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Piecewise linearization of bivariate nonlinear
functions: minimizing the number of pieces under

a bounded approximation error
Aloïs Duguet Sandra Ulrich Ngueveu

April 4, 2022

Abstract
This work focuses on the approximation of bivariate functions into

piecewise linear ones with a minimal number of pieces and under a bounded
approximation error. Applications include the approximation of mixed in-
teger nonlinear optimization problems into mixed integer linear ones that
are in general easier to solve. A framework to build dedicated lineariza-
tion algorithms is introduced, and a comparison to the state of the art
heuristics shows their efficiency.

1 Problem Description and State of the Art
Let (P) be the optimization problem of approximating a nonlinear function f
of two variables by a piecewise linear (PWL) function g subject to approxima-
tion error constraints on domain D represented by functions l and u satisfying
l(x, y) ≤ f(x, y) ≤ u(x, y) for all (x, y) ∈ D:

(P)


min n (1)
subject to l(x, y) ≤ g(x, y) ≤ u(x, y) ∀(x, y) ∈ D ⊂ R2 (2)

g is a PWL function with n pieces (3)

Constraints (2) are pointwise approximation constraints therefore there is
an infinite number of constraints because D is a continuous domain. The objec-
tive is to minimize the number of pieces of g so that a MILP formulation of g
introduces less variables and constraints Vielma et al. [2010]. It is especially use-
ful for the approximation of a Mixed Integer Nonlinear Programming problem
(MINLP) with a Mixed Integer Linear Programming (MILP) by substituting
each nonlinear functions by a PWL one. Moreover, it was shown in Geißler
et al. [2012] showed that in some cases, MINLP can be solved by applying only
techniques from MILP.

Heuristics and exact methods exist to approximate univariate nonlinear func-
tions (D ⊂ R) Codsi et al. [2021], Kong and Maravelias [2020], Ngueveu [2019],
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Rebennack and Krasko [2020]. We are interested in bivariate functions (D ⊂ R2)
and to the best of our knowledge, only 2 papers address this case, with heuristics
only:

• The authors of Rebennack and Kallrath [2015] propose two heuristics to
solve problem (P) with continuous PWL functions. The first heuristic
is based on an iterative subdivision of the domain D into triangles (2-
simplexes) until for each subdomain a linear function that fits it has been
found. The verification that a given linear function fits the subdomain is
made by solving a Non Linear Programming problem (NLP). The second
heuristic can be used if the contribution of the two variables in the function
can be separated (linearly or nonlinearly). In this case, an algorithm finds
the two optimal continuous univariate PWL functions and combine them
to build a single two-variable PWL function.

• In Kazda and Li [2021] an iterative process attempts to find a continu-
ous PWL function written as a Difference of Convex Continuous PWL
functions (DC CPWL) that satisfies the approximation error. The idea is
to iteratively solve a MILP relaxation of (P) and then to find lazy con-
straints to add to the relaxation until a solution found is feasible for (P).
The relaxation consists in replacing the infinite number of constraints (2)
with a finite number of them.

After the introduction of definitions used throughout the paper in Section 2,
the three key ideas of a framework for piecewise linearization are detailed in
Section 3. It is followed by explanations on the instantiation of crucial parts of
this framework to create different heuristics in Section 4, and finally, numerical
experiments comparing the state of the art to our best heuristics are shown in
Section 5.

2 Definitions
The vocabulary used throughout this work is presented below. They are in part
extensions to D ⊂ R2 of definitions from Codsi et al. [2021] for D ⊂ R.

Definition 1 (Polytope). A polytope is the convex hull of some points x ∈ Rm:
P = {x ∈ Rm, x =

∑
i λixi,

∑
i λi = 1, λi ≥ 0 ∀i ∈ J1, mK}.

Throughout the paper, a piece will refer to a polytope that composes the
graph of a PWL function.

