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Piecewise linearization of bivariate nonlinear
functions: minimizing the number of pieces under

a bounded approximation error
Aloïs Duguet Sandra Ulrich Ngueveu

June 16, 2022

Abstract
This work focuses on the approximation of bivariate functions into

piecewise linear ones with a minimal number of pieces and under a bounded
approximation error. Applications include the approximation of mixed in-
teger nonlinear optimization problems into mixed integer linear ones that
are in general easier to solve. A framework to build dedicated lineariza-
tion algorithms is introduced, and a comparison to the state of the art
heuristics shows their efficiency. Piecewise linear approximation Bivariate
nonlinear functions Mixed Integer Nonlinear Programming Heuristics

1 Problem Description and State of the Art
Let (P) be the optimization problem of approximating a nonlinear function f
of two variables by a piecewise linear (PWL) function g subject to approxima-
tion error constraints on domain D represented by functions l and u satisfying
l(x, y) ≤ f(x, y) ≤ u(x, y) for all (x, y) ∈ D:

(P)


min n (1)
subject to l(x, y) ≤ g(x, y) ≤ u(x, y) ∀(x, y) ∈ D ⊂ R2 (2)

g is a PWL function with n pieces (3)

Constraints (2) are pointwise approximation constraints, which gives an in-
finite number of constraints because D is a continuous domain. Piecewise linear
approximation are more commonly minimizing an approximation error with a
fixed number of pieces (Toriello and Vielma [2012]), but our objective is to min-
imize the number of pieces of g so that an MILP formulation of g introduces less
binary variables (Vielma et al. [2010]). It can be useful for the approximation
of a Mixed Integer Nonlinear Programming problem (MINLP) with a Mixed
Integer Linear Programming (MILP) by substituting each nonlinear functions
by a PWL one. Moreover, it was shown in (Geißler et al. [2012]) that in some
cases, MINLP can be solved by applying only techniques from MILP.
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Heuristics and exact methods exist to approximate univariate nonlinear func-
tions (D ⊂ R) (Codsi et al. [2021], Ngueveu [2019], Rebennack and Krasko
[2020]). We are interested in bivariate functions (D ⊂ R2) and to the best of
our knowledge, only two papers address this case, with heuristics only:

• The authors of (Rebennack and Kallrath [2015]) propose two heuristics
to solve problem (P) with continuous PWL functions. The first heuris-
tic is based on an iterative subdivision of the domain D into triangles
(2-simplexes) until for each subdomain a linear function satisfying the ap-
proximation error has been found. The verification that a given linear
function fits the subdomain is made by solving a nonlinear programming
problem (NLP). The second heuristic can be used if the contribution of the
two variables in the function can be separated in two univariate functions
(linearly or nonlinearly). In this case, an algorithm finds the two optimal
continuous univariate PWL functions and combine them to build a single
two-variable PWL function.

• In (Kazda and Li [2021]) an iterative process attempts to find a contin-
uous PWL function written as a Difference of Convex Continuous PWL
functions (DC CPWL) that satisfies the approximation error. The idea is
to iteratively solve an MILP relaxation of (P) and then to find lazy con-
straints to add to the relaxation until a solution found is feasible for (P).
The relaxation consists in replacing the infinite number of constraints (2)
with a finite number of them.

After the introduction of definitions used throughout the paper in Section 2,
the three key ideas of a framework for piecewise linearization are detailed in
Section 3. It is followed by explanations on the instantiation of crucial parts of
this framework to create different heuristics in Section 4, and finally, numerical
experiments comparing the state of the art to our best heuristics are shown in
Section 5.

2 Definitions
The vocabulary used throughout this work is presented below. They are in part
extensions to D ⊂ R2 of definitions from (Codsi et al. [2021]) for D ⊂ R.

Definition 1 (Polytope). A polytope P is the convex hull of some points Xi ∈
Rm: P = {x ∈ Rm, x =

∑
i λiXi,

∑
i λi = 1, λi ≥ 0 ∀i}.

Throughout the paper, a piece will refer to a polytope that composes the
graph of a PWL function, and J1, nK := {1, ..., n}.

