-

Oriented Architecture (SOA) principles (e.g., service abstrac- tion,

discoverability, and composability) ensure the viability of an ecosystem of

network services, such in multi-domain environments, concerning the

NFV paradigm (Yi et al., 2018). Thus, first, we present the SOA

reconfiguration solutions. Then, we describe why these solu- tions do not

fully align with the NFV paradigm. Finally, we describe the NFV

reconfiguration solutions for VNF-based network services.

3.2.1. Service-oriented architecture reconfiguration for network services

Before NFV, in the domain of web services, choreographies have been

proposed to handle the reconfiguration of a service. A service

choreography achieves service composition without centralized control

through a protocol via observable events (Leite et al., 2013). The

collaborative protocol, encoded in the choreography, ensures correct- ness

properties such as deadlock prevention, conformance to message

specification, and realizability (Kattepur et al., 2013). Some works propose

a coordination protocol to reconfigure services where a shared global

state is maintained without a central orchestrator (Kazhamiakin et al.,

2006; Salaün and Roohi, 2009). Works can either remove faulty

components by choosing the optimal and correct candidates from a limited

pool of options (Boudries et al., 2019), or bring new function- alities on the

fly and add them to the existing chaining (Moo-Mena and Drira, 2007;

Hnětynka et al., 2006). Previous works adapt network services to

changes in the environment; however, they exclude consis- tency issues

brought by dependencies among the services that arise while

reconfiguring services like in NFV.

The VNF life-cycle task was inspired by SOA (Yangui et al., 2016);

however, discrepancies between web services and VNFs make SOA so-

lutions inappropriate to address VNF-based network services tasks (el

houda Nouar et al., 2021). For instance, unlike web services, VNFs are

not remotely invoked but must be downloaded and executed locally in

different administrative domains. The VNFs, and by extension VNF-based

network services, include technical details such as the sup- ported

technologies, the configuration settings, and their operation management

for each task. Moreover, the service choreography in SOA lacks elements

present in NFV such as the orchestrator who has a well-defined workflow

for the life cycle of network services (Etsi, 2019a). Another challenge

present in the NFV context is the heteroge- neity of VNFs (Bouras et al.,

2017), unlike web services that only consider input and output

parameters. Finally, since administrative domains have different

capabilities (e.g. CPU, RAM, bandwidth) the reconfiguration operation for

VNF-based network services must consider such resources to ensure

functional and non-functional re- quirements (Xu, 2020). Thus, solutions

for reconfiguring VNF-based network services with a focus on consistency

need to be explored in the NFV context, considering both internal

(hidden) and external (observable) events.

3.2.2. Network Function Virtualization reconfiguration for VNF-based

services

NFV reconfiguration for network services under multi-domain con-

siders federations that share resources by negotiating among many

participants (Pham and Chu, 2019). Some works consider multiple

administrative domains but the services are still dedicated. Deep learning

was proposed in a proactive orchestration algorithm to predict traffic and

scale VNF instances (Subramanya and Riggio, 2021). Unlike in single

domain orchestration that only considers dedicated network services,

multi-domain federations generally create composite services by sharing

resources (Etsi, 2018c). As far as we know, only a few works have

considered the scaling of composite network services under multi-domain

orchestration. The ETSI NFV standard specifies an algo- rithm to scale

composite network services (Etsi, 2019b). The algorithm proposes a

workflow based on grants to coordinate orchestrators. A custom platform

was deployed using the ETSI standard to scale com- posite services

(Baranda et al., 2020). The previous works handle the

6

≡
composite scaling of services in ideal conditions (e.g. messages are or-

dered, no latency in transmission, zero messages lost). However, in real

conditions, the non-deterministic conditions of the network and limited

information of each orchestration bring new challenges, such as pre-

venting inconsistencies (Vaquero et al., 2019). Preventing in-

consistencies is a desired property when reconfiguring VNF-based

network services as it prevents unwanted effects from rippling across the

federation. However, currently, there are no formal models to identify and

prevent inconsistencies while reconfiguring composite VNF-based

services.

3.3. Synthesis

The review of the relevant literature shows that many works consider

a centralized solution. Others, non-centralized, consider approaches not

completely compatible for NFV. Some solutions do not consider sharing

services. These limitations reduce the applicability of solutions as pro-

viders want to: have autonomy and privacy for their domains, achieve local

interoperability, and share resources to extend their market share. The

ETSI standard orchestration algorithm addresses some of these

limitations; however, it considers ideal conditions to reconfigure network

services without timing constraints. Moreover, currently no grant message

exchange pattern has been identified to prevent in- consistencies. In this

paper, we extend the state-of-the art by proposing a distributed multi-

domain orchestration model that, unlike the state-of- the art, considers

non-deterministic network conditions where services can have multiple

dependencies. The model allows to formally identify an inconsistency

pattern for dependent reconfiguration of VNF-based network services,

that is missing today in the literature. To prevent this pattern, we

propose a causally consistent orchestration algorithm to prevent

inconsistencies while doing dependent reconfiguration.

4. The NFV dependent reconfiguration problem

Dependent reconfiguration of VNF-based network ser-vices in multi-

domain federations considers the internal VNFs, the services, and the

external dependencies. A service’s reconfiguration can be simple if the

service has zero external dependencies (i.e. dedicated service); other- wise,

it is dependent (i.e. composite service). Consider the composite service C

shown in Fig. 4, the service has two external dependencies in service A, B.

Shared external dependencies introduce new challenges on the service’s

reconfiguration tasks, such as scaling. For example, Fig. 5 shows a

composite scaling with a single dependency (i.e. one de- pendency is

shared by two services). The NFVO–C orchestrator manages a composite

service so with two external dependencies s1 managed by

NFVO–B, and s3 ≡ s2 managed by NFVO-A, respectively. It is important
to note that the other orchestrators, namely NFVO–C and NFVO–B,

ignore that s3 s2 is a shared external dependency of both s0 and s1 because

of their limited knowledge constrained to the local domain of each

orchestrator and must send grants to prevent service disruption when

scaling a service with external dependencies/nested services. These

grants allow the orchestrators to coordinate the composite scaling. The

composite scaling is as follows:

1. Initially, the NFVO–C orchestrator sends a Scale Nested (event c1)

operation to orchestrators NFVO-A and NFVO–B via a multi-cast

message m1 to scale services s1 managed by NFVO–B, and s3 managed

by NFVO-A, respectively. A Scale Nested instruction denotes the
petition to scale a nested network service that is an external
dependency.

2. The orchestrator NFVO–B receives message m1 with the scale Nested

instruction (event a1). Since the service s2 is an external dependency

of service s1 managed by NFVO-A, the NFVO–B sends a grant G1 so

scale service s2 to NFVO-A.

3. Assume that the scale Nested instruction, sent by message m1, arrives

first to NFVO-A (event b1). Since s1 is an external dependency of service

s3, NFVO-A sends a second grant G2 to NFVO–B.

4. The orchestrator NFVO–B validates, scales the service s1 (event a2),
and sends a positive acknowledgment to NFVO-A. The orchestrator

NFVO-A receives the positive reply via message m2 and triggers a scale

event for service s3 (event b2).
5. After scaling the service s3, NFVO-A sends an acknowledgment to

NFVO–C via message m3. NFVO–C stores the positive answer (event

c2).

6. NFVO-A gets the first grant G1 from NFVO–B (event b3); but, it will

not scale the service s2 since the scaling already took place by

executing event b2 since service s2 and service s3 are the same (i.e.

s3 ≡ s2). Thus, NFVO-A sends a positive reply to NFVO–B via message
m4.

7. NFVO–B receives the positive reply from NFVO–B (event a3); how-

ever, it will also not scale network service s1 since it has already

scaled it by executing event a2, and sends a positive reply to NFVO–C

via message m5.

8. Finally, NFVO–C scales the composite service s0 after receiving two

positives replies from NFVO-A and NFVO–B. Because of the depen-

dent reconfiguration, there were three scale operations (event c3).

The exchange of messages, as defined by the ETSI NFV standard,

suffices to achieve consistent reconfigurations in an ideal scenario where

no messages are lost and the orchestrators synchronize via global ref-

erences. However, in real scenarios, orchestrators lose, send, and deliver

messages asynchronously and out of order. Such network properties

lead to inconsistencies during the network services reconfiguring

operations. For example, Fig. 6 shows an inconsistency during another

Fig. 4. Complete composite service C with two external dependencies (i.e. services A, B) as shared services. Both external dependencies have internal dependencies as

VNFs (i.e. TRA, ENC, DEC, and ST) linked by connection points.

7

≡

∈

∈

∈

• ∈

Fig. 5. The orchestrators consistently scale a composite service that is shared among them. In this execution of the composite scale operation, only three scale op-

erations are done.

possible execution of a dependent.

reconfiguration (the order of the operations is different, here the grant

G1 is executed before the scale nested operation). The example shows four

scale operations, where the fourth is redundant as only three operations

suffice to reconfigure the shared network service. The extra scale

operation happens because the asynchronous message delivery leads to

an execution that does not satisfy the dependent relations of the shared

network services. Figs. 5 and 6 illustrate a single dependency between a

pair of services; however, in general, network services can have multiple

dependencies that have the possibility of one or more inconsistencies. An

inconsistency increases costs for the provider; even worse, with a long

chain of network services, the cost compounds along all the chains which

could violate the service level agreement. Not only does cost increase, but

the network services can also be left on partial or total failure. Thus, is

necessary to impose an execution order to prevent inconsistencies while

doing dependent reconfigurations with shared external dependencies for

VNF-based network services. To introduce our proposed execution order,

first, we present the system model for the rest of the manuscript.