Definition 2 (PWL function). Let D be a compact set of R2. A function g :
D 7→ R is a PWL function with n pieces if and only if there exists {ai}i∈J1,nK ⊂
R2, {bi}i∈J1,nK ⊂ R and a family of polytopes {Di}i∈J1,nK ⊂ R2 such that
D = ∪i∈J1,nK Di, and for i ̸= j the polytopes Di and Dj can only intersect on their
frontier and g is defined by g(x, y) = min{ai.(x, y)T +bi|(x, y) ∈ Di ∀i ∈ J1, nK},
with . denoting the standard scalar product.
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Precautions were taken to allow g to be not necessarily continuous at the
frontier of a polytope Di. To prevent g(x, y) to have multiple definitions because
{Di}i∈J1,nK can intersect on their frontier, g(x, y) is chosen as the minimum over
all possible definitions.
Definition 3 (Corridor). Let D be a compact set of R2. Let u, l : D 7→ R be
two continuous functions verifying u(x, y) > l(x, y),∀(x, y) ∈ D. The set C ⊂ R3

is called the corridor between u and l if and only if C = {(x, y, z) ∈ R3|(x, y) ∈
D, l(x, y) ≤ z ≤ u(x, y)}. If D ⊂ R2, we call the area of D the domain area of C.

A similar definition can be made for D an interval [a, b], in which case we
call b− a the domain length of C.
Definition 4 (Corridor domain). Let C be a corridor, C ⊂ R3. The domain of
corridor C noted D(C) is the projection of C on its two first coordinates, which
is also the domain on which u and l need to be defined.
Definition 5 (Piece within a corridor). A polytope P ⊂ R3 is within a corridor
C if and only if there exists a linear function g : D ⊂ D(C), such that P =
{(x, y, g(x, y)), (x, y) ∈ D} and P ⊂ C.
Definition 6 (Fitting). A PWL function g fits a corridor C if and only if the
pieces of g (polytopes {P}i∈J1,nK of the graph of g) are within C and g is defined
on the entire domain D(C).
Definition 7 (PWL corridor). A corridor C is called a PWL corridor if and
only if u and l defining C are both PWL functions.
Definition 8 (Inner corridor). Let C0 be a corridor between u0 and l0. Let C
be a corridor between u and l. We call C an inner corridor of C0 if and only if
D(C) = D(C0) and l0(x, y) ≤ l(x, y) ≤ u(x, y) ≤ u0(x, y).
Definition 9 (Rm-corridor fitting problem). The corridor fitting problem con-
sists in finding a PWL function g fitting a corridor C such that its number of
pieces is minimized. Rm-corridor fitting problem refers to the problem with
D(C) ⊂ Rm.

(P) is equivalent to an R2-corridor fitting problem with corridor C between
u and l, thus we will refer only to R2-corridor fitting problem from now on.
Definition 10 (Truncated-corridor). Let C1 and C2 be two corridors both de-
fined by functions u and l on the interval [a, b1] and [a, b2]. We call C2 a
truncated-corridor of C1 if and only if [a, b2] ⊂ [a, b1] (b2 ≤ b1).
Definition 11 (Maximal linear segment). A maximal linear segment in a corri-
dor C is a linear segment within C that induces a truncated-corridor of maximal
domain length.
Definition 12 (Truncated-corridor in direction d). Let C1 and C2 be two corri-
dors defined by the same functions u and l with corridor domains compacts of
R2. Let d ∈ R2 \ {0}. We call C2 a truncated-corridor of C1 in direction d if and
only if there exists σ ∈ R for which D(C2) = D(C1)∩{(x, y) ∈ R2, (x, y).d ≤ σ},
i.e. D(C2) is the intersection of D(C1) with a half-plane.
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Definition 13 (Maximal piece in direction d). A maximal piece in direction d
of a corridor C is a polytope within C that induces a truncated-corridor of C in
direction d that is of maximal domain area.

3 A Framework for Solving the R2-Corridor Fit-
ting Problem

We present in this section a framework to create efficient algorithms for the
R2-corridor fitting problem. The instantiation chosen for different parts of the
framework are described in Section 4 as well as some details on the implemen-
tation.