Definition 2 (PWL function). Let D be a compact set of R2. A function g :
D 7→ R is a PWL function with n pieces if and only if there exists {ai}i∈J1,nK ⊂
R2, {bi}i∈J1,nK ⊂ R and a family of polytopes {Di}i∈J1,nK ⊂ R2 such that
D = ∪i∈J1,nK Di, and for i ̸= j the polytopes Di and Dj can only intersect on
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their boundary and g is defined by g(x, y) = min{ai ·(x, y)T +bi|(x, y) ∈ Di ∀i ∈
J1, nK}, with · denoting the standard scalar product.

Precautions were taken to allow g to be not necessarily continuous at the
boundary of a polytope Di. To prevent g(x, y) to have multiple definitions
because {Di}i∈J1,nK can intersect on their boundary, g(x, y) is chosen as the
minimum over all possible definitions, so that it is a lower semicontinuous func-
tion.

Definition 3 (Corridor). Let D be a compact set of R2. Let u, l : D 7→ R be
two continuous functions verifying u(x, y) > l(x, y),∀(x, y) ∈ D. Define the set
C = {(x, y, z) ∈ R3|(x, y) ∈ D, l(x, y) ≤ z ≤ u(x, y)} as the corridor between u
and l. If D ⊂ R2, we call the area of D the domain area of C.

A similar definition can be made for D an interval [a, b], in which case we
call b− a the domain length of C.

Definition 4 (Corridor domain). Let C be a corridor, C ⊂ R3. The domain of
corridor C noted D(C) is the projection of C on its two first coordinates, which
is also the domain on which u and l need to be defined.

Definition 5 (Piece within a corridor). A polytope P ⊂ R3 is within a corridor
C if and only if there exists a linear function g : D ⊂ D(C), such that P =
{(x, y, g(x, y)), (x, y) ∈ D} and P ⊂ C.

Definition 6 (Fitting). A PWL function g fits a corridor C if and only if the
pieces of g (polytopes {P}i∈J1,nK of the graph of g) are within C and g is defined
on the entire domain D(C).

Definition 7 (PWL corridor). A corridor C is called a PWL corridor if and
only if u and l defining C are both PWL functions.

Definition 8 (Inner corridor). Let C0 be a corridor between u0 and l0. Let C
be a corridor between u and l. We call C an inner corridor of C0 if and only if
D(C) = D(C0) and l0(x, y) ≤ l(x, y) < u(x, y) ≤ u0(x, y).

Definition 9 (R2-corridor fitting problem). The R2-corridor fitting problem
consists in finding a PWL function g of two variables fitting a corridor C such
that its number of pieces is minimized.

(P) is equivalent to an R2-corridor fitting problem with corridor C between
u and l. Moreover, by extending the previous definitions to dimension m ≥ 1, it
is possible to define the Rm-corridor fitting problem that refers to the problem
with D(C) ⊂ Rm.

Definition 10 (Truncated-corridor). Let C1, C2 ∈ R2 be two corridors both
defined by functions u, l : R 7→ R on the intervals [a, b1] and [a, b2]. We call C2
a truncated-corridor of C1 if and only if [a, b2] ⊂ [a, b1] (b2 ≤ b1).

Definition 11 (Maximal linear segment). A maximal linear segment in a corri-
dor C is a linear segment within C that induces a truncated-corridor of maximal
domain length.
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Definition 12 (Truncated-corridor in direction d). Let C1 and C2 be two cor-
ridors defined by the same functions u and l with compact corridor domains in
R2. Let d ∈ R2 \ {0}. We call C2 a truncated-corridor of C1 in direction d if and
only if there exists σ ∈ R for which D(C2) = D(C1)∩{(x, y) ∈ R2, (x, y) ·d ≤ σ},
i.e. D(C2) is the intersection of D(C1) with a half-plane.

Definition 13 (Maximal piece in direction d). A maximal piece in direction
d ∈ R2 \ {0} of a corridor C is a polytope within C that induces a truncated-
corridor of C in direction d that is of maximal domain area.

3 A Framework for Solving the R2-Corridor Fit-
ting Problem

We present in this section a framework to create efficient algorithms for the
R2-corridor fitting problem. The instantiation chosen for different parts of the
framework are described in Section 4 as well as some details on the implemen-
tation.

