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We consider polynomials of a few linear forms and show how exploit this type of sparsity for optimization on some particular domains like the Euclidean sphere or a polytope. Moreover, a simple procedure allows to detect this form of sparsity and also allows to provide an approximation of any polynomial by such sparse polynomials.

INTRODUCTION

In this paper we discuss the optimization problems P : min{h(x) : x ∈ Ω} , where the polynomial 1 h ∈ R[x 1 , . . . , x n ] is a defined in terms of a few linear forms, that is,

x → h(x) = f (ℓ T x) , x ∈ R n ,
(1) for some polynomial f ∈ R[X 1 , . . . , X m ] and some real matrix ℓ ∈ R n×m . We are also interested in approximating an arbitrary polynomial by polynomials in the form (1).

Motivation.

When m ≪ n, formulation (1) exhibits some sort of sparsity as only a few linear forms are involved in h. Indeed such a sparsity has been explored in several contexts like e.g. statistical learning in [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF], [START_REF] Camastra | Data dimensionality estimation methods: a survey: Pattern Recognition[END_REF], to learn a low-dimensional manifold (where h is called a low-rank function), in [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] for contracting response surfaces on a lowdimensional subspace, in [START_REF] Baldoni | How to integrate a polynomial over a simplex[END_REF] for multivariate integration on the simplex, and in [START_REF] Barvinok | Integration and optimization of multivariate polynomials by restriction onto a random subspace Found[END_REF] for integration with respect to the Gaussian measure. Therefore one also expects that it can be exploited for an efficient computation of the (local or global) minimum on Ω. But notice that in general Ω is not expressed in terms of the ℓ j 's so that exploiting this sparsity to optimize h on Ω may not be easy. For the sphere S n-1 [START_REF] Barvinok | Integration and optimization of multivariate polynomials by restriction onto a random subspace Found[END_REF] has shown that the maximum (but not the minimum) of certain sparse homogeneous polynomials can be approximated well by a properly scaled maximum on the unit sphere of a random low-dimensional subspace. This class of homogeneous polynomials contains some polynomials of the form (1). Notice also that the sparsity (1) (when m ≪ n) is different from the various sparsity patterns exploited for polynomial optimization in [START_REF] Ahmadi | DSOS and SDSOS optimisation: More tractable Alternatives to Sum of Squares and Semidefinite Optimization[END_REF], [START_REF] Lasserre | Convergent SDP-Relaxations in Polynomial Optimization with Sparsity[END_REF], Wang et al. (2021a), andWang et al. (2021b).

If h is not directly available in sparse form (1), its detection is quite important in view of the potential resulting ⋆ Research sponsored by the Artificial and Natural Intelligence Institute (ANITI) of Toulouse, and ANR-NuSCAP-20-CE48-0014 1 Most of what follows also applies to continuously differentiable functions benefits for optimization. It turns out that the detection issue has been already addressed in engineering and data science, in the more general context of approximating an arbitrary continuous differentiable function h(ℓy + s v) where the columns of ℓ ∈ R n×m , (resp. s ∈ R n×(n-m) ) are eigenvectors of E µ [∇h∇h T ] associated with the m largest (resp. the remaining n-m) eigenvalues, and µ is an appropriate probability measure. In [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] the authors discuss methods to obtain and evaluate an approximation based on the function G(y) := E µ [ h|y ]; see below. (In [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] h in ( 1) is called a zinvariant function.) Notice that if even if h is a polynomial, the resulting approximation G is not. Contribution. Our contribution is threefold:

(i) We show that the sparsity in (1) can be exploited in optimization on the Euclidean sphere S n-1 and arbitrary polytopes. Solving the original problem reduces to solving an explicit optimization problem in R m , simply related and similar to P, but with a drastic reduction in difficulty. We thus extend Lasserre (2021) who considered the case Ω = S n-1 and showed that solving P is equivalent to minimizing the m-variables polynomial