Three key ideas are followed in the framework. The first two are meant to
avoid drawbacks encountered in Rebennack and Kallrath [2015], whereas the
third one is meant to render a subproblem more tractable:

• Key idea 1: Reduce the number of pieces that compose the PWL func-
tion, pieces should be chosen among general convex polygons instead of
triangles

• Key idea 2: Choose pieces that are good (ideally optimal) solutions of
a maximal piece in direction d problem, so as to ensure that the domain
covered by a piece is as large as possible

• Key idea 3: Compute a good feasible solution of the maximal piece in di-
rection d problem with a series of LP problems obtained after substituting
C with a PWL inner corridor of C

The remainder of this section builds upon these principles.

3.1 Key Idea 1: Management of the Corridor Domain
The corridor domain should be tiled with shapes as general as possible provided
that they can be formulated in a MILP. Such shapes are polygons, but we
further restrict those shapes to convex polygons because formulating a non-
convex polygon in a MILP introduces additional binary variables. It is expected
that allowing convex polygons instead of only triangles as done in Rebennack
and Kallrath [2015] will lead to a lower number of pieces.

The procedure that manages pieces and the remaining corridor domain is
described in Algorithm 1. At each iteration, one piece is computed for each
vertex of D(C) by function compute_piece, and a function score selects the
"most" suitable to obtain a PWL function with few pieces, see Section 4.1.
Function update_domain(C, p) removes the part of D(C) on which p is defined.
This function also divides the new reduced corridor C in two corridors if polygon
D(C) only has angles at the vertices greater than 90° to avoid a bad behaviour.
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Algorithm 1 Finding a PWL function fitting a corridor C with the least number
of pieces

1: function pwl_2d_fitting(C)
2: P ← ∅ ▷ list of chosen pieces
3: Q ← {C} ▷ list of corridors with convex domains not already tiled
4: while Q ≠ ∅ do
5: C = pop(Q)
6: candidate_pieces← ∅
7: for v vertex of D(C) do
8: d← choose_progress_direction(C, v)
9: candidate_pieces← candidate_pieces ∪ compute_piece(C, v, d)

10: end for
11: p← argmaxp∈candidate_piecesscore(p)
12: P ← P ∪ p
13: Q = update_domain(C, p)
14: end while
15: return P
16: end function

3.2 Key Idea 2: the Maximal Piece in Direction d Problem
We chose to find a new piece by covering an area starting from point v and ex-
tending as far as possible in direction d. This direction d points to the interior of
D(C) when starting from v and is computed via function choose_progress_direction
of Algorithm 1. The hypothesis of starting from a vertex instead of any point
of the border of the polygon D(C) is made. Computing the piece consists in
solving a maximal piece in direction d problem (MPd):

(MPd)

 Max σ
s.t. αx + βy + γ ∈ Cd

σ ∀(x, y) ∈ D(Cd
σ)

α, β, γ, σ ∈ R
(4)

Where D(Cd
σ) = D(C) ∩ {(x, y) ∈ R2|(x, y)T .d ≤ σ} is the domain of Cd

σ, the
truncated-corridor of C in direction d. (MPd) can be modeled as a semi-infinite
programming problem (SIP). Indeed, the number of pointwise constraints is
infinite while the number of variables is 4: a real variable σ for the half-plane
intersection as well as 3 real variables (α, β, γ) to describe the linear function
g(x, y) = αx + βy + γ.

3.3 Key Idea 3: Computing a Feasible Solution of a Max-
imal Piece in Direction d Problem

As an SIP is in general hard to solve exactly, a feasible solution of (MPd) is
computed via a series of LP problems, as described below, using the notion of
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PWL inner corridor, because it allows to replace the infinite number of nonlinear
constraints by a finite number of linear constraints.

Let corridor CPWL
d
σ be a PWL inner corridor of Cd

σ with associated functions
ũ and l̃ for readability; note (Di

ũ)i∈I and (Dj

l̃
)i∈J the subdomains of corridor

CPWL
d
σ on which ũ and l̃ are linear respectively. Then (MPd) is a relaxation of

(MP ′
d) because C is replaced by an inner corridor.

(MP ′
d)


Max σ
s.t.