Three key ideas are followed in the framework. The first two are used to
avoid drawbacks encountered in (Rebennack and Kallrath [2015]), whereas the
third one is meant to render a subproblem more tractable:

• Key idea 1: Pieces should be chosen among general convex polygons
instead of triangles to constrain less the pieces chosen, possibly decreasing
the number of pieces

• Key idea 2: Choose pieces that are good (ideally optimal) solutions of
a maximal piece in direction d problem, to aim for a domain covered by
a piece that is “as large as possible” because in (Rebennack and Kallrath
[2015]) the size of triangles is fixed which increases the number of pieces
necessary

• Key idea 3: Compute a good feasible solution of the maximal piece in di-
rection d problem with a series of LP problems obtained after substituting
C with a PWL inner corridor of C

The remainder of this section builds upon these principles.

3.1 Key Idea 1: Management of the Corridor Domain
The corridor domain should be tiled with shapes as general as possible provided
that they can be formulated in an MILP. Such shapes are polygons, but we fur-
ther restrict those shapes to convex polygons because formulating a non-convex
polygon in an MILP introduces additional binary variables. It is expected that
allowing convex polygons instead of only triangles as done in (Rebennack and
Kallrath [2015]) will lead to a lower number of pieces.

The procedure that manages pieces and the remaining corridor domain is
described in Algorithm 1. At each iteration, one piece is computed for each
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vertex of D(C) by function compute_piece, and a function score selects the
“most” suitable to obtain a PWL function with few pieces, see Section 4.1.
Function update_domain(C, p) removes the part of D(C) on which p is defined.
This function also divides the new reduced corridor C in two corridors if polygon
D(C) only has angles at the vertices greater than 90° to avoid a bad behaviour.

Algorithm 1 Finding a PWL function fitting a corridor C with a low number
of pieces

1: function pwl_2d_fitting(C)
2: P ← ∅ ▷ list of chosen pieces
3: Q ← {C} ▷ list of corridors with convex domains not already tiled
4: while Q ≠ ∅ do
5: C = pop(Q)
6: candidate_pieces← ∅
7: for v vertex of D(C) do
8: d← choose_progress_direction(C, v)
9: candidate_pieces ← candidate_pieces ∪
{compute_piece(C, v, d)}

10: end for
11: p← argmaxp∈candidate_piecesscore(p)
12: P ← P ∪ {p}
13: Q = update_domain(C, p)
14: end while
15: return P
16: end function

3.2 Key Idea 2: the Maximal Piece in Direction d Problem
We chose to find a new piece by covering an area starting from point v and ex-
tending as far as possible in direction d. This direction d points to the interior of
D(C) when starting from v and is computed via function choose_progress_direction
of Algorithm 1. The hypothesis of starting from a vertex instead of any point
of the border of the polygon D(C) is made. Computing the piece consists in
solving a maximal piece in direction d problem (MPd):

(MPd)

 max σ
s.t. αx + βy + γ ∈ Cd

σ ∀(x, y) ∈ D(Cd
σ)

α, β, γ, σ ∈ R
(4)

Where D(Cd
σ) = D(C) ∩ {(x, y) ∈ R2|(x, y)T · d ≤ σ} is the domain of Cd

σ,
the truncated-corridor of C in direction d. (MPd) is a generalized semi-infinite
programming problem (GSIP). Indeed, the number of pointwise constraints is
infinite and depends on variable σ, while the number of variables is 4: a real
variable σ for the half-plane intersection as well as 3 real variables (α, β, γ) to
describe the linear function g(x, y) = αx + βy + γ.
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3.3 Key Idea 3: Computing a Feasible Solution of a Max-
imal Piece in Direction d Problem

As we want a computationally cheap solution to the GSIP (MPd) because of
the high number of times such a problem has to be solved, a feasible solution
of (MPd) is computed via a series of LP problems, as described below, using a
PWL inner corridor of the original corridor C, because it allows to replace the
infinite number of nonlinear constraints by a finite number of linear constraints
while ensuring feasibility.