X → f (L 1 • X 1 , . . . , L m • X m ) on the Euclidean ball E m , (where L i is the i-th column of ℓ T ℓ).
(ii) A second contribution is with respect to detection of a sparsity (1). When h is a polynomial we provide two procedures. We first choose µ to be the uniform distribution on E n . Then we build a matrix H k H T k where the columns of H k are just the gradient of h evaluated at points (x(1), . . . , x(k)) ⊂ E n (randomly generated according to µ), until the condition rank(H k H

T k ) = rank(H k-1 H T k-1
) is satisfied, say for k = m + 1. Then a sparsity as in (1) for some explicit ℓ ∈ R n×m , is detected with probability 1. A second possibility that gets rid of "with prob. 1" is to follow [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] and perform the SVD decomposition of R := E µ [∇h ∇h T ]. But in pour context, as h is a polynomial and integration of polynomials on E n is easy, R can be computed exactly. Then ℓ in (1) is obtained from eigenvectors associated with the m non-zero eigenvalues of R.

(iii) A third contribution is with respect to detection of an approximate sparsity and is directly inspired by the active set method, as described in e.g. [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF]. Write h in the form h -m) , where the columns of ℓ, s are the eigenvectors of R (with norm 1), and where the nm eigenvalues associated with s are much smaller than the m eigenvalues associated with ℓ. In [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] the authors propose to approximate h with the function G(ℓ T x) defined by:

(x) = h(ℓ y + s z) , ℓ ∈ R n×m s ∈ R n×(n
G(y) := E µ [ h | y] = h(ℓy + s z ) π(dz|y) , (2) 
where π(dz|y) is the conditional probability on z given y.

They propose to evaluate the integral (2) by Monte-Carlo sampling on z. But this sample depends on y and therefore a sample has to be generated for each y.

Our third contribution and novelty is to exploit that if h is a polynomial and µ is the uniform distribution on E n , then after the simple scaling v → z/ 1y 2 , π(dv|y) in ( 2) is the uniform distribution on E n-m . Therefore as the integrand is a polynomial in v of fixed degree, G(y) is a polynomial in the m + 1 variables y and 1y 2 . Its coefficients can be obtained exactly, e.g. by direct integration term by term after of the integrand in the monomial basis. Alternatively, G can be expressed directly in terms of h via a cubature formula on E n-m . Importantly, the cubature does not depend on y. Then for optimization on say

S n-1 or E n , instead of minimizing h, one proposes to minimize G(X) = G(ℓ T x) on E m . This in turn is equivalent to minimizing a related function f (X, |Y |) on (X, Y ) ∈ S m for some polynomial f ∈ R[X 1 , . . . X m , Y ].

EXPLOITING SPARSITY FOR OPTIMIZATION

Notation and definitions

Let C 1 (R n ) be the space of continuously differentiable functions on R n . For any two vector x, y ∈ R n denote by x • y their usual scalar product. Given a vector space V ⊂ R n denote by V ⊥ its orthogonal complement, i.e.,

V ⊥ = { y ∈ R n : x • y = 0 , ∀x ∈ V }.
The following result is relatively straightforward and its proof is omitted. Proposition 1. Let f : R n ×R m :→ R, (x, y) → f (x, y), be continuously differentiable, and assume that ∇ y f (x, y) = 0 for all (x, y). Then with y 0 ∈ R m fixed, arbitrary:

f (x, y) = f (x, y 0 ) =: g(x) , ∀(x, y) ∈ R n × R m , ( 3 
) and g : R n → R is continuously differentiable.

Exploiting sparsity

Let h ∈ R[x] = R[x 1 , . . . , x n ] and let ℓ := [ℓ 1 , ℓ 2 , . . . , ℓ m ] ∈ R n×m , for some m linearly independent column vectors ℓ 1 , . . . ℓ m ∈ R n . Let x • y denote the usual scalar product of x, y ∈ R n . Theorem 2. Let h ∈ C 1 (R n ). Then the two statements below are equivalent: (a) There exists f ∈ C 1 (R m ) and (ℓ i ) i=1,...,m ⊂ R n such that h(x) = f (ℓ T x) = f (ℓ 1 • x, . . . , ℓ m • x) for all x ∈ R n . (b) There exists an m-dimensional vector space V ⊂ R n such that ∇h(x) ∈ V for all x ∈ R n . Proof. (a) ⇒ (b) is straightforward as ∇h(x) = ℓ ∇f (ℓ T x) = m i=1 ℓ i ∂f (X) ∂X i , ∀x ∈ R n .
where m) , and such that