αx + βy + γ − ũi(x, y) ≤ 0 ∀(x, y) ∈ D(Cd
σ) ∩ Di

ũ, ∀i ∈ I

αx + βy + γ − l̃j(x, y) ≥ 0 ∀(x, y) ∈ D(Cd
σ) ∩ Dj

l̃
, ∀j ∈ J

α, β, γ, σ ∈ R

(5)

Remark that on each Di
ũ, g(x, y)− ũ(x, y) is a linear function, thus it suffices

to check g(X)− ũ(x, y) ≤ 0 for each vertex of convex polygonal domain Di
ũ to

ensure constraint g(x, y)− ũ(x, y) ≤ 0 on Di
ũ. A similar reasoning leads to the

same result for constraints involving l̃. Thus (MP ′′
d ) is equivalent to (MP ′

d) but
has the advantage of having only a finite number of linear constraints.

(MP ′′
d )


Max σ
s.t.

αx + βy + γ − ũi(x, y) ≤ 0 for each vertex (x, y) of D(Cd
σ) ∩ Di

ũ, ∀i ∈ I

αx + βy + γ − l̃j(x, y) ≥ 0 for each vertex (x, y) of D(Cd
σ) ∩ Dj

l̃
, ∀j ∈ J

α, β, γ, σ ∈ R
(6)

Finally, problem (MP ′′
d ) has constraints involving polygon intersections de-

pending nonlinearly on variable σ, thus it is not an LP problem. Parameterizing
(MP ′′

d ) with σ, an LP feasibility problem (MP ′′
d,σ) is obtained, and to optimize

σ, problem (MP ′′
d,σ) can be repeatedly solved until a satisfactory σ value has

been found.

(MP ′′
d,σ)

 αx + βy + γ − ũi(x, y) ≤ 0 for each vertex (x, y) of D(Cd
σ) ∩ Di

ũ, ∀i ∈ I

αx + βy + γ − l̃j(x, y) ≥ 0 for each vertex (x, y) of D(Cd
σ) ∩ Dj

l̃
, ∀j ∈ J

α, β, γ ∈ R
(7)

4 Framework Key Points Instantiation
In this section, choices made on key points of the framework of Section 3 are
described: the function score of Algorithm 1 in Section 4.1, the choice of a
direction d in Section 4.2 and the computation of a PWL inner corridor in
Section 4.3. C refer to a corridor between u and l in the remainder of the
section.

4.1 Scoring the Quality of Pieces
In Algorithm 1, a function score ranks the quality of candidate pieces and the
piece with highest score is kept. Two scoring functions have been implemented:
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• Surface (Surf) measures the surface of the domain covered by piece p

• Partial Derivatives Total Variation (PaD) approximates the sum of the
total variation of each partial derivative of u and l on the domain covered
by p

The total variation of a function g is a measure of how much that function varies
on its domain D. The total variation of g on D is equal to

∫
D ||∇g(x)||2dx. the

interest of PaD needs the introduction of the pointwise height of a corridor.

Definition 14 (pointwise height). We call CP H(x, y) = u(x, y) − l(x, y) the
pointwise height of corridor C at point (x, y).

Remark 15. The most commonly used type of approximation error for a func-
tion f is the absolute error. It induces a corridor C such that l(x, y) = f(x, y)−δ
and u(x, y) = f(x, y) + δ with δ > 0, that has constant pointwise height.

Surf is a straightforward and simple idea to evaluate the piece quality, it
will serve as a reference to evaluate other scoring functions. PaD is thought
to be an adaptation for two-variable functions of Theorem 1 of Frenzen et al.
[2010]. Indeed, it states that for a corridor C of constant pointwise height 2δ
with D(C) = [a, b], when δ → 0, the minimum number of pieces s(δ) satisfies
the asymptotic approximation s(δ) ∼ 1

4δ

∫ b

a

√
|u′′(x, y)|dx. Remark first that

u′′(x, y) = l′′(x, y) because it is a corridor with constant pointwise height, and
second that the integral computed is the total variation of function u′ (and
l′). It is thus expected that PaD performs better than Surf for small values of
pointwise height. For large values, the total variation should be less relevant to
estimate the difficulty of fitting a piece, thus PaD could be less efficient.

