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ABSTRACT

This paper concerns the event-triggered dynamic output-feedback control of discrete-time linear
parameter-varying (LPV) systems subject to saturating actuators. Two independent event-triggering
schemes are introduced to determine whether the current signals should be transmitted a) from the
sensor to the controller and b) from the controller to the actuator. As a result, the communication
resources can be significantly saved. Both the emulation-based problem and the co-design problem
are addressed. Sufficient conditions based on linear matrix inequalities (LMIs) are derived to ensure
the regional asymptotic stability of the origin for the closed-loop system. A convex optimization pro-
cedure is proposed to determine the controller matrices and the event-triggering parameters aiming at
reducing the number of updates on the independent channels sensor-to-controller and controller-to-
actuator. At last, numerical examples are employed to testify to the validity of the proposed methods.

1. Introduction
In the last two decades, an extensive research effort has

been devoted to network control systems (NCS). These sys-
tems are characterized by the interconnection among control
systems devices through a communication network. Sev-
eral advantages arise from its use, such as lower costs, ease
of deployment and maintenance, flexibility (see, for exam-
ple, [14] and references therein). However, the communica-
tion resources of the network are often limited, which moti-
vate new challenges in the control of systems. In this con-
text, event-triggered control (ETC) emerged as an alterna-
tive to traditional sampled-data control [26]. The idea of the
ETC is to execute control tasks after the occurrence of an
event, generated by a specified event-triggering mechanism
(ETM), rather than the elapse of a certain period of time, as
in most traditional digital control setups. In such a way, ETC
is able to significantly reduce the number of communications
between process and controller, and controller and actuator,
while maintaining a satisfactory closed-loop performance.
The existing approaches for the design of event-triggered
controllers can be issued either from emulation-based ap-
proach [7, 13] or from co-design approach [21, 29, 1]. In
the emulation-based framework, only the controller or the
ETC is designed while the other part is given, whereas in the
co-design framework both are simultaneously designed. Al-
though, several event-triggering schemes and control strate-

⋆This work has been supported by the Brazilian Agencies CAPES
under the project Print CAPES-UFSC “Automation 4.0”, CNPq
(311208/2019-3 and 306927/2017-9); and by ANR under the project
HANDY number 18-CE40-0010.

∗Corresponding author
carla.souza93@hotmail.com (C. de Souza); valter@ieee.org (V.J.S.

Leite); tarbour@laas.fr (S. Tarbouriech); eugenio.castelan@ufsc.br (E.B.
Castelan)

ORCID(s): 0000-0002-9790-7877 (C. de Souza); 0000-0002-8177-4547
(V.J.S. Leite); 0000-0002-0816-5614 (S. Tarbouriech); 0000-0002-8079-3738
(E.B. Castelan)

gies have been proposed in literature (see, for example, [12,
35, 22, 33, 37, 19, 27, 36, 18, 8]), only a few explore the
characteristics of the discrete-time linear parameter-varying
(LPV) systems subject to input saturation.

The framework of the NCS considered in this paper is
illustrated in Figure 1, where the process to be controlled is
a LPV system with a saturating actuator.

To reduce the number of the sensor and the controller
data transmissions in the network while preserving the sta-
bility and some certain control performance, two event gen-
erators are introduced, one in the channel between the sen-
sor and the controller and another in the channel between
the controller and the actuator. Event-triggering conditions
are embedded in the event generators to determine whether
the current signals (output and input) should be transmitted
through the networks at every instant. As a result, the usage
of the communication resources can be significantly saved.