X i = ℓ i • x, i = 1, . . . , m. Equivalently, ∇h(x) ∈ V for all x ∈ R n , where V := Span(ℓ 1 , . . . , ℓ m ) ⊂ R n , which is clearly statement (b). (b) ⇒ (a). Let V ⊂ R n have dimension m < n and let (ℓ i ) i=1,...,m be a basis of V . Similarly, let (s j ) j=1,...n-m ⊂ R n be a basis of V ⊥ and write x = ℓ u + s v, with matrices ℓ = [ℓ 1 , . . . ℓ m ] ∈ R n×m and s = [s 1 , . . . s n-m ] ∈ R n×(n-
s T i ℓ = 0 for all i = 1, . . . , n -m. Notice that u = (ℓ T ℓ) -1 ℓ T x ; v = (s T s) -1 s T x . (4) Hence write h(x) as h(ℓ u+ s v) =: φ(u , v) = φ((ℓ T ℓ) -1 ℓ T x , (s T s) -1 s T x ), for some function φ : R n → R. Then φ ∈ C 1 (R n ) follows from h ∈ C 1 (R n ).
Next, by the chain rule of differentiation:

∇h(x) = ℓ (ℓ T ℓ) -1 ∇ u φ(u, v) + s (s T s) -1 ∇ v φ(u, v) . Observe that s T • ∇h(x) = 0 for all x ∈ R n and all i = 1, . . . , n -m, because ∇h(x) ∈ V for all x ∈ R n . Hence 0 = s T • ∇h(x) = ∇ v φ(u, v) , ∀x ∈ R n
, and therefore ∇ v φ(u, v) = 0, for all v ∈ R n . By Proposition 1 applied to φ, φ(u, v) = φ(u, v 0 ) for all u, v, where where v 0 is arbitrary. Letting v 0 := 0 yields

h(x) = φ(u, v) = φ(u, 0) = φ((ℓ T ℓ) -1 ℓ T x, 0) = f ( l1 • x, . . . , lm • x) ,
where li ∈ R n is the i-th row of (ℓ T ℓ) -1 ℓ T , i = 1, . . . , m, and f (X 1 , . . . , X m ) := φ(X 1 , . . . , X m , 0) for all X ∈ R m .

Detection of the sparse form

In this section we suppose that h ∈ R[x] is a sparse polynomial but not given in its sparse form x → f (ℓ T x) for some real matrix ℓ ∈ R n×m . In view of Theorem 2, it suffices to determine a basis of the m-dimensional subspace V ⊂ R n to which ∇h belongs.

We consider a methodology inspired from Constantine et al. [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] but we here exploit that h is a polynomial. Introduce a probability measure µ on a certain domain, e.g. the uniform distribution on E n : (i) A first possibility consists in computing the n × n real symmetric matrix M µ := E µ [ ∇h(x) ∇h(x) T ] , and compute its SVD decomposition. In [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] the function h is not a polynomial and therefore E µ must be approximated. Moreover h is not necessarily sparse and the authors are interested in approximating h in the subspace V generated by the eigenvectors associated with the largest eigenvalues of M µ . In our setting, M µ can be computed exactly as one knows how to integrate exactly a polynomial on E n , and V is spanned by the eigenvectors associated with the zero-eigenvalues of M µ .