5. System model

The orchestrator handles the life cycle management of network

services. This includes internal dependencies such as VNFs and network

services. Thus, we define a management relation as follows:

Definition 1. (Relation is-managed by) The relation ~ identifies the

management of domain d for either a Virtual Network Function (VNF),

v, or a service, s, according to:

1. If v ~ d ≡ True, means the VNF v is instantiated at domain d.

2. If s ~ d ≡ True, means the service s has either: (i)

only internal dependencies managed by the domain d (ii) if there are

external dependencies, there is at least one VNF dependency v such that v ~

d and all other external dependencies are managed by other domains.

Fig. 2 (see Section 2.4) shows an example of the is-managed by

relation. In this example, the orchestrator NFVO–C manages the DEC VNF

(i.e. DEC ~ NFVO–C True). For the VNF-based service, the is- managed by,

as stated by Definition 1, relation holds for all orchestrators since all the

orchestrator manage external dependencies, exposed as services.

5.1. Basic concepts in distributed systems

In a distributed system, entities communicate with each other by

exchanging messages. It is assumed that there is no global reference and

transmission delay is bounded but arbitrary. A distributed system is

composed of the sets P, M, E which belong to the set of processes,

messages, and events, respectively.

Processes: Programs and instances running simultaneously that

communicate with other programs. Each process belongs to the set of

processes of P. A process p P communicates with another process p’

P by message passing over an asynchronous, non-deterministic,

and reliable network.

Messages: Abstraction of any type of message which contains data

structures. Each message in the system belongs to the set M.

Events: An event e is an action performed by a process p P. All

events in the system belong to the set of events E. We consider two

types: internal, external. An internal event occurs at a process locally

hidden from other processes. An external also happens in the process

but can be seen by other processes affecting the global system state.

For external events, send and delivery events are considered. A send

event emits a message m M executed by a process. Delivery events

identify the execution performed of received messages by a process.

5.2. Causal order

Distributed systems need shared references, such as the physical time,

to decide correctly how to execute transactions. But, because of the lack of

global references, the difficulty arises to find if an event takes place

another. Thus, the distributed systems need another reference to

•

•

8

∈ =

Fig. 6. Redundant dependent reconfiguration during a scaling-out operation when the Grant messages arrive in a different order. In this execution, four scale

operations are done. This entails costs to the service provider while three only are necessary.

circumvent the absence of synchronized clocks.

Logical time introduces an execution order between events based on

a partial order known as the Happened-Before Relation that establishes a

precedence order between two events in the following way (Lamport,
1978): let e and e′ be two events causally related. According to the

happened-before relation, e happened before e′ if there is a transference of

information from e to e′. Thus, according to the relation, e must be
processed before e’. Formally, the Happened-Before Relation denoted

“→“, is defined as follows:

Definition 2. (Happened-Before Relation) The relation → is the

smallest relation on a set of events E satisfying:

1. If e and e′ are events belonging to the same process and e originated

before e′, then e → e′.

2. If e is the sending of a message by one process and e′ is the receipt of

the same message by another process, then e → e′.

3. If e → e′ and e′ → e′′, then e → e′′.

Formally, the message causal delivery based on the happened-before

relation is defined for the distributed model as follows:

Definition 3. (Causal order delivery in distributed models) ∀((send

(e), send(e′)) ∈ E, send(e) → send(e′) ⇒ delivery(e) → delivery(e′) for any two

internal events e, e′ E. We denote Ê {E, →} as the set of events

causally ordered.

6. Modeling dependent reconfigurations in distributed multi-

domain orchestration

In this section, we extend the distributed system model presented in

Section 5. We evaluate the NFV dependent reconfiguration problem from

a temporal/event point of view and identify key information to support the

consistent dependent reconfiguration of VNF-based network services.

6.1. Distributed multi-domain orchestration model for Network Function

Virtualization

We present the system model. Fig. 7 shows the relation between all the

entities of the distributed multi-domain orchestration system model. The

federations have two or more domains. Each domain manages both

network services and VNFs. Depending on their dependencies, services

can be external or internal. Internal dependencies have only VNFs or other

services managed by a single administrative domain. EXternal

dependencies are managed by different administrative domains. All these

domains’ orchestrators coordinate through messages. For internal

dependencies, a scale message suffices. For external dependencies, the

orchestrator must acquire a grant from all the other domains.

We develop the distributed multi-domain orchestration model by

adapting the sets of processes P, messages M, and events E (defined in

Section 5.1) to the NFV context by adding and defining the sets of events

and messages which are specific for the model specification. Before the

Definition, we introduce a set of entities used during the reconfiguration

operation.

9

=

= ∪

∀ ∈ 𝖤 ∈

𝖤 ∈ ∈ ∕= ∈

=

∪

Fig. 7. Relations between the entities of the distributed multi-domain orchestration system model. The Federation on top composed of domains that manage services

and VNFs.

Domains: The collection of systems and networks operated by a single

organization. In the case of multi-domain federations we denote this

set as D {d1, d2, …, dp}. The number of domains p is known beforehand

since we considered a close federation.

Virtual Network Functions (VNFs): The basic components to

instantiate complex network services. We follow the ETSI standard

by using the abstraction of Virtual Network Function Components that
enable the VNF to operate. The super-set of VNFs V is composed of

disjoint setsV1,V2, …,Vp where ∀v ∈ Vi, v ~ di where v is a VNF and

di is the i-th domain in the federation. Each v ∈ V is defined as a
function f ∶ x ⇒ y where x, y are input and output traffic flows,

respectively

Network services: The entities which offer complex solutions by

aggregating VNFs with unspecified connectivity between them or

according to forwarding graphs. A forwarding graph describes a to-

pology of network services by referencing a pool of connection points

and Services Access Points. The network service set is composed by a

set of processes S = {s1, s2, …, sk}. Each service s is associated with a

domain d ∈ D denoted as s ~ d. Internal dependencies Is of a network

service s are either VNFs v ∈ V or network services s’ ∈ S such that ∀v,

s’∈ Is, v ~ d, s’ ~ d where s ~ d. Similarly, external dependencies Γs

are only network services such that ∀s’ ∈ Γs, s’ ≁ d where s ~ d. The
set of total dependencies of service s is denoted as Δs Is Γs. Let Ωs

be the set of orchestrators that manage the external dependencies of

service s such that o Ωs, s’ Γs |s’ ~ o. Network services in the set

S can be either of type dedicated or shared according to their de-

pendencies. We formalize this with the following:

Definition 4. (Shared and dedicated network services) The service,
s, managed by orchestrator o, belongs to the type shared if it is an external

dependency of another service s’ unmanaged by the same orchestrator o:

s’ s, o’ O |s’ ~ o’, o o’, s Γs’; otherwise, is dedicated.

Fig. 2 (see Section 2.4) show an example of shared and dedicated

services. In this example, the DEC VNF is shared among all the domains as

shown in Fig. 2. Moreover, this VNF is exposed as service B which

makes it a shared service as shown in Fig. 4. All other VNFs can be

exposed as dedicated services.

We now extend the model presented in Section 5.1 to meet the ETSI

standard for multi-domain orchestration as follows:

Messages: We extended the concept of abstract messages in distrib-

uted systems, described in Section 5.1, with the specific types required

for reconfiguration of network services. All messages have the

following parameters: m {(sender, receiver, data, type)}. We consider

the following type of messages:

– Scale: Increase or decrease the number of instances that belong to

either a VNF or Network Service.

– Response: Acknowledgment of a complete scaling operation of an
external dependency.

– Notification: To signal the sender of a Scale message there has been
an update in the lifecycle management.

– Grant: Permission to scale external dependencies.

• Events: As mentioned in Section 5.1, there are two types of events:
internal and external ones. The set of internal events Einternal is the
following:

– VnfMScaleRequest (v, data) denotes the orchestrator’s request to

the VNF Manager to initiate the scaling of VNF v specifying data.

– VimChangeResource (v, data) is the event that the orchestrator

sends to the Virtual Infrastructure Manager to change either pro-

cessor, storage, or network information of the VNF v according to the

data.

– VimModifyConnectivity(v, data) refers to the changing of
connection points of VNF v by the Virtual Infrastructure Manager.

– VimInstantiate(v, data) denotes the instantiation or shutdown of

VNFs v ∈ V for a particular service according to the data.

– CheckCompositeNSConsistency(s) denotes the verification before

the scaling of service s. Since we consider the complete ETSI or-

chestrator’s architecture as a single process for ease of under-

standing, all the details of this event are abstracted in a single

execution; however, in reality, multiple entities play a role in this

message.

– ScaleNS(s) denotes the scaling of the dedicated network service s
whose only dependencies are internal and belong to the set Vp

managed by orchestrator op.

The external events considered are send, receive, de - livery and the

set is denoted as Eexternal = Esend ∪

Ereceive Edelivery. Since we consider a single orchestration per domain,

we re-write the is-managed by relation (see Definition 1, Section 5) as s ~

o for any service s ∈ S and orchestrator o ∈ O.

The set of send events Esend is the following:

•

•

•

•

10

∈

∈

∈ ∕=

∩ ∕=

∈ 𝖤 ∈ ∈

∈ ∈

=∕

=

Let

– ScaleCompositeNS (s, data) denotes the petition to scale the composite network

service s by using parameters in data, this could trigger multiple

ScaleNestedNS or SdNSLCMGrant events by the external dependencies

of s.

– ScaleNestedNS (s, data) denotes the petition to scale a nested network
service s by using parameters in data, this will trigger a grant

SdNSLCMGrant(s’) request event for the external dependency s’ ∈ Γs.

– SdNSLCMGrant(s’) refers to the request coming from orchestrator o to

verify and scale service s’ |s’ ~ o’, s’ Γs, o o’. This event can trigger

multiple ScaleCompositeNS, ScaleNestedNS SdNSLCMGrant events,
respectively.