4.2 Choose a Progress Direction
Line 8 of Algorithm 1 selects progress direction d knowing starting vertex v.
Two options were tested for this choice.

• the direction pointed by the bisector of the two edges of D(C) having v as
starting point, denoted bd for Bisector Direction

• Compute two maximal linear segments starting from v and following each
edge of D(C) having v as endpoint. The direction orthogonal to the line
joining the two ends of the maximal linear segments is chosen as the
progress direction d. It is denoted med for Mean progress along Edges
Direction

The first is a naive option, while the second is meant to take into account the
"difficulty" of progressing along the two extremal directions given by the two
edges starting at v.
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4.3 Inner Approximation of a Corridor
In the function compute_piece, the computation of a PWL inner corridor CPWL
of C boils down to computing PWL functions ũ and l̃ verifying l(x, y) ≤ l̃(x, y) ≤
ũ(x, y) ≤ u(x, y), for all (x, y) ∈ D(C).

To compute ũ, a basic idea is to divide D(C) into rectangular pieces of
same size, and then to compute a third coordinate ũ(x, y) to each vertex v =
(x, y) of each rectangular piece such that ũ(x, y) ≤ u(x, y). Interval analysis
on the gradient of u suffices to compute the values of ũ(x, y) such that ũ is an
underestimation of u, as explained in Proposition 16.
Proposition 16. Let u ∈ C1 defined on D = [a, b] × [c, d] ⊂ R2. Let lx =
b − a and ly = d − c. Let ∇u be the gradient of u. Let [∇ulow

x ,∇uhigh
x ] ×

[∇ulow
y ,∇uhigh

y ] be such that ∇u(x, y) ∈ [∇ulow
x ,∇uhigh

x ] × [∇ulow
y ,∇uhigh

y ] for
all (x, y) ∈ D. Let (Mx, My) = ( a+b

2 , c+d
2 ). Define:

u−
(a,c) := u(Mx, My)−∇uhigh

x .lx −∇uhigh
y .ly (8)

u−
(b,c) := u(Mx, My) +∇ulow

x .lx −∇uhigh
y .ly (9)

u−
(b,d) := u(Mx, My) +∇ulow

x .lx +∇ulow
y .ly (10)

u−
(a,d) := u(Mx, My)−∇uhigh

x .lx +∇ulow
y .ly (11)

If a linear function f satisfies:

f(a, c) ≤ u−
(a,c), f(b, c) ≤ u−

(b,c), f(b, d) ≤ u−
(b,d) and f(a, d) ≤ u−

(a,d) (12)

Then f(x, y) ≤ u(x, y) for all (x, y) ∈ D.

Proof. Let f be a linear function satisfying the 4 inequalities (12). Let M =
(Mx, My, f(Mx, My)) be the point on the surface defined by u corresponding to
the middle of D. Let (x0, y0) ∈ D. We have:

u(Mx, My)−∇uhigh
x .(Mx − x0)−∇uhigh

y .(My − y0) ≤ u(x0, y0) if x0 ≤Mx, y0 ≤My

u(Mx, My) +∇ulow
x .(x0 −Mx)−∇uhigh

y .(My − y0) ≤ u(x0, y0) if x0 ≥Mx, y0 ≤My

u(Mx, My) +∇ulow
x .(x0 −Mx) +∇ulow

y .(y0 −My) ≤ u(x0, y0) if x0 ≥Mx, y0 ≥My

u(Mx, My)−∇uhigh
x .(Mx − x0) +∇ulow

y .(y0 −My) ≤ u(x0, y0) if x0 ≤Mx, y0 ≥My

because [∇ulow
x ,∇uhigh

x ]× [∇ulow
y ,∇uhigh

y ] are bounds of ∇u on domain D.
Now, define a PWL function fPWL with four rectangle pieces with vertices
position on {(a, c), (b, c), (b, d), (a, d), ( a+b

2 , c+d
2 )} and height the left-hand sides

of (12) as well as u(Mx, My) respectively. In particular, fPWL ≤ u on D.
In addition, direct computations show that f(x, y) ≤ fPWL(x, y) for (x, y) ∈
{(a, c), (b, c), (b, d), (a, d), ( a+b

2 , c+d
2 )}. Finally, as f and fPWL are linear on the

four pieces domain of fPWL, we have f ≤ fPWL ≤ u on D.