(ii) Another possibility is to consider a sample of (m + 1) i.i.d. vectors (∇h(x(i)) i≤m+1 ⊂ E n randomly generated according to µ, and construct the empirical matrix 5), and let V := span{∇h(x) : x ∈ E n }. Then dim(V ) = m if and only, with probability 1:

H m+1 := [∇h(x(1)), • • • , ∇h(x(m + 1))] ∈ R n×(m+1) (5) until one observes that rank(H T ℓ H ℓ ) = m, ℓ = m, m + 1. Theorem 3. Let H k := [∇h(x(1)), • • • , ∇h(x(k))] ∈ R n×k be as in (
rank(H T ℓ H ℓ ) = m , ℓ = m, m + 1 . (6) 
Proof. The Only if part is straightforward. Indeed in view of the definition of V , suppose that dim(V ) = m, and let V ⊥ denote its direct complement (hence of dimension nm). Then u T ∇h(x(i)) = 0 for all u ∈ V ⊥ and all i = 1, . . . , m, which implies rank(

H T ℓ H ℓ ) ≤ m, ℓ = m, m + 1. Next, observe that (H T m H m ) i,j = ∇h(x(i)) T ∇h(x(j)) , i, j ≤ m , and therefore det(H T m H m ) = p m (x(1), x(2), . . . , x(m)) , (7) for some polynomial p m ∈ R[u 1 , . . . , u m ]. As dim(V ) = m then necessarily p m = 0. Next, let µ ⊗m be the prod- uct measure µ ⊗ µ • • • ⊗ µ m times
on (E n ) m . As p m = 0 then µ ⊗m ({u : p m (u 1 , . . . , u m ) = 0}) = 0, or equivalently, with probability 1, p m (u 1 , . . . , u m ) = 0, i.e., det(H T m H m ) = 0, and so rank(H T m H m ) = m. Next consider the case ℓ = m + 1. As dim(V ) = m then necessarily the family (∇h(x(i))) i≤m+1 is not linearly independent and therefore rank(H T m+1 H m+1 ) < m + 1, which from what precedes, yields rank(H T m+1 H m+1 ) = m with probability 1.

If part. As above, let det(H T k H k ) =: p k (x(1), x(2), . . . , x(k)) , k ∈ N , (8) for some polynomial p k ∈ R[u 1 , . . . , u k ]. The condition "with probability 1, rank(H T ℓ H ℓ ) = m , ℓ = m, m+1 " , is equivalent to "with probability 1: det(H T m H m ) > 0 , and det(H T m+1 H m+1 ) = 0 ,
" which in turn is equivalent to p m = 0 and p m+1 = 0 , (9) with p m as in (8). The condition p m+1 = 0, i.e., det(H m+1 (u 1 , . . . , u m+1 ) T H m+1 (u 1 , . . . , u m+1 )) = 0 , for all u := (u 1 , . . . u m+1 ) ∈ (E n ) m+1 , implies that there exists a vector 0 = q u ∈ R m+1 such that

H m+1 (u 1 , . . . , u m+1 ) q u = 0 , ∀u ∈ (E n ) m+1 .
That is,

m+1 i=1 q u i ∇h(u i ) = 0 , ∀u ∈ (E n ) m+1 .
Next, let S := {u m+1 ∈ E n : q u m+1 = 0} and Θ = (E n ) m × S, so that µ ⊗(m+1) (Θ) = µ(S). Hence m i=1 q u i ∇h(u i ) = 0 , for all u ∈ Θ .

Next, from det(H m (u 1 , . . . , u m ) T H m (u 1 , . . . , u m )) > 0, we also deduce that

m i=1 q u i ∇h(u i ) = 0 , for a.a. u ∈ (E n ) m+1 . ( 10 
)
This yields 0 = µ ⊗(m+1) (Θ) = µ(S). Therefore, letting u(x

) := (u 1 , . . . , u m , x) ∈ (E n ) m × (E n \ S), ∇h(x) = 1 q u(x) 1 m i=1 q u(x) i ∇h(u i ) ,
for all x ∈ E n \ S, and all (u 1 , . . . , u m ) ∈ (E n ) m . Hence with (u 2 , . . . , u m+1 ) ∈ (E n ) m , fixed, arbitrary: ∇h(x) ∈ span(∇h(u 1 ), . . . , ∇h(u m )) =: V , (11) for all x ∈ E n \ S, and V is an m-dimensional vector space. To show that ( 11) holds for all x ∈ R n , observe that

v T ∇h(x) = 0 , ∀x ∈ E n \ S , ∀v ∈ V ⊥ .
(12) Hence for fixed v ∈ V ⊥ , the polynomial x → v T ∇h(x) vanishes on E n \ S with µ(S) = 0, which implies that v T ∇h(x) vanishes on the whole E n and hence on the whole R n . As this is true for an arbitrary v ∈ V ⊥ , we obtain that ∇h(x) ∈ V for all x ∈ R n .