The set Ereceive is composed of the following events:

– RecResponseNestedNsScaling(s’). This message is received by orches-

trator o O that manages service s which has service s’ as an external

dependency. It denotes the answer (positive or negative) to a pre-

vious SdNSLCMGrant related to nested service s’ |s’ ∈ Γs.

– RecResponseCompositeNsScaling(s’). This message is received by

orchestrator o O that manages service s which has service s’ as an

external dependency. It denotes the answer (positive or negative) to

a previous SdNSLCMGrant related to composite service s’ |s’ ∈ Γs.

– RecNSLifecycleChangeNotification({start, result}, s’) refers to the
acknowledgment or result from orchestrator o’ to o that has sent an

happens during the composite scaling of e if and only service s has an

external dependency s’ Γs such that s’’ Γs’, s’’ Γs. In other words,

both network services share an external dependency; thus, the joint set Γs

Γs’ ∅.

We illustrate an example of the conditions required for a dependent

reconfiguration as described in Definition 5 for a composite service by

extending the example shown in Fig. 4. Fig. 8 shows an example of the

composite service G. This service has three nested services in C, E, and F,

respectively. Each nested service has its own internal and external de-

pendencies, as shown by the differences between service A and B. Since

the two nested services C and E share an external dependency (i.e. shared

service) they will trigger a dependent reconfiguration in case one

orchestrator decides to reconfigure the shared service B. The orchestra-

tors exchange grants by executing events in the set Eexternal (i.e.

SdNSLCMGrant and DlvNSLCMGrant). In the case of dependent recon-

figuration executed during the scaling for shared network services in

multi-domain federations, the delivery of DlvNSLCMGrant events must be

respected to consistently execute the reconfiguration.

6.3. Modeling inconsistency in NFV dependent reconfiguration of network

services from a temporal perspective

Consider the diagram of Fig. 9. It shows the relevant events during a

dependent reconfiguration (see Definition 5) according to the ETSI

standard. In this scenario, the topology is composed of four orchestra-
tors. According to our model (see subsection 6.1), the set of processors

event of type ScaleNestedNS(s’) or ScaleCompositeNS(s’) such that s’

~ o’ and s’ |s’ ∈ Γs for any service s ∈ S.

The set Edelivery has a unique event:

– DlvNSLCMGrant(s’) denotes that an orchestrator o’ ∈ O delivered a

Grant message sent by a SdNSLCMGrant(s’) event. It identifies the
execution performed by the orchestrator o’ associated to service s’

managed by orchestrator o’. After delivery, o′ will send a notification
to the sender of the grant.

The set E for events (see Section 5.1) is augmented. We consider
internal and external events as defined by the sets Einternal, Eexternal,

respectively such that Ê = {E ∪Einternal ∪ Eexternal, →}. For simplicity,

we represent the send events of set Esend: ScaleCompositeNS, ScaleNes-

tedNS, SdNSLCMGrant as (s). The delivery event of set Edelivery

DlvNSLCMGrant as delivery(s) for any service s ∈ S. This set is causally

ordered by the → relation (see Definition 2).

6.2. Dependent reconfiguration of network services in distributed multi-

domain federations

A dependent reconfiguration happens when an orchestrator requests

a reconfiguration for service s and has external dependencies such that the

set Γs =∕ ∅. In this case, multiple grant requests are sent to orches-

trators bounded by |Γs|. According to the ETSI standard, the following

steps are required for a dependent reconfiguration (we don’t consider
notifications or answers) (Etsi, 2019b):

1. Scale a composite network service.

2. Scale nested network services.

3. Request grants to scale external dependencies.

4. Validate requests, check feasibility, and consistency of grants.

We formally define the dependent reconfiguration as follows:

Definition 5. (Dependent reconfiguration) Let s ∈ S be a composite

service that has at least one external dependency such that Γs ∅ managed
by orchestrator o O. Let event e E be of type Scale-

CompositeNS executed by orchestrator o. A dependent reconfiguration

for this scenario is O = {o—1, o0, o1, o2}. The update begins when

orchestrator o—1 sends a message m0 to o0 where m0 = (o—1, o0, ex0 =

{(s0, data)}) and s0 ~ o0 and exx0 is a ScaleCompositeNS. Validation and

feasibility are checked on event e00; this entails validating the parame-

ters sent, the authority of the sender, and checking the feasibility for the

VNF Manager to scale all the VNFs. In the case the service has external

dependencies, the orchestrator sends a multi-cast message m1 = (o0, (o1,

o2), e01 {((s1, s2), data)}) where e01 is of type Scale nested. If an orchestrator
receives a Scale nested event, it will also validate the request as shown in
event e11. If the service has an external event, it will send a

grant through a message as shown in m2 and will wait for a positive

acknowledgment before scaling takes place; if there are no external

dependencies, a scaling will take place. In the event of receiving a grant,

the orchestrator checks the consistency of all network services affected by

the grant as shown in event e21 and sends a notification through

message m3. If network services are affected, the orchestrator can

request a scale composite instruction and begin another dependent

reconfiguration.

According to the ETSI standard, the execution of events shown

in Fig. 9 is valid; however, it introduces an inconsistency for

network services being scaled. The inconsistency is created because

service s1 managed by orchestrator o1 has outdated information after the

scaling operation of service s’ triggered by event e23 if s’ is an external

dependency of s1. More precisely, the inconsistency is brought by the

execution of e20 before e22.

One way to see this out-of-order execution is the delay brought by

asynchronous communication and lack of global references; in turn, this

creates a non-deterministic execution of reconfiguration operations. This

is the temporal perspective encoded in the message sent by or- chestrators

to signal the relevant steps of dependent reconfiguration. Upon analyzing

the communication diagram corresponding to the execution diagram

shown in Fig. 9, we can observe the inconsistency is created when the

transmission time interval of m1 is greater than the transmission of time

interval m2 plus the message forwarding time of all the grant of

dependencies. We generalize and formalize the inconsis- tency pattern

from a temporal perspective in the Definition 6.

Definition 6. (Temporally inconsistent dependent reconfiguration)
Let s be a composite service managed by orchestrator o such that Γs ∕= ∅.

m = {o, Ωs, ScaleNe(Γs)} be a message to scale the nested external

11

∈

∈ =

Fig. 8. EXample of the conditions for a dependent reconfiguration. The composite service G has two nested services that share service B as an external dependency. To

reconfigure this shared service, the orchestrators must coordinate by grants.

Fig. 9. Inconsistency during dependent reconfiguration for a composite service. All events concerning acknowledgments and notifications are hidden and abstracted.

Messages arrive arbitrarily and events can be executed out of order.

dependencies of s. Let m’ = {o, Ωs ∕ o’, ScaleNe(Γs ∕ s’)} be a message to

scale all external network services except a single service s’ ∈ Γs managed by

o’ Ωs. Let m’’ {o’, Ωs’, SdNSLCMGrant(Γs’)} be a message to grant the

operation of service s’. Let (x) be a function that measures the time taken to

send, receive and deliver a message x M. A temporal inconsistency during

dependent reconfiguration is created if:

(m’) > (m)+ T(m’’) | Γs ∩ Γs
′ =∕ ∅, s’ ∈ Γs

A possible solution to the problem of inconsistent dependent

reconfiguration posed by Definition 6 is to establish common temporal

references for all orchestrators and perform the execution of operations

12

∈

according to this reference. However, as discussed in Subsection 2.3 such

a solution is unpractical since each orchestrator has limited knowledge.

Furthermore, even clock synchronization algorithms such as the Network

Time Protocol (Mills, 1991) make it difficult to perfectly synchronize

clocks across all the network entities.

6.4. Modeling the NFV dependent inconsistent reconfiguration of network

services from an event perspective

In this section, we discuss the inconsistency during the dependent

reconfiguration (see Definition 5) of network services from an event

perspective. The focus centers on the relevant events during the scaling

operation. Similarly to Section 6 we use the execution flow presented in

Fig. 9 as an inconsistent example. We define the conditions of incon-

sistency as follows:

Definition 7. (Event related inconsistency of dependent reconfi-
guration) Let s1, s2 be two network services managed by o, o’ respec-

tively. Let Γs1 ∕= ∅, Γs2 ∕= ∅ be the sets of external services’ dependencies

of s1, s2 respectively. Let Ωs1, Ωs2 be the set of orchestrators that manage
the external dependencies of service s1, s2 respectively. Let esc be a

ScaleComposite event of network service s1 requested by an orches-

trator ô ∕∈ Ωs1 ∪ Ωs2. Let esn be a ScaleNested event of network services

Γs1 such that esc → esn and the scale instruction is sent to Ωs1 using the
message m. Let e be the execution of the ScaleNested esn instruction at
an orchestrator o ∈ Ωs1. Let eg be a Grant of network services Γs2 such

that esn → eg and the grant instruction is sent to Ωs2 using the message m’.

Let e′ be the execution of the Grant eg at an orchestrator o Ωs2. There
is an inconsistency if the following conditions hold:

1. 𝖤(s, ŝ), s = ̂s ∈ Γs1 ∩Γs2 such that s ∈ Γs1,̂s ∈ Γs2, and

2. e′ → e

Fig. 10 shows a graphic representation of Definition 7. In Fig. 10 (I) we

observe the composite scaling of service s1 with event esc, given that this

service has external dependencies it sends a scale nested instruction to all

orchestrators that manage its dependencies by esn. Fig. 10 (II) shows the

delivery of the nested instruction at orchestrator o’. Since the external

dependency s2 also has dependencies, it sends a grant instruc- tion to all

the managers of its dependencies with event eg. Fig. 10 (III, IV) show the

case when both s1 and s2 have common external dependencies.