Let corridor CPWL
d
σ be a PWL inner corridor of Cd

σ with associated functions
ũ and l̃ for readability; note (Di

ũ)i∈I and (Dj

l̃
)i∈J the subdomains of corridor

CPWL
d
σ on which ũ and l̃ are linear, indexed by I and J respectively. Then,

(MPd) is a relaxation of the following problem because C is replaced by an
inner corridor.

(MP ′
d)


max σ
s.t.

αx + βy + γ − ũi(x, y) ≤ 0 ∀(x, y) ∈ D(Cd
σ) ∩ Di

ũ, ∀i ∈ I

αx + βy + γ − l̃j(x, y) ≥ 0 ∀(x, y) ∈ D(Cd
σ) ∩ Dj

l̃
, ∀j ∈ J

α, β, γ, σ ∈ R

(5)

Note that on each Di
ũ, g(x, y) − ũ(x, y) is a linear function, thus it suffices

to check g(X) − ũ(x, y) ≤ 0 for each vertex of convex polygonal domain Di
ũ

to ensure constraint g(x, y) − ũ(x, y) ≤ 0 on Di
ũ. A similar reasoning leads

to the same result for constraints involving l̃. Thus, the following problem is
equivalent to (MP ′

d) but has the advantage of having only a finite number of
linear constraints.

(MP ′′
d )


max σ
s.t.

αx + βy + γ − ũi(x, y) ≤ 0 for each vertex (x, y) of D(Cd
σ) ∩ Di

ũ, ∀i ∈ I

αx + βy + γ − l̃j(x, y) ≥ 0 for each vertex (x, y) of D(Cd
σ) ∩ Dj

l̃
, ∀j ∈ J

α, β, γ, σ ∈ R
(6)

Finally, problem (MP ′′
d ) has constraints involving polygon intersections de-

pending nonlinearly on variable σ, thus it is not an LP problem. Parameterizing
(MP ′′

d ) with σ, the following LP feasibility problem is obtained which can be
repeatedly solved until a satisfactory σ value has been found.

(MP ′′
d,σ)

 αx + βy + γ − ũi(x, y) ≤ 0 for each vertex (x, y) of D(Cd
σ) ∩ Di

ũ, ∀i ∈ I

αx + βy + γ − l̃j(x, y) ≥ 0 for each vertex (x, y) of D(Cd
σ) ∩ Dj

l̃
, ∀j ∈ J

α, β, γ ∈ R
(7)

4 Framework Key Points Instantiation
In this section, choices made on key points of the framework of Section 3 are
described: the function score of Algorithm 1 in Section 4.1, the choice of a
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direction d in Section 4.2 and the computation of a PWL inner corridor in
Section 4.3. C refer to a corridor between u and l in the remainder of the
section.

4.1 Scoring the Quality of Pieces
In Algorithm 1, a function score ranks the quality of candidate pieces and the
piece with highest score is kept. Two scoring functions have been implemented:

• Area measures the area of the domain covered by piece p

• Partial Derivatives Total Variation (PaD) approximates the sum of the
total variation of each partial derivative of u and l on the domain covered
by p

The total variation of a function g is a measure of how much that function varies
on its domain D. The total variation of g on D is equal to

∫
D ||∇g(x)||2dx. The

interest of PaD needs the introduction of the pointwise height of a corridor.

Definition 14 (pointwise height). We call CP H(x, y) = u(x, y) − l(x, y) the
pointwise height of corridor C at point (x, y).

Remark 15. The most commonly used type of approximation error for a func-
tion f is the absolute error. It induces a corridor C such that l(x, y) = f(x, y)−δ
and u(x, y) = f(x, y) + δ with δ > 0, that has constant pointwise height.

Area is a straightforward and simple idea to evaluate the piece quality, it
will serve as a reference to evaluate other scoring functions. PaD is thought
to be an adaptation for two-variable functions of Theorem 1 of (Frenzen et al.
[2010]). Indeed, it states that for a corridor C of constant pointwise height 2δ
with D(C) = [a, b], when δ → 0, the minimum number of pieces s(δ) satis-
fies the asymptotic approximation s(δ) ∼ 1

4δ

∫ b

a

√
|u′′(x, y)|dx. Note first that

u′′(x, y) = l′′(x, y) because it is a corridor with constant pointwise height, and
second that the integral computed is the total variation of function u′ (and
l′). It is thus expected that PaD performs better than Area for small values of
pointwise height. For large values, the total variation should be less relevant to
estimate the difficulty of fitting a piece, thus PaD could be less efficient.