In practice, Theorem 3 is used as follows:

• Samples k points (x(i)) i≤k according to λ on [0, 1] n . • Do the SVD decomposition of the real symmetric matrices H T k-1 H k-1 . and H T k H k . • If rank(H T k H k ) = rank(H T k-1 H k-1 ) then set k := k + 1 and repeat. • If rank(H T k H k ) = rank(H T k-1 H k-1
) then stop. Set V := span{∇h(x(1), . . . , ∇h(x(k -1))}.

Some applications in Optimization

Optimization on the Euclidean unit sphere A first application was developed in [START_REF] Lasserre | Optimization on the Euclidean unit sphere[END_REF] for optimization on the Euclidean unit sphere S n-1 . Namely, let h, f and ℓ be as in Theorem 2(a). Then it was shown in that

ρ = min x { h(x) : x ∈ S n-1 } (13) = min y { f (L 1 • y 1 , . . . , L m • y m ) : y ∈ E m } , (14) 
with L i is the ith-row of the matrix (ℓ T ℓ) 1/2 , i = 1, . . . , m.

In fact all points x * ∈ S n-1 that satisfy the standard second-order necessary conditions of optimality for problem ( 13) are in one-to-one correspondence with the points y * ∈ E m that satisfy the standard second-order necessary conditions of optimality for problem (14).

Hence in this case one has replaced optimization of the n-variate polynomial h on the non convex set S n-1 by optimization of the m-variate polynomial f of same degree on the (convex) unit Euclidean ball. If m ≪ n then it yields drastic computational savings.

Optimization on a polytope Next, let Ω = { x ∈ R n + : Ax = b } for some real matrix A ∈ R s×n , and consider the optimization problem:

ρ = min x { h(x) : x ∈ Ω } . ( 15 
)
Theorem 4. Let h and f be as in Theorem 2(a) with ℓ ∈ R n×m , and let (λ i , u i ) i∈I be a set of generators of the polyhedral convex cone

C := {(λ, u) ∈ R s × R m : A T λ ≥ ℓ u } . (16) Then with ρ as in (15) ρ = min X ∈ R m { f (X) : u i • X ≤ λ i • b , ∀ i ∈ I } (17)
Proof. Let X be fixed. By Farkas Lemma,

∅ = {x : ℓ T x = X ; x ∈ Ω} ⇔ u • X ≤ λ • b , for all (λ, u) ∈ C, which in turn is equivalent to u i • X ≤ λ i • b for all (λ i , u i ) i∈I . Then observe that P : ρ = min x { h(x) : x ∈ Ω } = min x,X { f (X) : X = ℓ T x ; x ∈ Ω } (18) = min X { f (X) : u i • X ≤ λ i • b , ∀ i ∈ I } .
Notice that one has replaced an n-dimensional optimization problem on the polyhedron Ω ⊂ R n by an m-dimensional optimization problem on the polyhedron

Ω m := {X ∈ R m : u i • X ≤ λ i • b , i ∈ I } ⊂ R m .
Of course this transformation requires to compute as a prerequisite step, all generators of the convex cone C in ( 16).

If one wants to avoid this, one possibility is to proceed as follows:

• Start with a set I 0 := {(λ 0 , u 0 )} for some (λ 0 , u 0 ) ∈ C, and set k = 0.