In order to study the event-triggering scheme depicted
in Figure 1, both the plant and the controller are supposed to
be LPV. In the literature, some results regarding the event-
triggered control for LPV systems without saturating inputs
can be found. [17] addresses the co-design problem of event
generator and state-feedback controller for discrete-time LPV
systems where only estimated parameters satisfying certain
uncertainty level is known. An event-triggered ∞ con-
trol for discrete-time LPV systems is proposed in [16] by
jointly designing a mixed ETM and a state feedback con-
troller. [2] investigates the problem of discretization and dig-
ital state/output feedback control design for continuous-time
LPV systems subject to a time-varying networked-induced
delay. [9, 10] address an event-based reference tracking con-
trol for discrete-time LPV systems by simultaneously de-
signing event-triggering conditions and a state feedback con-
troller. A co-design condition in a sense of input-to-state
practically stable (ISpS) of a mixed ETM and a static output-
feedback controller is established in [34] for stabilization of
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Figure 1: Event-triggering closed-loop system.

discrete-time LPV systems.
Similarly, some results considering the event-triggering

control for systems subject to saturating inputs but outside
the LPV paradigm have been published. [33] proposes a
procedure to design a static state feedback that maximizes
an estimate of the domain of attraction of saturated discrete-
time system for a given triggering function. A cone comple-
mentary linearization algorithm is proposed in [38] for solv-
ing the non-convex optimization problem in order to obtain
the co-design of a state-feedback controller with saturation.
[11, 6] address the co-design problem for an event-triggered
controller based on a static state feedback for a discrete-time
system subject to actuator saturation. Also, the co-design
based on a dynamic state-feedback controller is proposed in
[6].

In the current paper, we address the problem depicted in
Figure 1 by expanding the results obtained in [4] and [5], in
which only an ETM affected the output signal. We consider
an approach based on Lyapunov theory as in [26, 29, 11, 20].
Although the proposed ETM is simpler than that one stud-
ied in [25], the contribution of the current paper includes the
co-design, which expects to lead to lower transmission rates.
Thus, for both emulation and co-design cases, convex opti-
mization procedures are formulated to design a) the output
and control event generator parameters and b) the parameter-
dependent dynamic output-feedback controller. In all cases,
the objective is to reduce data transmission on the sensor-
to-controller and controller-to-actuator channels. We ensure
the regional asymptotic stability of the closed-loop system
and characterize an estimate of the respective basin of at-
traction of the origin.

This paper is organized as follows. Section 2 introduces
the class of systems under consideration, and states the prob-
lem to be solved. Some preliminaries results useful in the
development of the conditions are given in Section 3. Sec-
tion 4 presents the conditions of emulation, while Section 5
presents those of the co-design. In Section 6 are proposed
optimization procedureswith different control objectives. Nu-
merical examples are given in Section 7, which verify the
effectiveness of the presented approach. Finally, some con-
cluding remarks end the paper.

Notation: ℝ, and ℝ+ represent the set of real and non-
negative real numbers, respectively. The matrix 0 stands for
the null matrix of appropriate dimensions and In corresponds
to the identity matrix with dimensions n×n. ℝnu×n is the set
of matrices with real entries and dimensions m × n. A =
diag{A1, A2} denotes the block-diagonal matrix composed
by the blocksA1 andA2. A(l) indicates the ltℎ line of a vec-
tor or a matrix A. [a, b] denotes the set of integer numbers
belonging to the interval from a ∈ ℕ to b ∈ ℕ, b ≥ a. The
symbol⋆ represents the symmetric blocks within a matrix, ∙
represents an element that has no influence on development.
For x ∈ ℝn, ‖x‖ =

√

x⊤x denotes the Euclidean norm and
‖x‖2Q is defined by x⊤Qx with 0 < Q = Q⊤ ∈ ℝn×n.

2. Problem Statement
The plant is described by the following model:

xp,k+1 = A(�k)xp,k + B(�k)sat(ûk),
yk = Cxp,k,

(1)

where xp,k ∈ ℝn is the state vector, ûk ∈ ℝnu is the most re-
cently transmitted value of the control input uk ∈ ℝnu , and
yk ∈ ℝny is the measurable output. The symmetric satura-
tion function, sat(ûk), is given by

sat(ûk(l)) = sign(ûk(l)) min(|ûk(l)|, ū(l)), (2)

with ū(l) > 0, l ∈ [1, nu], the limit of the saturation. The
vector of time-varying parameters �k, which are assumed
measurable and available on-line [3], lies in the unitary sim-
plex defined by

Θ ≜

{ N
∑

i=1
�k(i) = 1, �k(i) ≥ 0, i ∈ [1, N]