Thus, given a PWL inner corridor CPWL of C, the feasibility of fitting a linear
function in CPWL can be checked by solving an LP feasibility problem, with 3
variables, and constraints C for each piece of ũ and l̃, as in (MP ′′

d,σ).
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To build a PWL inner corridor exploiting Proposition 16 in our algorithms, a
method called efficiency refinement is used. It is described after the introduction
of the necessary vocabulary.

Definition 17 (bounding efficiency η). Let C be a corridor with D(C) a polyg-
onal domain of R2. Let CPWL be a PWL inner corridor of C. We say that CPWL
achieves a bounding efficiency for C of η ∈ [0, 1] if the pointwise height (PH)
ratio (CPWL)P H (x,y)

CP H (x,y) is greater or equal to η for each (x, y) ∈ D(C).

Proposition 18. Let C be a corridor with D(C) a polygonal domain of R2

and let η ∈ [0, 1]. If C has constant pointwise height, then a PWL inner cor-
ridor CPWL has a bounding efficiency for C of η if the pointwise height ratio
(CPWL)P H (x,y)

CP H (x,y) is greater or equal to η for each (x, y) vertex of a piece domain of
ũ or l̃.

Proof. C has constant pointwise height. Thus for each piece of CPWL, the mini-
mum pointwise height ratio is on an extreme point of the piece domain, that is to
say on a vertex of the piece domain, which is lower bounded by η by hypothesis.

The efficiency refinement procedure builds a PWL inner corridor CPWL of
C achieving a bounding efficiency of η if it has a constant pointwise height,
but without this property, it only checks that the pointwise height ratio at the
vertices of each piece is η. After having found a rectangle D containing D(C),
it creates an initial PWL inner corridor with only one rectangular piece on D,
and then iteratively refines the pieces that do not satisfy a bounding efficiency
of η at the 4 vertices into 4 new pieces until each piece satisfies the efficiency.

Parameter η needs to be adjusted depending on the quality of PWL inner
corridor CPWL wanted. To produce a really good approximation of corridor
C, η near 1 shall be used, but the number of pieces forming CPWL increases
consequently, thus increasing the computation time of (MP ′′

d,β) to be solved
later on.

5 Numerical Experiments
The performance of our framework is compared to the state of the art. The
name of our resulting heuristics are given according to this template {scoring
function}{η in %}{method to choose progress direction}. Thus, PaD95med
denote the heuristic using PaD as scoring function, η = 95% as efficiency in the
efficiency refinement and heuristic med to choose a progress direction.

Heuristics from the state of the art are described in articles Codsi et al.
[2021], Kazda and Li [2021], Rebennack and Kallrath [2015]. Recall that Reben-
nack and Kallrath [2015] proposes two heuristics: one based on triangulation
(RK2D), and one based on a decomposition of the bivariate function into a sum
of one variable functions to approximate separately (RK1D). Heuristic LinA1D
is based on the same decomposition as RK1D, but uses library LinA from Codsi
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ref expression Domain ref expression Domain
L1 x2 − y2 [0.5, 7.5]× [0.5, 3.5] N3 xsin(y) [1.0, 4.0]× [0.05, 3.1]
L2 x2 + y2 [0.5, 7.5]× [0.5, 3.5] N4 sin(x)

x y2 [1.0, 3.0]× [1.0, 2.0]
N5 xsin(x)sin(y) [0.05, 3.1]× [0.05, 3.1]

N1 xy [2.0, 8.0]× [2.0, 4.0] N6 (x2 − y2)2 [1.0, 2.0]× [1.0, 2.0]
N2 xe−x2−y2 [0.5, 2.0]× [0.5, 2.0] N7 e−10(x2−y2)2 [1.0, 2.0]× [1.0, 2.0]