In Fig. 10 (III) the reconfiguration is consistent in the purple rectangle as

the scale precedes the grant instruction. Fig. 10 (IV) shows an incon-

sistent dependent reconfiguration as the grant operation precedes the

scale instruction. Even if some reconfigurations are consistent, a single

inconsistent reconfiguration is sufficient to bring the whole service

down. More, precisely, inconsistencies bring both partial and total

failures for network services reflected on greater cost for the providers.

A key property for any reconfiguration is to be consistent and stop

the conditions of Definition 7. To prevent them at least one condition

from Definition 7 must remain unsatisfied. A federated environment

makes preventing Condition 1 challenging as the core of these envi-

ronments is sharing resources plus is difficult to ensure due to the

limited information each orchestrator has. Thus, the goal is to prevent

Condition 2 from happening; that is, a nested scaling should always

precede a grant operation. Our proposed algorithm identifies and pre-
vents the second condition from happening via causal consistency.

7. Consistency management in dependent reconfigurations

Based on the formalization presented in Section 6, we show how the

presented algorithm allows us to capture the causality and avoid

inconsistency of network services during dependent reconfigurations,

such as scaling in NFV. First, an overview of the algorithm is presented

in Subsection 7.1. Then, a simplified workflow of the algorithm is shown in

subsection 7.2. We showed all details of functions in AppendiX A.

7.1. Algorithm overview

Our algorithm complies with the ETSI standard procedure to provi-

sion network services (i.e. we consider the same definitions for VNFs,

services, messages, events); however, we propose a new orchestration

algorithm to reconfigure composite/shared VNF-based network services

not considered in the standard. The federation’s orchestrators execute the

algorithm when they send and receive standard instructions as defined by

ETSI. The algorithm bifurcates with multiple function calls because of

asynchronous calls while reconfiguring shared services. The recursive

nature of our solution handles the dependencies of network services by

emitting grants as messages among orchestrators. The or- chestrators

deliver the messages in causal order preventing in- consistencies (see

Definition 7). Each orchestrator in the federation

Fig. 10. Inconsistency during dependent reconfiguration for a composite service. An orchestrator executes scale and grant events of a shared external dependency out-

of-order.

13

executes the following algorithm to support the causal delivery of

messages according to the dependencies in the service’s descriptors. We

summarize it as follows:

Input: The set of messages presented in Section 6.1 and a vector clock

create a tuple that communicates to other orchestrators the changes

seen so far from the sender.

* internalDependenciesToScale: The list of all VNFs and network

services waiting to be scaled. They are stored to prevent scaling

them and then receiving a failure for an external dependency.

– Network Service:
* ID: The service unique identifier.

* dependencies: The list of dependencies of the service. In case of

scaling, all must confirm the scaling otherwise the operation is

• EXecution: All reconfiguration messages are asynchronously aborted.

disseminated and no upper bound on delay is considered. Whenever

an orchestrator o sends a LifeCycleManagement message m to the

orchestrator o’, it never blocks and waits for an acknowledgment

message of the delivery of m. The clock of each orchestrator is in-

dependent of each other such that there is no synchronization with

another orchestrator, thus, the execution is fully asynchronous.

Data Structures: We consider two data structures: orchestrators and

network services.

– Orchestrator:
* ID: The unique identifier of the orchestrator.

* vectorClock: Control information that stores the dependency

information between messages being exchanged. The size of the

vector is equal to the number of orchestrators in the federation.

Each element of the vector clock of orchestrator o is a tuple of

the form (oid, logical_clock) which records the last messages seen

by o.

* pendingOperations: The external dependencies that wait for the

confirmation of the scaling operations.

* externalOrchestrators: The list of all orchestrators in the

federation.

* orchestratorID:The identifier of the service’s orchestrator.

* originalService: The service who originally sent the scaling

operation in case of a dependent reconfiguration.

* type: They type of the component. It could either be a Service or

VNF.

• Messages:
– NotificationLCM: This notifies the other orchestrators of a change

in their vector clock.

– NotificationLCMFailure: Indicates the failure in scaling an external
service. This will abort the original scaling operation.

– GrantLCM: Ask permission to scale an external dependency in the
form of a composite service.

– ScaleConfirmation: Acknowledgment of the successful scaling of a
dependency.

7.2. Algorithm details

Fig. 11 shows the flowchart to scale a VNF-based network service. First,

the orchestrator increments its vector clock by one. Then, it adds the

scaling to pending operations since the network service could have

•

•

14

Fig. 11. Simplified workflow to consistently scale a shared VNF-based network service. All algorithms and functions in bold are defined in AppendiX A.

15

external dependencies. After, it sends a grant to all the orchestrators who

manage the service’s external dependencies. Finally, to ensure the causal

delivery of messages, the orchestrator notifies the others. Algo- rithm 1
(see AppendiX A) shows the function to scale a VNF-based network

service.

Once an orchestrator receives a grant request to scale a VNF-based

network service, it executes the workflow, as shown in Fig. 11. First, the

orchestrator receives the grant to scale the service. Then, it compares the

received clock with its own. If it is greater by more than one value, it stores

the grant in the list of pending operations. After, if the clock’s difference is

one, the orchestrator checks if the service to be scaled has any external

dependencies, — scaling them in the positive case or just the internal ones.

In the end, the orchestrator tries to execute pending operations, thus

ensuring events are delivered according to the causal order. Algorithm 2

(see AppendiX A) shows the function to apply the grant to scale a VNF-

based shared network service.

8. Implementation and validation

We implemented our proposed algorithm to measure both perfor-

mance and correctness criteria (i.e. zero inconsistencies while reconfi-

guring). The following sections comprise the distributed setup (Section

8.1), metrics evaluation (Section 8.2), experiments (Section 8.3), and

discussions (Section 8.4).

8.1. Distributed federation setup

We tested our solution using Azure’s cloud infrastructure. We chose

multiple domains from the cloud provider from the following locations:

North Europe, West US, South Korea, East US, and the UK. For each domain,

we instantiated a virtual machine to host the orchestrator software. All

virtual machines have the same configuration: 2 CPUs, 30 GB of hard

drive, 4 GB of RAM, and LinuX 18.04-LTS. Each domain has its policies,

topology, and is managed by a single orchestrator. Nowa- days, multiple

open-source orchestrators follow the ETSI standard like OSM (Israel et

al., 2019), however, none implements the required in-
terfaces to support a federation. Thus, we implemented an orchestration

platform in Python. The source code can be found in1.

Network Services are created by chaining VNFs, internal, and external

services. The VNFs considered for the network services are part of Content

Delivery Networks functions that process video such as En- coders. The

specification for the service is stored in JSON files that contain parameters

for network services and their corresponding VNFs. Table 1 shows the

parameters used for all experiments. We created multiple experiments by

randomly assigning VNFs, network services, and their constraints to the

orchestrators in each of our domains. We also generated a random set of

scale requests to test our solution. To simulate asynchrony in the network,

all messages have random waiting times.

Table 1

EXperiment’s parameters and their range.

Variable Range

Number of services 3000

Number of reconfigurations 10, 20, ⋯, 100

Repetitions per experiments 30

Number of dependencies 1–6

VNFs per orchestrator 600

 Random delay range [1–100]ms

1 https://doi.org/10.5281/zenodo.3989957.

8.2. Metrics to evaluate

To measure the benefits and trade-offs of our algorithm we evaluated

the following metrics:

Inconsistencies: The number of differences when two or more or-

chestrators have different configuration for a shared network service.

They should be minimized or prevented while reconfiguring

dependent network services.

Message overhead: The number of messages sent to coordinate or-

chestrators. Messages induce a waiting time until the appropriate one

is received.

Reconfiguration time: The time taken to achieve the reconfiguration.

Ideally, this would be short; otherwise, the user of the network ser- vice

suffers an interruption.

Memory overhead: The amount of information stored in memory to

coordinate the orchestrators.

Ideally an orchestration algorithm would have zero inconsistencies

while achieving a fast reconfiguration with few messages to coordinate the

orchestrators. However, preventing inconsistencies has an associ- ated

cost. Next, we measure the performance of our algorithm compared to the

ETSI standard (Etsi, 2019b) as it is the closest work in the liter- ature as

shown in Fig. 3 (see Section 3).

8.3. Experiments

We evaluated the performance of our algorithm and the current ETSI

standard (Etsi, 2019b) for composite/shared services. This work is the

closest work to ours as it includes: (i) multiple administrative domains,

(ii) composite VNF-based network services, and (iii) dependent reconfi-

guration. It is important to note that to support inconsistency detection we

implemented and added vector clocks (Fidge, 1988) to the ETSI standard.

The original implementation does not contemplate this. We consider two

experiments. For the first experiment, we deploy multiple dedicated and

composite VNF-based network services and reconfigure them. For the

second experiment, we deploy only a single service reconfiguration and

measure the effects of dependencies for each metric considered. Both

experiments had a threshold of 60 s. If a reconfigura- tion takes longer

than the threshold, we consider it invalid.

8.3.1. Experiment 1. single service reconfiguration

This experiment aims to measure the overhead of our proposed al-

gorithm compared to the ETSI standard for a dependent reconfiguration

of network services. In this scenario, each reconfiguration is done one at

a time. We tested over 5500 random reconfigurations for all the services

we generated, as shown in Table 1. We consider intervals with in-

crements of ten, up to 100, to measure the performance of both algo-

rithms in terms of the metrics considered (see Section 8.2). A time-out of

60 s was set. If the time to reconfigure exceeded the time-out, we consider

the reconfiguration as invalid. Figs. 12–16 show the results.

8.3.2. Experiment 2. performance with respect to the number of

dependencies

The aim of this experiment is to measure how the overhead metrics

increase concerning the total external dependencies. In this experiment,

we count all the external dependencies, not only the immediate de-

pendency. For example, if a service has 3 external dependencies and one

of these external dependencies has also 2 external dependencies, the

service will have 3 immediate dependencies but 5 in total. Thus, this

experiment reveals more about the relationship between the external

dependencies and the solution overhead. Table 2 shows the parameters

for the experiment. Similarly to EXperiment 8.3.1 a time-out of 60 s was set

for invalid services. Figs. 17–20 show the results for each metric

considered.