}

. (3)

The matrices A(�k) ∈ ℝn×n and B(�k) ∈ ℝn×nu belong to a
polytopic set given by the convex combination ofN known
vertices as follows

[

A(�k) B(�k)
]

=
N
∑

i=1
�k(i)

[

Ai Bi
]

, �k ∈ Θ. (4)
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Remark 1. In this paper, the system (1) can be regarded
as an LPV discrete-time model issued from an identifica-
tion process [31] or as a discretized version of the following
continuous-time process

ẋp(t) = Ã(�(t))xp(t) + B̃(�(t))sat(u(t)),
y(t) = C̃xp(t).

(5)

Note that there are several methods of discretization in
the literature. One of them consists of discretizing the LPV
system (5) in the same way as for LTI systems, under the as-
sumption of slow parameter variation. In such a case, the
matrices A(�k), B(�k) and C are given by the approxima-
tions A(�k) = eÃ(�(t))Ts , B(�k) = ∫ Ts0 eÃ(�(t))�d�B̃(�(t)),
and C = C̃ , where Ts denotes the sampling period and
�k = �kTs ∈ Θ, ∀t ∈ [kTs, (k + 1)Ts) [23, 30]. In this
sense, we assume the plant is controlled in a periodic event-
triggering way [12, 32]. Also, the measurement is made pe-
riodically with the time interval Ts at the sampling instants
and the control input is updated employing a zero-order-
older (ZOH). Therefore, the approach proposed can be used
to treat both continuous-time and discrete-time systems. It is
also worth noting that, using this approach, the challenging
problem of the minimum inter-event time for event-triggered
output feedback control is overcome, since the inter-event
time are at least lower bounded by the sampling period.

To stabilize the system (1), we adopt the following para-
meter-dependent dynamic output-feedback controller:

xc,k+1 = Ac(�k)xc,k + Bc(�k)ŷk − Ec(�k)Ψ(ûk),
uk = Cc(�k)xc,k +Dc(�k)ŷk,

(6)

where xc,k ∈ ℝn is the control state, Ψ(ûk) ∶ ℝnu → ℝnu

is the dead-zone non-linearity defined by Ψ(ûk) = ûk −
sat(ûk), and ŷk is the most recently transmitted value of the
output measurement yk to the controller. The anti-windup
action, represented by the matrix Ec(�k) ∈ ℝn×nu , is added
tomitigate the effects caused by the saturating actuators [28].
Therefore, it acts only when the saturation occurs, i.e., wher-
ever Ψ(ûk) ≠ 0. About the controller matrices, let us con-
sider the following assumption:

Assumption 1. The matrices of the controller (6) are sup-
posed to have the following structure:

[

Ac(�k) Bc(�k)
]

=
N
∑

i=1

N
∑

j=i
(1 + �ij)�k(i)�k(j)

[

Acij
2

Bcij
2

]

,

[

Cc(�k) Dc(�k)
]

=
N
∑

i=1
�k(i)

[

Cci Dci
]

, Ec(�k)=
N
∑

i=1
�k(i)Eci,

with �k ∈ Θ and �ij = 1 if i ≠ j and �ij = 0 otherwise.

The controller structure introduced by Assumption 1 has
a quadratic dependency on the parameter �k. Let us stress
that any dynamic controller given in a standard polytopic
form can be described according to Assumption 1 by us-
ing the fact that:

(

∑N
i=1 �k(i)

)(

∑N
i=1 �k(i)Mi

)

= 0.5
∑N
i=1

∑N
j=i(1 + �ij)�k(i)�k(j)Mij , with �k ∈ Θ and �ij = 1 if i ≠ j

and �ij = 0 otherwise.
However, the structure proposed inAssumption 1 ismore

general than the polytopic one leading to the fact that any dy-
namic controller satisfying Assumption 1 cannot always put
in a polytopic form. Moreover, a similar but simpler devel-
opment could be performed assuming Ac(�) and Bc(�) with
polytopic description since matrices Cc and Dc do not de-
pend on �, i.e., they would be time-invariant.