Table 1: Expression and domain of benchmark functions

et al. [2021] to compute the approximation of univariate functions. Obviously
LinA1D outperforms RK1D since LinA computes optimal non necessarily con-
tinuous univariate PWL functions instead of optimal continuous univariate PWL
functions for RK1D. The heuristic of Kazda and Li [2021] is denoted KL2D.
PaD95med is our best heuristic with the efficiency refinement parameter η to
95%, and PaD99med is our best heuristic with η to 99%, when comparing them
to the four possibilities made of Surf/PaD and bd/med.

Those 5 heuristics are compared on the benchmark instances of Rebennack
and Kallrath [2015], which consists of 45 instances obtained from 9 functions
and 5 different absolute approximation errors for each function. An absolute
approximation error of δ for function f means that the corresponding corridor
C is between functions u and l satisfying l(x, y) = f(x, y) − δ and u(x, y) =
f(x, y) + δ. The first two functions of the benchmark are linearly separable
and refered to as L1,L2. The remaining seven are not linearly separable and
thus refered to as N1,...,N7. The expression and domain of each function are
described in Table 1.

For our heuristics as well as LinA1D, JuMP (v. 0.21.8) is used as modeling
language, Gurobi (v. 9.1) is the (MI)LP solver and a CPU of 4.4 GHz using a
single core and 32GB RAM. Moreover, heuristic RK2D use the modeling lan-
guage GAMS (v. 23.6), the global optimization solver LindoGlobal (v. 23.6.5),
a CPU intel i7 with a single core, 2.93 GHz and 12 GB RAM. Finally, KL2D
uses Pyomo (v. 5.6.4) as modeling language, CPLEX (v. 12.8) and 10 threads
to solve MILPs, COUENNE (v.0.5.8) and 1 thread to solve NLPs, a CPU with
3.6 GHz and 32 GB RAM. As for time limit, LinA1D and RK2D do not have
one, KL2D allows 3600 seconds for each MILP problem, while our heuristics
allow 3600 seconds for each LP problem.

Results are shown in Table 5. For each of the five heuristics we present the
number of pieces n obtained by the heuristic as well as its computation time in
seconds. Bold integer highlight the best solution found for each instance, i.e.
the ones with the minimum number of pieces. "TO" means that the heuristic
has stopped because of a time out, thus without any valid solution. In this case,
"-" means that no solutions were found.

In terms of minimum number of pieces, PaD99med performs the best with
27 best solutions out of 45 instances, followed by KL2D with 20 out of 45,
PaD95med with 16 out of 45, LinA1D with 8 out of 45 and finally RK2D with

10



1 out of 45. As for the computation time, the hardware and software used for
the different heuristics are of different quality, thus it will not be a precise tool
to compare the time needed for each heuristics. However, it can be said that
LinA2D takes less than 1 second to execute, RK2D and PaD95med take seconds
to minutes, while KL2D and PaD99med take seconds to hours.

A more in-depth analysis shows that LinA1D is the best only for instances
with linearly separable functions (L1 and L2), but it does really poorly on the
other functions. KL2D is the best 20 times out of the 24 instances where it
terminates with a solution, which shows a clear limit to the size of the instance
it can tackle. The effect of the change of parameter η from 95% to 99 % is in
average a decrease of 7.6% of the pieces needed, at the cost of an increase of
275% of the computation time.

6 Conclusion
We introduced a framework to create linearization algorithms based on the
solution of the R2-corridor fitting problem. Convex polygons were used to tile
the domain instead of triangles, a scoring function ranking candidate pieces
was developed and a good feasible solution of a SIP was computed via a series
of LP feasibility problems. Finally, numerical experiments showed that our
heuristics outperforms the state of the art on not linearly separable functions.
Further work could attempt to diminish the relatively high computation time
of the heuristics, search for better instanciation of the different parts of the
framework or apply those heuristics to approximate real-world MINLPs to show
their practical usage.
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