•

•

•

•

https://doi.org/10.5281/zenodo.3989957

16

Fig. 12. Inconsistencies per number of reconfigurations. Our algorithm obtains zero inconsistencies, unlike the standard.

8.4. Discussion

Fig. 13. Average dependencies per VNF-based network service. On average, services have between 3,4 dependencies.

Table 1). From the first sight, it appears there is no relation between the

number of dependencies and the inconsistencies as shown in Fig. 13.

Our solution gets the expected performance of zero inconsistencies;

this is not the case for the ETSI standard. EXperiments validate the al-

gorithm and show that the current standard gets inconsistencies while

reconfiguring the network services. Even if network services have few

external dependencies, the standard still has inconsistencies, as shown

in Fig. 17. It can be seen how, despite reconfiguring a single composite

service, when the number of dependencies is greater than two, the

standard already has inconsistencies.

For multiple reconfigurations, our proposed algorithm prevents in-

consistencies, unlike the standard as shown in Fig. 12. For the standard,

the number of inconsistencies changes over the number of reconfigu-

rations. This variation happens as the services, for each step, were created

and selected at random using the range of parameters (see

However, the more detailed analysis of the second experiment, where

we fiXed the dependencies instead of having services different de-

pendencies, reveals that there is a relation between the them as shown in

Fig. 17 where the number of inconsistencies grows as a function of the

number of dependencies. Moreover, since we considered both dedicated

and composite VNF-based network services, it is likely that for larger

experiments a higher number of dedicated were chosen. Thus, we see the

downtrend between steps 60–80 in Fig. 12. Nevertheless, our algorithm

prevents inconsistencies irrespective of the number of reconfigurations,

unlike the ETSI standard.

Preventing such inconsistencies comes with a cost associated with it.

First, we evaluated the complexity of our proposed algorithm in terms of

the number of dependencies n and orchestrators m. Then, we measure

17

() ()

Fig. 14. Memory overhead per number of reconfigurations. Our proposed algorithm has a greater cost.

Fig. 15. Messages sent to request grants and notify orchestrators. Our proposed algorithm obtains better performance as it prevent inconsistencies that create

redundant messages.

the performance of our proposed algorithm and compared it to the ETSI

standard.

The time complexity of our proposed algorithm is O(n2) where n is

the number of dependencies. The space complexity is O(m), where is the

number of orchestrators. It is linear since our algorithm keeps track of

the affected orchestrators using vector clocks and stores out-of-order

instructions as pending operations for each orchestrator. Our algo-

rithm has greater time complexity than the ETSI standard (Etsi, 2019b)

who has a time complexity of O n and a space complexity of O m in ideal

conditions (i.e. one reconfiguration at a time, deterministic network).

However, the added cost of our algorithm, in terms of time and space,

prevents inconsistencies for dependent reconfigurations.

Performance-wise we see how our algorithm requires storing more

information to coordinate the orchestrators compared to the ETSI

standard as shown in Figs. 14 and 18. Delay has an impact on the amount

of information stored, as shown by the gap between the two lines of

our proposed algorithm. In general, for smaller waiting times more

messages arrive out of order and the orchestrators must store causal

information to deliver them in the correct order to prevent the

inconsistency pattern identified of Definitions 6,7 (see Sections 6.3 and

6.4). The ETSI standard is unaffected by the delay as it not keeps any

information to coordinate the orchestrators outside the grants. Delay also

impacts to a lesser extent the other metrics when there is more than one

service reconfiguration. This can be seen when comparing Figs. 12

18

Fig. 16. Time spent reconfiguring the VNF-based services. Our proposed solution reconfigures faster than the standard. This is in part because of the number of

messages the standard must process, unlike ours.

Table 2

Parameters for the second experiment.

Variable Range

Number of network services 215

VNF Components per service 1–13

VNFs per orchestrators 30

Random Delay [1, 100]ms

and 17; in the first one, there are more inconsistencies when the delay is

higher, unlike the latter. This would suggest that concurrent updates have

a greater impact. However, we leave this for future work as pre- venting

inconsistencies when concurrent updates take place means there

must be a way to establish precedence, not currently captured by any

algorithm.

The inconsistencies increase the number of redundant messages, as

shown in Fig. 15. The standard sends about 7 times more messages than

our proposed algorithm when multiple services as considered. For a single

service reconfiguration, this factor is only 2 as shown in Fig. 19. Moreover,

it can be seen that for services with few dependencies, our proposed

algorithm sends almost the same amount of messages. For services with

more than 9 dependencies, the standard sends more redundant messages

due to inconsistencies. The amount of messages sent by both algorithms

reflects on the time spent on the reconfiguration.
Based on the complexity analysis of our algorithm, we expect the

Fig. 17. Inconsistencies per dependencies. Our algorithm obtains zero inconsistencies. For the standard, the inconsistencies increase with more dependencies.

19

Fig. 18. Memory overhead per dependencies. For our algorithm the overhead increases dependencies. For the standard, the growth is below ours.

Fig. 19. Message overhead increases as a function of dependencies. For services with a higher number of dependencies, the standard behaves worst due to

inconsistencies.

time for reconfiguration of our algorithm to be greater compared to the

standard. However, Figs. 16 and 20 show that standard behaves worst as

it takes about double the time compared to our proposed algorithm. This

could be explained by the number of messages that need to be processed

by the standard compared to our proposed algorithm. As previously

mentioned, one effect of inconsistencies is that orchestrators send more

messages to reconfigure a network service. This can be seen by analyzing

Figs. 17, 19 and 20. With one dependency, the standard has no in-

consistencies; consequently, the messages sent are the same as our

proposed algorithm. The time is also the same. As the number of

inconsistencies becomes greater, the disparity between our algorithm and

the standard is also greater. Our algorithm by preventing in-

consistencies reduces the time it takes for a reconfiguration. For ideal

conditions (i.e. deterministic network conditions, one reconfiguration at a

time), the ETSI standard would reconfigure faster than our proposed

algorithm.

Our proposed algorithm prevents the inconsistency pattern for

dependent reconfiguration by ordering and executing grants in the correct

order; unlike the standard. Nevertheless, our algorithm has limitations.

First, we assume a known set of orchestrators. This means

1
10

Fig. 20. Time for a dependent reconfiguration increases with more external dependencies.

that our algorithm only works in cooperative environments where the

providers will share some information to coordinate with other or-

chestrators. Second, currently our algorithm stores causality informa- tion

for both dedicated and composite/shared services. To reduce some of the

redundant information we consider as future work optimizations such as

detecting immediate causal relations to store less information and

reduce the number of messages sent. Third, our algorithm supports only

sequential reconfiguration, as the HBR relation does not capture

concurrent events. In NFV, is possible to have concurrent reconfigura-

tions for shared services. We leave for future work the management of

such type of reconfiguration. Our proposed model and algorithm can apply

to other lifecycle management operations of shared VNF-based network

services such as healing, terminating, and monitoring. More- over, since we

followed many of the ETSI standard guidelines to implement the

orchestration algorithm, our work can be integrated to open source

solutions that are ETSI compliant.

9. Conclusion

Reconfiguration of shared VNF-based network services must satisfy

functional and non-functional dependencies to ensure the consistency of

these services. This reconfiguration problem, known as NFV Dependent

Reconfiguration, was addressed in this paper, following a distributed

approach to guarantee consistency in NFV Dependent Reconfiguration. We

defined, implemented, and evaluated a multi-domain model that identifies

inconsistency patterns for dependent reconfiguration and a causally

consistent distributed orchestration algorithm based on this model. The

model identifies and prevents inconsistencies, which reduces the cost for

service providers by coordinating orchestrator’s activity through multi-

cast messages. The algorithm enforces a causal order for reconfiguration

operations to satisfy dependencies in-network services. We compared our

approach to the current ETSI-NFV reconfiguration standard. Both

algorithms were applied and evaluated using a case study for the scaling

of network services in a distributed multi-domain

federation. We showed that our approach prevents inconsistencies

while reconfiguring services by capturing only the relevant events to

ensure a causal order. Hence, service providers can set up complex and

shared network services using distributed orchestrators. However, pre-

venting inconsistencies comes at a price reflected in the greater over-

head of our solution compared to the ETSI/NFV standard by a linear

factor. Moreover, our solution focuses on closed environments assuming

trustful participants. In future work, we will research more refined ap-

proaches to capture only immediate causal relations to reduce the time

and message overhead; also, we will explore open federations where

orchestrators can join or leave on the fly. Our approach can be extended to

other operations in the reconfiguration, such as healing, terminating, and

updating shared network services.

Author statement

Josué Castañeda: Conceptualization. Investigation, Implementation,

Writing, Proving, Writing – original draft preparation. Saul E. Pomares

Hernández: Reviewing, Writing, Proving. Sami Yangui: Supervision,

Reviewing and Editing. Julio C. Pérez Sansalvador: Reviewing, Editing.
Lil M. Rodríguez Henríquez: Reviewing, Editing. Khalil Drira: Supervi-

sion, Reviewing and Editing.

Declaration of competing interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence

the work reported in this paper.

Acknowledgments

The research presented in this paper is supported by the Mexican

Council for Science and Technology CONACYT (Grant 708000) and LAAS-

CNRS.