4.2 Choose a Progress Direction
Line 8 of Algorithm 1 selects progress direction d knowing starting vertex v.
Two options were tested for this choice.

• the direction going along the bisector of the two edges of D(C) having v
as starting point, denoted bd for Bisector Direction

• Compute two maximal linear segments starting from v and following each
edge of D(C) having v as endpoint. The direction orthogonal to the line
joining the two ends of the maximal linear segments is chosen as the
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progress direction d. It is denoted med for Mean progress along Edges
Direction

The first is a naive option, while the second is meant to take into account the
“difficulty” of progressing along the two extremal directions given by the two
edges starting at v.

4.3 Inner Approximation of a Corridor
In the function compute_piece, the computation of a PWL inner corridor CPWL
of C boils down to computing PWL functions ũ and l̃ verifying l(x, y) ≤ l̃(x, y) ≤
ũ(x, y) ≤ u(x, y), for all (x, y) ∈ D(C).

To compute ũ (a similar method works for l̃), a basic idea is to divide D(C)
into rectangular pieces of same sizes, and then to compute a third coordinate
ũ(x, y) to each vertex v = (x, y) of each rectangular piece such that ũ(x, y) ≤
u(x, y). Interval analysis on the gradient of u suffices to compute the values of
ũ(x, y) such that ũ is an underestimation of u, as explained in Proposition 16.

Proposition 16. Let u ∈ C1 defined on D = [a, b]× [c, d] ⊂ R2. Let lx = b− a
and ly = d − c. Let ∇u be the gradient of u. Let [Dlow

x , Dhigh
x ] × [Dlow

y , Dhigh
y ]

be such that ∇u(x, y) ∈ [Dlow
x , Dhigh

x ] × [Dlow
y , Dhigh

y ] for all (x, y) ∈ D. Let
(Mx, My) = ( a+b

2 , c+d
2 ). Define:

u−
(a,c) := u(Mx, My)−Dhigh

x · lx −Dhigh
y · ly (8)

u−
(b,c) := u(Mx, My) + Dlow

x · lx −Dhigh
y · ly (9)

u−
(b,d) := u(Mx, My) + Dlow

x · lx + Dlow
y · ly (10)

u−
(a,d) := u(Mx, My)−Dhigh

x · lx + Dlow
y · ly (11)

If a linear function f satisfies:

f(a, c) ≤ u−
(a,c), f(b, c) ≤ u−

(b,c), f(b, d) ≤ u−
(b,d) and f(a, d) ≤ u−

(a,d) (12)

Then f(x, y) ≤ u(x, y) for all (x, y) ∈ D.

Proof. Let f be a linear function satisfying the 4 inequalities (12). Let M =
(Mx, My, f(Mx, My)) be the point on the surface defined by u corresponding to
the middle of D. Let (x0, y0) ∈ D. We have:

u(Mx, My)−Dhigh
x · (Mx − x0)−Dhigh

y · (My − y0) ≤ u(x0, y0) if x0 ≤Mx, y0 ≤My

u(Mx, My) + Dlow
x · (x0 −Mx)−Dhigh

y · (My − y0) ≤ u(x0, y0) if x0 ≥Mx, y0 ≤My

u(Mx, My) + Dlow
x · (x0 −Mx) + Dlow

y · (y0 −My) ≤ u(x0, y0) if x0 ≥Mx, y0 ≥My

u(Mx, My)−Dhigh
x · (Mx − x0) + Dlow

y · (y0 −My) ≤ u(x0, y0) if x0 ≤Mx, y0 ≥My

because [Dlow
x , Dhigh

x ]× [Dlow
y , Dhigh

y ] are bounds of ∇u on domain D. Now,
define a PWL function fPWL with four rectangle pieces with vertices posi-
tionned at {(a, c), (b, c), (b, d), (a, d), ( a+b

2 , c+d
2 )} and height the left-hand sides
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of (12) as well as u(Mx, My) respectively. In particular, fPWL ≤ u on D.
In addition, direct computations show that f(x, y) ≤ fPWL(x, y) for (x, y) ∈
{(a, c), (b, c), (b, d), (a, d), ( a+b

2 , c+d
2 )}. Finally, as f and fPWL are linear on the

four pieces domain of fPWL, we have f ≤ fPWL ≤ u on D.