• Step k. Solve P k : τ k = min X {f (X) : u i • X ≤ λ i • b , i ∈ I k } , to obtain X * k ∈ R m . Next, solve the linear program τ = min λ + ,λ -,u + ,u - {(λ + -λ -) • b -(u + -u -) • X * k : ((λ + -λ -), (u + -u -)) ∈ C ; t λ + t + λ - t + j (u + j + u - j ) = 1 } .
If τ = 0 then stop. Otherwise set I k+1 := I k ∪ {(λ * , u * )} for an optimal solution (λ + *λ - * , u + *u - * ), set k := k + 1 and go to step k.

With this strategy one has to solve a sequence of optimization problems (P k ) k∈N with same criterion f , but on tighter and tighter outer approximations of the convex polyhedron {X ∈ R m : u i • X ≤ λ i • b, , i ∈ I}. So the overall complexity of this algorithm is governed by the computational complexity of problem P k .

For simple sets Ω like the canonical simplex or the unit box, the cone C has a simple expression.

On the canonical simplex

Ω = {x ∈ R n + : e • x = 1}. C = {(λ, u) : λ e ≥ ℓ u}. On the Box Ω = [-1, 1] n . C = {(λ + , λ -≥ 0, u) : λ + - λ -= ℓ u } and so (λ + + λ -) • e = ℓu 1 .

APPROXIMATE SPARSITY

In this section h ∈ R[x] and we now assume that h is not exactly in the form f (ℓ T x) for some ℓ ∈ R n×m . Let µ n be the uniform distribution on E n and let -m) is the matrix eigenvectors of M(µ n ) associated with the first m (nonnegative) eigenvalues λ 1 , . . . , λ m (resp. the remaining nm eigenvalues λ m+1 , . . . , λ n ) arranged in decreasing order and which also form the diagonal elements of the diagonal matrices Λ 1 and Λ 2 , respectively. The vectors ℓ j , s j form an orthonormal basis. Therefore if one writes x = ℓ y + s z with y ∈ R m and z ∈ R n-m , then x 2 = y 2 + z 2 , and so the support of the marginal π y of µ n is E m , with density (w.r.t. Lebesgue) the pushforward of µ n by its projection on E m . The conditional π(dz|y) is the uniform probability distribution on the ball E n-m (y) := {z : z 2 ≤ 1y 2 }. Proceeding as in [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF], introduce the function f : R m → R, defined by

M(µ) := E µn [ ∇h(x) T ∇h(x) ] = [ℓ, s] Λ 1 0 0 Λ 2 [ℓ, s] T where now ℓ = [ℓ 1 , . . . , ℓ m ] ∈ R n×m (resp. s = [s 1 , . . . , s n-m ] ∈ R n×(n
f (y) := E[h|y] (19) = En-m(y) h(ℓ y + s z) π(dz|y) , ∀y ∈ E m .
Then the idea promoted in [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] for some applications, is to approximate h on E n with the function ĥ(x) := f (ℓ T x). The rationale being: Theorem 5. ((Constantine et al., 2014, Theorem 3.1)) With µ n being the uniform probability distribution on E n , and ĥ(x) = f (ℓ T x), with f as in ( 19),

E µn [ (h -ĥ) 2 ] ≤ C (λ m+1 + . . . , +λ n ) . (20 
) where the constant C does not depend on h.

So in view of (20), if the remaining eigenvalues λ m+1 , . . . , λ n are small then ĥ provides a good approximation of h in L 2 (E n ).

Exact computation of the approximand f

Observe that π(dz|y) = dz/C n-m (1y 2 ) (n-m)/2 on E n-m (y), for a constant C n-m . Therefore by doing the change of variable v := z/ 1y 2 ∈ E n-m , and letting τ (y) := 1y 2 , (19) reads:

E[h|y] = 1 C n-m En-m h(ℓ y + τ (y) 1/2 s v ) dv , = En-m h(ℓ y + τ (y) 1/2 s v ) dµ n-m (v) , (21) 
for all y ∈ E m . Observe that the integrand v → h(ℓ y + τ (y) 1/2 s v) is a polynomial of fixed degree, say d, in v. Therefore it can be integrated exactly on E n-m . Equivalently one can also use a degree-d cubature rule for Lebesgue measure on E n-m to obtain:

f (y) = r j=1 θ j h(ℓ y + τ (y) 1/2 s v j ) , (22) 
for some positive weights (θ j ) and cubature points (v j ) ⊂ E n-m . Importantly, and in contrast to the function G(y) in (Constantine et al., 2014, (3.10)), the cubature points (v j ) do not depend on y and so can be computed once and for ℓ T ℓ = I m . Hence x ∈ E n . Moreover ℓ T x = ℓ T ℓ X = X and therefore by ( 23)-( 24), ĥ(ℓ T x) = f (X, Y ) = f (X, |Y |), which proves that τ ≤ ρ + . The proof when ρ = ρ -being similar is omitted.

Of course the rationale for solving Q instead of P is based on Theorem 5, assuming that n j=m+1 λ j (E µn [∇h∇h T ]) is small. But the approximation in Theorem 5 in only in L2 (E n ) and not in L ∞ (E n ) (or equivalently in the supnorm). This is why we have not provided an error analysis which remains to be done.

Notice that if λ j (E µn [∇h∇h T ]) = 0 for all j > m, then one retrieves the problem of Section 2. Indeed in h(x) = h(ℓy+ s z) one has z = 0, and therefore in ( 19) and ( 21), f (y) = E µn [h|y] = h(ℓ y) .

So for instance when Ω = S n-1 and h(x) = f (ℓ T x) for some ℓ ∈ R n×m , the sparse problem Q = min{f (L y) : y ∈ E m } shown to be strictly equivalent to P in Lasserre (2021), is the limit case of Q in (27) when n j=m+1 λ j (E µn [∇h∇h T ]) = 0.

[START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] the integral E[h|y] has to be computed via Monte-carlo sampling with a different sample for each y.

all 2 . Notice that f is a polynomial in the (m+1) variables (y 1 , . . . , y m , 1y 2 ), i.e., f ∈ R[y, 1y 2 ]. Next, again following [START_REF] Constantine | Active subspace methods in theory and practice: Applications to Kriging surfaces[END_REF] we approximate h on E n with h(x) ≈ ĥ(x) := f (ℓ T x), i.e.: ĥ

Hence letting X := ℓ T x and using the orthogonality of the (ℓ j ), we obtain X ∈ E m , and

for all (X, Y ) ∈ R m+1 , and let

Approximate sparse optimization on E n or S n-1

So when the nm remaining eigenvalues (λ m+1 , . . . , λ n ) are small compared to the first m ones, Theorem 5 suggests to consider replacing h with ĥ in the initial optimization problem P. As we next show, when Ω = S n-1 or Ω = E n , the resulting problem is equivalent to solving:

an (m + 1)-variables optimization problem. Note that f (X, |Y |) is not a polynomial but ρ = min[ ρ + , ρ -] with

So to solve Q and obtain ρ, one has to solve two polynomial optimization problems of same type as P but on S m , hence of much lower dimension when m ≪ n. Lemma 6. Let ĥ be as in ( 23), f as in (25), and let

Proof. Let τ := min{ ĥ(x) :

x ∈ E n } and let x * := arg min{ ĥ(x) :

x ∈ E n } so that ĥ(x * ) = τ . Write x * = ℓ y * + s z * so that x * 2 = y * 2 + z * 2 ≤ 1. Next, let x := ℓ y * + r • s z * so that x 2 = y * 2 + r 2 z * 2 , and choose r such that x ∈ S n-1 . Then ℓ T x = ℓ T x * and therefore ĥ(x) = ĥ(x * ) = τ , which yields the first equality in (28). It remains to prove that ρ = τ .

It is clear that τ ≥ ρ as (X, Y ) := (ℓ T x, 1 -X 2 ) ∈ S m and f (X, Y ) = ĥ(ℓ T x) whenever x ∈ E n . For the converse, assume that ρ = ρ + with an optimal solution (X * , Y * ) ∈ S m and Y * ≥ 0. Let x := ℓ X so that x = X as