The transmitted output ŷk and the transmitted control
ûk are generated by the following two independent event-
triggering conditions, that shares the same clock,

ŷk ∶=

{

yk, ‖ŷk−1 − yk‖2QΔy > ‖yk‖2Qy ,
ŷk−1, otherwise,

(7)

and

ûk ∶=
{

uk, ‖ûk−1 − uk‖2QΔu > ‖uk‖2Qu ,
ûk−1, otherwise,

(8)

where the symmetric positive definite matrices QΔy, Qy ∈
ℝny×ny and QΔu, Qu ∈ ℝnu×nu are triggering parameters to
be designed. These matrices act as weights on the terms as-
sociated with the triggering conditions. Their choice has a
direct impact on the event-triggering policy, and, thus, on the
way to reduce the data transmission. Therefore, by means of
the event-triggering conditions (7) and (8), which are veri-
fied periodically, it is decided whether or not to transmit new
measurements and control signals, respectively, through the
network. Note that, unlike [25], the proposed mechanisms
do not share the same information, which makes them inde-
pendent of each other.

Due to the control input saturation, the closed loop be-
haves as a non-linear system, and the global stability is no
longer guaranteed. In this case, the region of attraction 
in which belongs the augmented state vector xk = [x⊤p,k x

⊤
c,k]

⊤

∈ ℝ2n, must be considered. As the exact characterization of
 is, generally, a hard task, it is important to character-
ize subsets with well-defined analytical representation, such
as ellipsoidal and polyhedral sets. By denoting  the esti-
mated attraction region, then we are interested in computing
 ⊆ .

From this, the problems we intend to solve can be sum-
marized as follows.

Problem 1 (Emulation problem). Given the dynamic out-
put feedback controller (6), which regionally stabilizes the
LPV system (1) with saturating actuators in the absence of
communication networks, design the two independent event-
triggering conditions (7) and (8) to reduce the number of
data transmissions on the sensor-to-controller and controller-
to-actuator channels, respectively, while preserving the sta-
bility of the closed-loop system.

Problem 2 (Co-design problem). Given the LPV system (1)
with saturating actuators, co-design the parameter-dependent
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dynamic output feedback controller (6) and the two indepen-
dent event-triggering conditions (7) and (8), ensuring the re-
gional asymptotic stability of the closed-loop system, while
reducing the number of data transmissions on the sensor-to-
controller and controller-to-actuator channels, respectively.

3. Preliminaries Results
The LPV system (1) under the dynamic controller (6),

can be represented by the following model:

xk+1 = A(�k)xk − B(�k)Ψ(uk) + Ey(�k)ey,k + Eu(�k)eu,k,
uk = K(�k)xk +Dc(�k)ey,k,
yk = ℂxk, (9)

where xk =
[

x⊤p,k x⊤c,k
]⊤

∈ ℝ2n is the augmented state,
ey,k ∈ ℝny is the error between the latest transmission ŷk and
the latest sampling yk, and eu,k ∈ ℝnu is the error between
the latest transmission ûk and the latest sampling uk. The
parameter-varying matrices verify from Assumption 1:

[

A(�k) Ey(�k)
]

=
N
∑

i=1

N
∑

j=i
(1 + �ij)�k(i)�k(j)

[

Aij
2

Eyij
2

]

,

[

B(�k) Eu(�k) K(�k)⊤
]

=
N
∑

i=1
�k(i)

[

Bi Eui K⊤i
]

,

with �k ∈ Θ and �ij = 1 if i ≠ j and �ij = 0 otherwise, and
are defined by

Aij =
[

Ai + Aj + (BiDcj + BjDci)C BiCcj + BjCci
BcijC Acij

]

,

Bi =
[

Bi
Eci

]

, Eui =
[

Bi
0

]

, Eyij =
[

BiDcj + BjDci
Bcij

]

,

Ki =
[

DciC Cci
]

, and ℂ =
[

C 0
]

.