To build a PWL inner corridor exploiting Proposition 16 in our algorithm, a
method called efficiency refinement is used. It is described after the introduction
of the bounding efficiency η.

Definition 17 (bounding efficiency η). Let C be a corridor with D(C) a polyg-
onal domain of R2. Let CPWL be a PWL inner corridor of C. We say that CPWL
achieves a bounding efficiency for C of η ∈ [0, 1] if the pointwise height (PH)
ratio (CPWL)P H (x,y)

CP H (x,y) is greater or equal to η for each (x, y) ∈ D(C).

Proposition 18. Let C be a corridor with D(C) a polygonal domain of R2

and let η ∈ [0, 1]. If C has constant pointwise height, then a PWL inner cor-
ridor CPWL has a bounding efficiency for C of η if the pointwise height ratio
(CPWL)P H (x,y)

CP H (x,y) is greater or equal to η for each (x, y) vertex of a piece domain of
ũ or l̃.

Proof. C has constant pointwise height. Thus for each piece of CPWL, the mini-
mum pointwise height ratio is on an extreme point of the piece domain, that is to
say on a vertex of the piece domain, which is lower bounded by η by hypothesis.

The efficiency refinement procedure builds a PWL inner corridor CPWL of
C achieving a bounding efficiency of η if it has a constant pointwise height,
but without this property, it only checks that the pointwise height ratio at the
vertices of each piece is η.

After having found a rectangle D containing D(C), it creates an initial PWL
corridor likely unvalid (l |≤ u) with only one rectangular piece on D, and then
iteratively refines the pieces that do not satisfy a bounding efficiency of η at the
4 vertices into 4 new pieces until each piece satisfies the efficiency, which implies
the validity of the PWL inner corridor as well.

Parameter η needs to be adjusted depending on the quality of PWL inner
corridor CPWL wanted. To produce a really good approximation of corridor
C, η near 1 shall be used, but the number of pieces forming CPWL increases
consequently, thus increasing the computation time of (MP ′′

d,β) to be solved
later on.

5 Numerical Experiments
The performance of our framework is compared to the state of the art. Our best
heuristic (found with experiments in appendix (Duguet and Ngueveu [2022]))
called DN99 uses scoring function PaD, starting vertex set to med and η = 0.99.
Also, to illustrate the effects of parameter η, results of a heuristic which uses the
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Table 1: Expression and domain of benchmark functions
ref expression Domain ref expression Domain
L1 x2 − y2 [0.5, 7.5]× [0.5, 3.5] N3 xsin(y) [1.0, 4.0]× [0.05, 3.1]
L2 x2 + y2 [0.5, 7.5]× [0.5, 3.5] N4 sin(x)

x y2 [1.0, 3.0]× [1.0, 2.0]
N5 xsin(x)sin(y) [0.05, 3.1]× [0.05, 3.1]

N1 xy [2.0, 8.0]× [2.0, 4.0] N6 (x2 − y2)2 [1.0, 2.0]× [1.0, 2.0]
N2 xe−x2−y2 [0.5, 2.0]× [0.5, 2.0] N7 e−10(x2−y2)2 [1.0, 2.0]× [1.0, 2.0]

same parameters as DN99 but with η = 0.95, are shown. This second heuristic
is called DN95.