20

A. Appendix.

Algorithm 1

Request service scale

Algorithm 2

GrantLCM

The orchestrator scales a component (e.g. VNF, network service) as follows: First, it validates the internal logic and policies of the request scale

while ensuring the scaling will not violate the service’s SLA. Then, the orchestrator updates his vector clock, stores the request as a pending operation

if the service has external dependencies, and sends the respective grant or scale request to other orchestrators as shown in Function 1; otherwise, all
internal dependencies are scaled as shown in Function 2. Finally, the orchestrator notifies all other orchestrators in the fe deration to enforce the causal

delivery of messages. A chain of scaling is created when dependencies of service have external dependencies themselves.

The dependency sends a ScaleConfirmation message to the orchestrator once scaling has finished. Once the message is delivered, the orchestrator

executes Function 3 as follows: First, the orchestrator checks if the scaling confirmation relates to a pending operation and waits to receive all external

confirmations. Then, after waiting for all internal dependencies scale as this ensures all-or-nothing scaling. Finally, the orchestrator acknowledges the

sender of the scaling request by confirming everything went fine. However, if the pending operation is local, only the scaling takes place.

Function 4 is the most complex of all functions. First, it evaluates if there is at least a single operation that can be executed when the difference of vector

clocks of the operation and the current clock is one. If it is the case, it validates the operation by checking if the request has the correct permissions and

resources. In case of a valid operation, it checks the dependency type of the service or VNF referenced by the request. In case all dependencies are internals

(usually only VNFs) it calls Function 2. For external dependencies Function 1 is called.

.

Function 1

21

scaleEXternalDependencies

Function 2

scaleInternalDependencies

Function 3

scaleConfirmation

22

Function 4

doPendingOperations

References

Adamuz-Hinojosa, O., Ordonez-Lucena, J., Ameigeiras, P., RamosMunoz, J.J., Lopez, D.,

Folgueira, J., 2018. Automated network service scaling in NFV: concepts,

mechanisms and scaling workflow. IEEE Commun. Mag. 56, 162–169.

Antonopoulos, A., 2020. Bankruptcy problem in network sharing: fundamentals,

applications and challenges. IEEE Wireless Communications 27, 81–87.

Arteaga, C.H.T., Risso, F., Rendon, O.M.C., 2017. An adaptive scaling mechanism for

managing performance variations in network functions virtualization: a case study in

an NFV-based EPC. In: 2017 13th International Conference on Network and Service

Management (CNSM), Volume 2018-Janua. IEEE, pp. 1–7. https://doi.org/

10.23919/CNSM.2017.8255982. https://ieeexplore.ieee.org/document/8255982/.

Baranda, J., Mangues-Bafalluy, J., Vettori, L., Martínez, R., 2020. Scaling composite

NFV-network services. In: Proceedings of the International Symposium on Mobile Ad

Hoc Networking and Computing. MobiHoc), pp. 307–308. https://doi.org/10.1145/

3397166.3415277.

Baranda Hortiguela, J., Mangues-Bafalluy, J., Martinez, R., Vettori, L., Antevski, K.,

Bernardos, C.J., Li, X., 2020. Realizing the network service federation vision:

enabling automated multidomain orchestration of network services. IEEE Veh.

Technol. Mag. 15, 48–57.

Boudries, F., Sadouki, S., Tari, A., 2019. A bio-inspired algorithm for dynamic

reconfiguration with end-to-end constraints in web services composition. Service

Oriented Computing and Applications 13, 251–260.

Bouras, C., Kollia, A., Papazois, A., 2017. SDN & NFV in 5G: advancements and
challenges. In: 2017 20th Conference on Innovations in Clouds, Internet and

Networks (ICIN). IEEE, pp. 107–111. https://doi.org/10.1109/ICIN.2017.7899398.

http://ieeexplore.ieee.org/document/7899398/.

Cano, L., Capone, A., Carello, G., Cesana, M., Passacantando, M., 2017. On optimal

infrastructure sharing strategies in mobile radio networks. IEEE Trans. Wireless

Commun. 16, 3003–3016.

Chen, X., Zeng, H., Wu, T., 2010. Decentralized orchestration with local centralized

orchestration for composite web services. In: 2010 International Conference on

Parallel and Distributed Computing, Applications and Technologies. IEEE,

pp. 255–260. https://doi.org/10.1109/PDCAT.2010.16. http://ieeexplore.ieee.or

g/document/5704427/.
Cisneros, J.C., Yangui, S., Pomares Hernandez, S.E., Perez Sansalvador, J.C., Drira, K.,

2020. Coordination algorithm for migration of shared VNFs in federated

environments. In: 2020 6th IEEE Conference on Network Softwarization (NetSoft).

IEEE, pp. 252–256. https://doi.org/10.1109/NetSoft48620.2020.9165333. https:

//ieeexplore.ieee.org/document/9165333/.

Duan, J., Wu, C., Le, F., Liu, A.X., Peng, Y., 2017. Dynamic scaling of virtualized,

distributed service chains: a case study of IMS. IEEE J. Sel. Area. Commun. 35,

2501–2511.

el houda Nouar, N., Yangui, S., Faci, N., Drira, K., Tazi, S., 2021. A Semantic virtualized

network functions description and discovery model. Comput. Network. 195, 108152.

Eramo, V., Ammar, M., Lavacca, F.G., 2017. Migration energy aware reconfigurations of

virtual network function instances in NFV architectures. IEEE Access 5, 4927–4938.
Eramo, V., Cianfrani, A., Catena, T., Polverini, M., Lavacca, F., 2019. Reconfiguration of

cloud and bandwidth resources in NFV architectures based on segment routing

control/data plane. In: 2019 21st International Conference on Transparent Optical

Networks (ICTON). IEEE, pp. 1–5. https://doi.org/10.1109/ICTON.2019.8840406.

https://ieeexplore.ieee.org/document/8840406/.

Etsi, N., 2014. Etsi Gs Nfv-Man 001 V1. 1.1 Network Function Virtualisation (NFV);

Management and Orchestration. https://www.etsi.org/deliver/etsi_gs/NFV-MAN

/001_099/001/01.0101_60/gs_NFV-MAN001v010101p.pdf.

Etsi, N., 2018a. Etsi Gs Nfv-Ifa 030 V3.2.1 Network Functions Virtualisation (NFV)

Release 3; Management and Orchestration; Multiple Administrative Domain Aspect

Interfaces Specification. https://docboX.etsi.org/isg/nfv/open/Publications_pdf/Spe

cs-Reports/NFV-IFA030v3.2.1-GS-MultiDomain20MANO-spec.pdf.

Etsi, N., 2018b. Etsi Gs Nfv-Ifa 014 V3.4.1 Network Functions Virtualisation (NFV)

Release 3; Management and Orchestration. Network Service Templates

Specification. https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/03

.0401_60/gs_NFV-IFA014v030401p.pdf.

Etsi, N., 2018c. ETSI GS NFV 003, V1.4.1 Network Functions Virtualisation (NFV);

Terminology for Main Concepts in NFV. https://www.etsi.org/deliver/etsi_gs/

NFV/001_099/003/01.04.01_60/gs_nfv003v010401p.pdf.

Etsi, N., 2018d. ETSI GR NFV-IFA 012 V3.1.1 Network Functions Virtualisation (NFV)

Release 3; Management and Orchestration; Report on Os-Ma-Nfvo Reference Point -

Application and Service Management Use Cases and Recommendations. https://do

cboX.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA012v3.1.1-

GR-Os-Ma-Nfvo20refpoint-svcmgmtUCsl.pdf.

Etsi, N., 2019a. Etsi Gs Nfv-Ifa 010 V3.2.1 Network Functions Virtualisation (NFV);

Management and Orchestration; Functional Requirements Specification. https

://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/010/03.02.01_60/gs_NFV

-IFA010v030201p.pdf.

Etsi, N., 2019b. Etsi Gr Nfv-Ifa 028 V3.1.1 Network Functions Virtualisation (NFV)

Release 3; Management and Orchestration; Multiple Administrative Domain Aspect

http://refhub.elsevier.com/S1084-8045(21)00227-7/sref1
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref1
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref1
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref2
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref2
https://doi.org/10.23919/CNSM.2017.8255982
https://doi.org/10.23919/CNSM.2017.8255982
https://ieeexplore.ieee.org/document/8255982/
https://doi.org/10.1145/3397166.3415277
https://doi.org/10.1145/3397166.3415277
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref5
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref5
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref5
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref5
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref6
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref6
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref6
https://doi.org/10.1109/ICIN.2017.7899398
http://ieeexplore.ieee.org/document/7899398/
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref8
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref8
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref8
https://doi.org/10.1109/PDCAT.2010.16
http://ieeexplore.ieee.org/document/5704427/
http://ieeexplore.ieee.org/document/5704427/
https://doi.org/10.1109/NetSoft48620.2020.9165333
https://ieeexplore.ieee.org/document/9165333/
https://ieeexplore.ieee.org/document/9165333/
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref11
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref11
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref11
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref12
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref12
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref13
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref13
https://doi.org/10.1109/ICTON.2019.8840406
https://ieeexplore.ieee.org/document/8840406/
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.0101_60/gs_NFV-MAN001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.0101_60/gs_NFV-MAN001v010101p.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-IFA030v3.2.1-GS-MultiDomain20MANO-spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-IFA030v3.2.1-GS-MultiDomain20MANO-spec.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/03.0401_60/gs_NFV-IFA014v030401p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/03.0401_60/gs_NFV-IFA014v030401p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.04.01_60/gs_nfv003v010401p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/003/01.04.01_60/gs_nfv003v010401p.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA012v3.1.1-GR-Os-Ma-Nfvo20refpoint-svcmgmtUCsl.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA012v3.1.1-GR-Os-Ma-Nfvo20refpoint-svcmgmtUCsl.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-IFA012v3.1.1-GR-Os-Ma-Nfvo20refpoint-svcmgmtUCsl.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/010/03.02.01_60/gs_NFV-IFA010v030201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/010/03.02.01_60/gs_NFV-IFA010v030201p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/010/03.02.01_60/gs_NFV-IFA010v030201p.pdf

23

=

= = =

Interfaces Specification. https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/02

8/03.01.01_60/gr_NFV-IFA028v030101p.pdf.