Note that if yk is updated at instant k, then from (7) it
follows that ey,k = ŷk − yk = yk − yk = 0, and if yk is
not updated at instant k, then from (7) it also follows that
ey,k = ŷk − yk = ŷk−1 − yk. In other words, the following
inequality is always satisfied:

‖ey,k‖
2
QΔy

≤ ‖yk‖
2
Qy
. (10)

Similarly, if uk is updated at instant k, then from (8) one
gets eu,k = uk − uk = 0, and if uk is not updated at instant k,
then from (8) one gets eu,k = ûk−1 − uk. Consequently, the
following condition always holds

‖eu,k‖
2
QΔu

≤ ‖uk‖
2
Qu
. (11)

To investigate the regional asymptotic stability of the
closed-loop system (9), we use the following candidate Lya-
punov function

V (xk) = x⊤kP
−1(�k)xk, (12)

where P (�k) =
∑N
i=1 �k(i)Pi, with 0 < Pi = P⊤i ∈ ℝ2n×2n

and �k ∈ Θ. If (12) is a Lyapunov function, then the esti-
mated attraction region is computed through an associated
level set  =  (1) = {xk ∈ ℝ2n ∶ V (xk) ≤ 1}, which
can be computed as [15, Lemma 4]:

 =  (1) =
⋂

∀�k∈Θ
(P (�k)−1, 1) =

⋂

i∈[1,N]
(P−1i , 1), (13)

with

(P−1i , 1) =
{

xk ∈ ℝ2n ∶ x⊤kP
−1
i xk ≤ 1

}

. (14)

In addition, to deal with the saturation, we use the fol-
lowing property directly derived from [28, Lemma 1.6, p.
43].

Lemma 1. Let uk given by (6), ū ∈ ℝnu
+ , and amatrixG(�k) =

∑N
i=1 �k(i)Gi withGi ∈ ℝnu×2n for [1, N] and �k ∈ Θ, such

that

(ū) ≜ {xk ∈ ℝ2n ∶ |G(�k)xk| ≤ ū}.

If xk ∈ (ū), then for any diagonal positive definite matrix
T ∈ ℝnu×nu , the following inequality is verified

Ψ(ûk)⊤T (Ψ(ûk) − (K(�k) − G(�k))xk −Dc(�k)ey,k
− eu,k) ≤ 0.

4. Emulation-based approach
In this section, we provide a solution to Problem 1. In

this case, we assume that the dynamic output-feedback con-
troller (6), which can regionally stabilize the system (1) in
the absence of communication networks, is available and we
design the parameters of the event-triggering rules (7) and
(8) that minimize the update rate on both channels.

Theorem 1. Consider the LPV system (1) in closed-loopwith
the dynamic output-feedback controller (6), where the matri-
ces Acij , Bcij , Cci, Dci, and Eci of the controller are given.
Suppose that there exist symmetric positive definite matri-
ces Pi ∈ ℝ2n×2n, QΔu, Q̂u ∈ ℝnu×nu , QΔy, Q̂y ∈ ℝny×ny , a
positive definite diagonal matrix S ∈ ℝnu×nu , matrices U ∈
ℝ2n×2n andHi ∈ ℝnu×2n, with i ∈ [1, N] and j ∈ [i,N],
such that (15) (provided at the top of the next page) and the
following LMI condition are feasible,
[

U + U⊤ − Pi ⋆
Hi(l) ū2(l)

]

> 0, i ∈ [1, N],l ∈ [1, nu]. (16)

Then, the closed-loop system (9) subject to the ETMs (7) and
(8) with matrices QΔu, Qu = Q̂−1u , QΔy and Qy = Q̂−1y
is regionally asymptotically stable and has a reduced num-
ber of data transmissions on the sensor-to-controller and the
controller-to-actuator channels. Moreover, the region  ,
computed in (13)-(14), is an estimate of the region of attrac-
tion of the origin for the closed-loop system.
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

U + U⊤
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

− 12 (Pi + Pj)
0 QΔu ⋆ ⋆ ⋆ ⋆ ⋆
0 0 QΔy ⋆ ⋆ ⋆ ⋆

1
2 (Hi +Hj − KiU − KjU ) −Inu − 12 (Dci +Dcj) 2S ⋆ ⋆ ⋆

1
2AijU

1
2 (Euj + Euj)