Heuristics from the state of the art are described in articles (Codsi et al.
[2021], Kazda and Li [2021], Rebennack and Kallrath [2015]). Recall that (Reben-
nack and Kallrath [2015]) proposes two heuristics: one based on triangulation
(RK2D), and one based on a decomposition of the bivariate function into a sum
of one variable functions to approximate separately (RK1D). Heuristic LinA2D
is based on the same decomposition as RK1D, but uses library LinA from (Codsi
et al. [2021]) to compute the approximation of univariate functions. Obviously
LinA2D outperforms RK1D since LinA computes optimal non necessarily con-
tinuous univariate PWL functions instead of optimal continuous univariate PWL
functions for RK1D. The heuristic of (Kazda and Li [2021]) is denoted KL2D.

Those 5 heuristics are compared on the benchmark instances of (Rebennack
and Kallrath [2015]), which consist of 45 instances obtained from 9 functions
and 5 different absolute approximation errors for each function. An absolute
approximation error of δ for function f means that the corresponding corridor
C is between functions u and l satisfying l(x, y) = f(x, y) − δ and u(x, y) =
f(x, y) + δ. The first two functions of the benchmark are linearly separable
and refered to as L1,L2. The remaining seven are not linearly separable and
thus refered to as N1,...,N7. The expression and domain of each function are
described in Table 1.

For our heuristics as well as LinA2D, JuMP (v. 0.21.8) is used as modeling
language, Gurobi (v. 9.1) is the (MI)LP solver and a CPU of 4.4 GHz using a
single core and 32GB RAM. Moreover, heuristic RK2D uses the modeling lan-
guage GAMS (v. 23.6), the global optimization solver LindoGlobal (v. 23.6.5),
a CPU intel i7 with a single core, 2.93 GHz and 12 GB RAM. Finally, KL2D
uses Pyomo (v. 5.6.4) as modeling language, CPLEX (v. 12.8) and 10 threads to
solve MILPs, COUENNE (v.0.5.8) and 1 thread to solve NLPs, a CPU with 3.6
GHz and 32 GB RAM. As for the time limit, LinA2D and RK2D do not have
one, KL2D allows 3600 seconds for each MILP problem, while our heuristics
allow 3600 seconds for each LP problem. The differences in computation time
between heuristics are in several orders of magnitude, therefore these differences
are mainly due to the algorithms differences and are only marginally impacted
by the differences in hardware.

Results are shown in Table 2. For each of the five heuristics we present the
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number of pieces n obtained by the heuristic as well as its computation time in
seconds. Bold integer highlight the best solution found for each instance, i.e.
the ones with the minimum number of pieces. “TO” means that the heuristic
has stopped because of a time out, thus without any valid solution. In this case,
“-” means that no solutions were found.

In terms of minimum number of pieces, DN99 performs the best with 28
best solutions out of 45 instances, followed by KL2D with 19 out of 45, DN95
with 15 out of 45, LinA2D with 8 out of 45 and finally RK2D with 1 out of 45.
As for the computation time, the hardware and software used for the different
heuristics are of different quality, thus it will not be a precise tool to compare
the time needed for each heuristics. However, it can be said that LinA2D takes
less than 1 second to execute, RK2D and DN95 take seconds to minutes, while
KL2D and DN99 take seconds to hours.

A more in-depth analysis shows that LinA2D is the best only for instances
with linearly separable functions (L1 and L2), but it does really poorly on the
other functions. KL2D is the best 19 times out of the 24 instances where it
terminates with a solution, which shows a clear limit to the size of the instance
it can tackle, due to the increasing size of MILPs it solves. The effect of the
change of parameter η from 95% to 99% in heuristics DN95 and DN99 is on
average a decrease of 9.1% of the number of pieces of the solutions, at the cost of
an increase of 301% of the computation time. It is an open question what value
of parameter η should be taken in order to achieve a certain trade off between
computation time and minimisation of the number of pieces.

6 Conclusion
We introduced a framework to create linearization algorithms based on the
solution of the R2-corridor fitting problem. Convex polygons were used to tile
the domain instead of triangles, a scoring function ranking candidate pieces was
developed and a good feasible solution of a GSIP was computed via a series
of LP feasibility problems. Finally, numerical experiments showed that our
heuristics outperforms the state of the art on not linearly separable functions.
Further work could attempt to diminish the relatively high computation time
of the heuristics, search for better instanciation of the different parts of the
framework or apply those heuristics to approximate real-world MINLPs to show
their practical usage.
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