Etsi, N., 2019c. ETSI GR NFV-REL 010 V3.1.1 Network Functions Virtualisation (NFV)

Release 3; Reliability; Report on NFV Resiliency for the Support of Network Slicing.

https://docboX.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-R

EL010v3.1.1 GRResiliency20forNetworkSlicingreport.pdf.

ETSI, N., 2020. ETSI GS NFV-SOL 003 V3.3.1 Network Functions Virtualisation (NFV)

Release 3;Protocols and Data Models; RESTful Protocols Specification for the Or-

Vnfm Reference Point. https://docboX.etsi.org/ISG/NFV/Open/Publications_pdf

/Specs-Reports/NFV-SOL003v3.3.1-GS-Or Vnfm20RESTfulprotocolsspec.pdf.

Fidge, C.J., 1988. Timestamps in message-passing systems that preserve the partial

ordering. In: Proc. 11th Austral. Comput. Sci. Conf. ACSC ‘88), pp. 56–66.

Forecast, G., 2019. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2017–2022, vol. 2017, p. 2022. Update.

Ghaznavi, M., Shahriar, N., Kamali, S., Ahmed, R., Boutaba, R., 2017. Distributed service

function chaining. IEEE J. Sel. Area. Commun. 35, 2479–2489.

Hnětynka, P., Plášil, F., 2006. Dynamic reconfiguration and access to services in

hierarchical component models. In: Gorton, I., Heineman, G.T., Crnkovíc, I.,

Schmidt, H.W., Stafford, J.A., Szyperski, C., Wallnau, K. (Eds.), Component-Based

Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 352–359.

https://doi.org/10.1007/11783565_27.

Hu, G., Li, Q., Ai, S., Chen, T., Duan, J., Wu, Y., 2020. A proactive autoscaling scheme

with latency guarantees for multi-tenant NFV cloud. Comput. Network. 181,

107552.

Israel, A., Sepúlveda, A., Reid, A., Vicens, F., Salguero, F., de Blas, G., Lavado, G.,

Shuttleworth, M., Harper, M., Marchetti, M., V R, A.S., et al., 2019. OSM Release

FIVE Technical Overview. https://osm.etsi.org/images/OSM-Whitepaper-TechConte

nt-ReleaseFIVE-FINAL.pdf.

Jia, Y., Wu, C., Li, Z., Le, F., Liu, A., 2018. Online scaling of NFV service chains across

geo-distributed datacenters. IEEE/ACM Trans. Netw. 26, 699–710.

Katsalis, K., Nikaein, N., Edmonds, A., 2016a. Multi-domain orchestration for NFV:

challenges and research directions. In: 2016 15th International Conference on

Ubiquitous Computing and Communications and 2016 International Symposium on

Cyberspace and Security (IUCC-CSS). IEEE, pp. 189–195. https://doi.org/10.1109/

IUCC-CSS.2016.034. http://ieeexplore.ieee.org/document/7828601/.

Katsalis, K., Nikaein, N., Edmonds, A., 2016b. Multi-domain orchestration for nfv:

challenges and research directions. In: 2016 15th International Conference on

Ubiquitous Computing and Communications and 2016 International Symposium on

Cyberspace and Security. IUCC-CSS), pp. 189–195. https://doi.org/10.1109/IUCC-

CSS.2016.034.
Kattepur, A., Georgantas, N., Issarny, V., 2013. QoS composition and analysis in

reconfigurable web services choreographies. In: 2013 IEEE 20th International

Conference on Web Services. IEEE, pp. 235–242. https://doi.org/10.1109/

ICWS.2013.40. http://ieeexplore.ieee.org/document/6649584/.

Kazhamiakin, R., Pistore, M., 2006. Choreography conformance analysis: asynchronous

communications and information alignment. In: Bravetti, M., Núñez, M.,

Zavattaro, G. (Eds.), Web Services and Formal Methods. Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 227–241. https://doi.org/10.1007/11841197_15.

Kim, S., Han, Y., Park, S., 2016. An energy-aware service function chaining and

reconfiguration algorithm in NFV. In: 2016 IEEE 1st International Workshops on

Foundations and Applications of Self* Systems (FAS*W). IEEE, pp. 54–59. https://

doi.org/10.1109/FAS-W.2016.24. http://ieeexplore.ieee.org/document/7789440/.

Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21, 558–565.

Leite, L.A.F., Ansaldi Oliva, G., Nogueira, G.M., Gerosa, M.A., Kon, F., Milojicic, D.S.,

2013. A systematic literature review of service choreography adaptation. Service

Oriented Computing and Applications 7, 199–216.

Li, G., Zhou, H., Feng, B., Li, G., 2018. Context-aware service function chaining and its cost-
effective orchestration in multi-domain networks. IEEE Access 6, 34976–34991.

Liu, J., Lu, W., Zhou, F., Lu, P., Zhu, Z., 2017. On dynamic service function chain

deployment and readjustment. IEEE Transactions on Network and Service

Management 14, 543–553.

Liu, Y., Zhang, H., Chang, D., Hu, H., 2020. GDM: a general distributed method for cross-

domain service function chain embedding. IEEE Transactions on Network and

Service Management 17, 1446–1459.
Malandrino, F., Chiasserini, C.F., Einziger, G., Scalosub, G., 2019. Reducing service

deployment cost through VNF sharing. IEEE/ACM Trans. Netw. 27, 2363–2376.

Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., Boutaba, R., 2016.

Network function virtualization: state-of-the-art and research challenges. IEEE

Communications Surveys & Tutorials 18, 236–262.

Mills, D., 1991. Internet time synchronization: the network time protocol. IEEE Trans.

Commun. 39, 1482–1493.

Moo-Mena, F., Drira, K., 2007. Reconfiguration of web services architectures: a model-

based approach. In: 2007 IEEE Symposium on Computers and Communications.

IEEE, pp. 357–362. https://doi.org/10.1109/ISCC.2007.4381628 http://ieeexplore.

ieee.org/document/4381628/.

Nadjaran Toosi, A., Son, J., Chi, Q., Buyya, R., 2019. ElasticSFC: autoscaling techniques

for elastic service function chaining in network functions virtualization-based

clouds. J. Syst. Software 152, 108–119.

Nanda, M.G., Chandra, S., Sarkar, V., 2004. Decentralizing execution of composite web

services. ACM SIGPLAN Not. 39, 170–187.

Pham, T.-M., Chu, H.-N., 2019. Multi-provider and multi-domain resource orchestration

in network functions virtualization. IEEE Access 7, 86920–86931.

Rahman, S., Ahmed, T., Huynh, M., Tornatore, M., Mukherjee, B., 2020. AutoScaling

network service chains using machine learning and negotiation game. IEEE

Transactions on Network and Service Management 17, 1322–1336.
Rosa, R.V., Silva Santos, M.A., Rothenberg, C.E., 2015. MD2-NFV: the casefor multi-

domaindistributed networkfunctions virtualization. In: 2015

InternationalConferenceandWorkshopsonNetworkedSystems (NetSys). IEEE,

pp. 1–5. https://doi.org/10.1109/NetSys.2015.7089059. https://ieeexplore.ieee.or

g/document/7089059/.

Salaün, G., Roohi, N., 2009. On Realizability and Dynamic Reconfiguration of

Choreographies. http://citeseerx.ist.psu.edu/viewdoc/download;jsessio

nid E5FDDFC44F6CEE355820E8A3CD8E1979?doi 10.1.1182.2156&rep rep1

&type pdf.

Saraiva de Sousa, N.F., Lachos Perez, D.A., Rosa, R.V., Santos, M.A.S., Esteve

Rothenberg, C., 2019. Network service orchestration: a survey. Comput. Commun.

142–143, 69–94.

Sarrigiannis, I., Ramantas, K., Kartsakli, E., Mekikis, P.-V., Antonopoulos, A.,
Verikoukis, C., 2020. Online VNF lifecycle management in an MEC-enabled 5G IoT

architecture. IEEE Internet of Things Journal 7, 4183–4194.

Shin, M.-K., Choi, Y., Kwak, H.H., Pack, S., Kang, M., Choi, J.-Y., 2015. Verification for

NFV-enabled network services. In: 2015 International Conference on Information

and Communication Technology Convergence (ICTC). IEEE, pp. 810–815. https://

doi.org/10.1109/ICTC.2015.7354672. http://ieeexplore.ieee.org/document

/7354672/.

Subramanya, T., Riggio, R., 2021. Centralized and federated learning for predictive VNF

autoscaling in multi-domain 5G networks and beyond. IEEE Transactions on

Network and Service Management 18, 63–78.

Sun, G., Li, Y., Liao, D., Chang, V., 2018. Service function chain orchestration across

multiple domains: a full mesh aggregation approach. IEEE Transactions on Network

and Service Management 15, 1175–1191.

Taleb, T., Afolabi, I., Samdanis, K., Yousaf, F.Z., 2019. On multi-domain network slicing

orchestration architecture and federated resource control. IEEE Network 33,

242–252.

Tong, R., Xu, S., Hu, B., Zhao, J., Jin, L., Guo, S., Li, W., 2020. VNF dynamic scaling and

deployment algorithm based on traffic prediction. In: 2020 International Wireless

Communications and Mobile Computing (IWCMC). IEEE, pp. 789–794. https://doi.

org/10.1109/IWCMC48107.2020.9148479. https://ieeexplore.ieee.org/document

/9148479/.

Vaquero, L.M., Cuadrado, F., Elkhatib, Y., Bernal-Bernabe, J., Srirama, S.N., Zhani, M.F.,

2019. Research challenges in nextgen service orchestration. Future Generat.

Comput. Syst. 90, 20–38.