1
2Eyij − 12 (Bi + Bj)S P̂r ⋆ ⋆

1
2 (Ki + Kj)U 0 1

2 (Dci +Dcj) 0 0 Q̂u ⋆
ℂU 0 0 0 0 0 Q̂y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

> 0,

r, i ∈ [1, N], j ∈ [i,N],

(15)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P−1(�k) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
0 QΔu ⋆ ⋆ ⋆ ⋆ ⋆
0 0 QΔy ⋆ ⋆ ⋆ ⋆

−S−1(K(�k) − G(�k)) −Inu −S−1Dc(�k) 2S−1 ⋆ ⋆ ⋆
A(�k) Eu(�k) Ey(�k) −B(�k) P (�k+1) ⋆ ⋆
K(�k) 0 Dc(�k) 0 0 Q̂u ⋆
ℂ 0 0 0 0 0 Q̂y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

> 0. (19)

Proof 1. By supposing the feasibility of (16), multiply its
left-hand side by �k(i) and sum it up for i ∈ [1, N]. Then,
replace H(�k) by G(�k)U , use the fact that [P (�k) − U ]⊤-
×P−1(�k)[P (�k)−U ] ≥ 0 or equivalentlyU⊤+U−P (�k) ≤
U⊤P−1(�k)U , and pre- and post-multiply the resulting in-
equality by the matrix diag{U−⊤, 1}, to obtain

[

P−1(�k) ⋆
G(�k)(l) ū2(l)

]

> 0. (17)

Finally, apply Schur complement and pre- and post-multiply
the resulting inequality by x⊤k and xk, respectively, to obtain

−x⊤kP (�k)
−1xk+x⊤kG(�k)

⊤
(l)(ū

2
(l))

−1G(�k)(l)xk ≤ 0, (18)

which ensures V (xk) = x⊤kP
−1(�k)xk ≤ 1, and |G(�k)xk| ≤

ū, and consequently, ⊆ (ū). Thus, any trajectory of the
closed-loop system belonging to  belongs also to (ū).
Therefore, the feasibility of (16) implies that the region 
is included in (ū), and consequently, Lemma 1 applies.

Moreover, by supposing the feasibility of (15), we have
from block (1,1) that U is non-singular. So, first multiply the
left-hand side of (15) by �k+1(r), �k(i) and �k(j), and sum it up
for r, i ∈ [1, N] and j ∈ [1, N]. Then, replaceH(�k) by
G(�k)U and use the fact that [P (�k) −U ]⊤P−1(�k)[P (�k) −
U ] ≥ 0 or equivalently U⊤ + U − P (�k) ≤ U⊤P−1(�k)U .
Next, pre- and post-multiply the resulting inequality by the
matrix diag{U−⊤, Inu , Iny , S

−1, I2n, Inu , Iny} and its trans-
pose, respectively, to obtain the inequality (19) (provided at
the top of the next page).

After that, apply Schur complement, pre- and post-multiply
the resulting inequality by the augmented vector X⊤

k =

[

x⊤k e⊤u,k e⊤y,k Ψ(ûk)⊤
]

andXk, respectively, and replace
A(�k)xk+Eu(�k)eu,k+Ey(�k)ey,k−B(�k)Ψ(ûk) by xk+1 ac-
cording to (9), to obtain

x⊤k+1P
−1(�k+1)xk+1−x⊤kP

−1(�k)xk−2Ψ(ûk)⊤T
(

Ψ(ûk)

−(K(�k)−G(�k))xk−Dc(�k)ey,k−eu,k
)

−eTu,kQΔueu,k

+ uTkQuuk − e
T
y,kQΔyey,k + y

T
kQyyk ≤ 0 (20)

Finally, assume that x⊤k+1P
−1(�k+1)xk+1−x⊤kP

−1(�k)xk
is equivalent to V (xk+1) − V (xk) = ΔV (xk), and denote
S−1 = T , Q̂−1y = Qy, and Q̂−1u = Qu, to get

ΔV (xk) < 2Ψ(ûk)⊤T
(

Ψ(ûk) − (K(�k) − G(�k))xk

−Dc(�k)ey,k − eu,k
)

< e⊤u,kQΔueu,k − u
⊤
kQuuk

+ e⊤y,kQΔyey,k − y
⊤
kQyyk ≤ 0. (21)

Hence, the feasibility of (15) ensures the positivity of the
function given in (12) and the negativity ofΔV (xk). Also, by
inequalities (10) and (11), we have that the event-triggering
conditions (7) and (8) are always satisfied, respectively.