Wang, G., Feng, G., Quek, T.Q.S., Qin, S., 2018. On fast slice reconfiguration. In: 2018

IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–7. https://doi.

org/10.1109/GLOCOM.2018.8648117. https://ieeexplore.ieee.org/document

/8648117/.

Xu, R., 2020. Proactive VNF scaling with heterogeneous cloud resources: fusing long

short-term memory prediction and cooperative allocation. Math. Probl Eng. 2020,

1–10.

Yang, B., Xu, Z., Chai, W.K., Liang, W., Tuncer, D., Galis, A., Pavlou, G., 2018. Algorithms for

fault-tolerant placement of stateful virtualized network functions. In: 2018 IEEE

International Conference on Communications (ICC). IEEE, pp. 1–7. https://doi.org/

10.1109/ICC.2018.8422444. https://ieeexplore.ieee.org/document/8422444/.

Yangui, S., Glitho, R.H., Wette, C., 2016. Approaches to end-user applications portability
in the cloud: a survey. IEEE Commun. Mag. 54, 138–145.

Yi, B., Wang, X., Li, K., Das, S.k., Huang, M., 2018. A comprehensive survey of network

function virtualization. Comput. Network. 133, 212–262.

Yousaf, F.Z., Sciancalepore, V., Liebsch, M., Costa-Perez, X., 2019. MANOaaS: a multi-
tenant NFV MANO for 5G network slices. IEEE Commun. Mag. 57, 103–109.

Josue Castañeda Cisneros received a B.S degree in computer
engineering from the Universidad Auton’oma de Baja Califor-

nia, an M.S. degree in computer science from the Instituto

Nacional de Astrofísica, Óptica y Electrónica. He is currently a

Ph.D. student working with Professors Khalil Drira, Sami

Yangui, and Saul Pomares at the Laboratory for Analysis and

Architecture of Systems (LAAS) in Toulouse, France. His

research at LAAS focuses on Distributed Multi-Domain

Orchestration under Network Function Virtualization. His

topics of interest include coordination of orchestrators in both

open and close federations, respectably.

http://citeseerx.ist.psu.edu/viewdoc/download%3Bjsessionid%3DE5FDDFC44F6CEE355820E8A3CD8E1979?doi=10.1.1182.2156&%3Brep=rep1&%3Btype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Bjsessionid%3DE5FDDFC44F6CEE355820E8A3CD8E1979?doi=10.1.1182.2156&%3Brep=rep1&%3Btype=pdf
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/028/03.01.01_60/gr_NFV-IFA028v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-IFA/001_099/028/03.01.01_60/gr_NFV-IFA028v030101p.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-REL010v3.1.1%20GRResiliency20forNetworkSlicingreport.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-REL010v3.1.1%20GRResiliency20forNetworkSlicingreport.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL003v3.3.1-GS-Or%20Vnfm20RESTfulprotocolsspec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SOL003v3.3.1-GS-Or%20Vnfm20RESTfulprotocolsspec.pdf
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref24
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref24
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref25
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref25
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref26
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref26
https://doi.org/10.1007/11783565/_27
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref28
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref28
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref28
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf
https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseFIVE-FINAL.pdf
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref30
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref30
https://doi.org/10.1109/IUCC-CSS.2016.034
https://doi.org/10.1109/IUCC-CSS.2016.034
http://ieeexplore.ieee.org/document/7828601/
https://doi.org/10.1109/IUCC-CSS.2016.034
https://doi.org/10.1109/IUCC-CSS.2016.034
https://doi.org/10.1109/ICWS.2013.40
https://doi.org/10.1109/ICWS.2013.40
http://ieeexplore.ieee.org/document/6649584/
https://doi.org/10.1007/11841197/_15
https://doi.org/10.1109/FAS-W.2016.24
https://doi.org/10.1109/FAS-W.2016.24
http://ieeexplore.ieee.org/document/7789440/
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref36
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref36
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref37
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref37
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref37
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref38
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref38
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref38
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref39
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref39
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref39
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref40
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref40
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref40
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref41
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref41
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref42
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref42
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref42
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref43
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref43
https://doi.org/10.1109/ISCC.2007.4381628
http://ieeexplore/
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref45
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref45
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref45
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref46
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref46
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref47
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref47
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref48
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref48
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref48
https://doi.org/10.1109/NetSys.2015.7089059
https://ieeexplore.ieee.org/document/7089059/
https://ieeexplore.ieee.org/document/7089059/
http://citeseerx.ist.psu.edu/viewdoc/download%3Bjsessionid%3DE5FDDFC44F6CEE355820E8A3CD8E1979?doi=10.1.1182.2156&%3Brep=rep1&%3Btype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Bjsessionid%3DE5FDDFC44F6CEE355820E8A3CD8E1979?doi=10.1.1182.2156&%3Brep=rep1&%3Btype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Bjsessionid%3DE5FDDFC44F6CEE355820E8A3CD8E1979?doi=10.1.1182.2156&%3Brep=rep1&%3Btype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download%3Bjsessionid%3DE5FDDFC44F6CEE355820E8A3CD8E1979?doi=10.1.1182.2156&%3Brep=rep1&%3Btype=pdf
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref51
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref51
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref51
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref52
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref52
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref52
https://doi.org/10.1109/ICTC.2015.7354672
https://doi.org/10.1109/ICTC.2015.7354672
http://ieeexplore.ieee.org/document/7354672/
http://ieeexplore.ieee.org/document/7354672/
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref54
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref54
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref54
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref55
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref55
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref55
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref56
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref56
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref56
https://doi.org/10.1109/IWCMC48107.2020.9148479
https://doi.org/10.1109/IWCMC48107.2020.9148479
https://ieeexplore.ieee.org/document/9148479/
https://ieeexplore.ieee.org/document/9148479/
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref58
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref58
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref58
https://doi.org/10.1109/GLOCOM.2018.8648117
https://doi.org/10.1109/GLOCOM.2018.8648117
https://ieeexplore.ieee.org/document/8648117/
https://ieeexplore.ieee.org/document/8648117/
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref60
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref60
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref60
https://doi.org/10.1109/ICC.2018.8422444
https://doi.org/10.1109/ICC.2018.8422444
https://ieeexplore.ieee.org/document/8422444/
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref62
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref62
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref63
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref63
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref64
http://refhub.elsevier.com/S1084-8045(21)00227-7/sref64

24

Saul E. Pomares Hernández received the Ph.D. degree in

computer science and telecommunications from the Institute

National Polytechnique de Toulouse, France. Since 1998, he

has been researching in the field of distributed systems and

partial order algorithms. He is currently a Professor with the

computer science department, Instituto Nacional de Astrofí-

sica, Óptica y Electrónica (INAOE), Puebla, Mexico. He is also

an Honorary Researcher (Chercheur Affilié) with the Labora-

tory for Analysis and Architecture of Systems, CNRS, Toulouse,

France.

Lil María Rodríguez Henríquez received the Ph.D. degree

from the Centro de Investigación y Estudios Avanzados del IPN,

in 2015. She is currently a Research Fellow with the Consejo

Nacional de Ciencia y Tecnología (CONACYT) commissioned

to the Instituto Nacional de Astrofísica, Óptica y Electrónica

(INAOE). Her recent work involves partial order algorithms.

Her research interests include cryptography and distributed

systems.

Sami Yangui is an Associate Professor with Institut National

des Sciences Appliquées (INSA), Toulouse, France. He is

member of the CNRS LAAS research team. His research in-

terests include distributed systems and architectures, service-

oriented computing and Internet of Things. He is working on

different aspects related to these topics, such as cloud/fog

computing, network functions virtualization and content de-

livery networks. He is involved in different European and In-

ternational projects, as well as, standardization efforts. He

published several scientific papers in high ranked conferences

and journals in his field of research. He is IEEE Member and he

served on many program and organization committees of In-

ternational conferences and workshops, as well as, guest editor

in several journals such as Future Generation Computer Systems journal edited by Elsevier

and IEEE Access.

Khalil Drira received the Master degree in computer science

from INP, Toulouse, in 1988, and the Ph.D. and HDR degrees in

computer science from Universite Paul Sabatier Toulouse in

1992 and 2005, respectively. Since 1992, he assumes a full-

time research position in CNRS, France. His research interests

include cooperative network IoT services, platforms and ap-

plications. His research activity addresses topics in this field

focusing on Software architectures and communication ser-

vices. He continues to be involved in national and international

conferences and journals. He serves as a member of the pro-

gram journals in the fields of software architecture as well as

IoT and Internet networks. He has also been an Editor of

several proceedings, books, and journals.

Julio César Pérez-Sansalvador received the B.S. degree in

Computer Science from the Benemérita Universidad Autónoma

de Puebla, Mexico, in 2005, the M.S. degree in computer sci-

ence from the Instituto Nacional de Astrofísica, Óptica y Elec-

trónica, Puebla, in 2007, and the Ph.D. degree in applied

mathematics from Manchester University, U.K., in 2016. He is

currently a CONACYT Research Fellow with the Instituto

Nacional de Astrofísica, Óptica y Electrónica (INAOE), Puebla,
Mexico.

	1. Introduction
	2. Preliminaries
	3. Related work
	4. The NFV dependent reconfiguration problem
	5. System model
	6. Modeling dependent reconfigurations in distributed multi- domain orchestration
	7. Consistency management in dependent reconfigurations
	8. Implementation and validation
	9. Conclusion
	Author statement
	Declaration of competing interest
	Acknowledgments
	A. Appendix.
	References