Therefore, by Lyapunov theory, the regional stability of
closed-loop system (9) under the event-triggering mecha-
nisms (7) and (8) is ensured whenever the state trajectories
evolve inside the estimated attraction region  , computed
as in (13)-(14), and the sensor-to-controller and controller-
to-actuator channels will have a reduced data transmission
rate, whenever (10) and (11) are verified.

Remark 2. Theorem 1 can be adapted to treat particular
cases usually found in the literature, in which there is an
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event generator in only one of the communication channels
(see, for example, [37, 4, 5, 6]). To consider an event gen-
erator only in the channel between the sensor and the con-
troller, it is necessary to delete the second and the sixth lines
and columns of the LMI (15). On the other hand, to admit an
event generator only in channel between the controller and
the sensor, we have to delete the third and the seventh lines
and columns of the LMI (15).

5. Co-design approach
In the previous section, the dynamic output-feedback con-

troller is supposed to be known, and capable to regionally
stabilize the system (1) without communication networks.
Therefore, only the event-triggeringmechanisms are designed
by Theorem 1. The disadvantage is that the control perfor-
mance of the closed-loop system may be constrained by the
previously selected controller. To overcome such a restric-
tion, a co-design approach of the dynamic controller and
the event-triggering mechanisms is proposed in this section,
thus providing a solution to Problem 2.

Let us start by introducing some matrices useful to the
developments. Thus, inspired by [24], we use matrices X,
Y ,W and, Z ∈ ℝn×n to define

U =
[

X ∙
Z ∙

]

, U−1 =
[

Y ∙
W ∙

]

,Φ =
[

Y In
W 0

]

, (22)

which yield

UΦ =
[

In X
0 Z

]

and Û = Φ⊤UΦ =
[

Y ⊤ M⊤

In X

]

, (23)

where, by construction, we have

M⊤ = Y ⊤X +W ⊤Z. (24)

By partitioning matrix P =
[

P11 ⋆
P21 P22

]

, one obtains:

P̂i = Φ⊤PiΦ =
[

P̂i11 ⋆
P̂i21 P̂i22

]

, (25)

with P̂i11 = Y ⊤Pi11Y +W ⊤P⊤i12Y +Y
⊤Pi12W +W ⊤Pi22W ,

P̂i21 = P⊤i11Y + Pi12W , and P̂i22 = Pi11. With the aid of
matrices in (22)-(25), we can provide a solution to Problem
2 through the next theorem.

Theorem 2. Consider there exist symmetric positive defi-
nite matrices P̂i ∈ ℝ2n×2n, QΔu, Q̂u ∈ ℝnu×nu , QΔy, Q̂y ∈
ℝny×p, a positive definite diagonal matrix S ∈ ℝnu×nu , and
matricesX, Y ,M , Âcij , B̂cij , Ĉci, D̂ci, and Êci of appropri-
ate dimensions, with i ∈ [1, N] and j ∈ [i,N], such that
(26) (given at the top of this page) and the following LMI
conditions are feasible,
[

Û + Û⊤ − P̂i ⋆
Hi(l) ū2(l)

]

> 0, i ∈ [1, N],l ∈ [1, nu], (27)

with

Ξ1ij =
[

(D̂ci + D̂cj)C Ĉci + Ĉcj
]

,

Ξ2ij =
[

Y ⊤(Ai + Aj) + B̂cijC
Ai + Aj + (BiD̂cj + BjD̂cj)C

Âcij
(Ai + Aj)X + (BiĈcj + BjĈci)

]

,

Ξ3ij =
[

Y ⊤(Bi + Bj)
Bi + Bj

]

, Ξ4ij =
[

B̂cij
BiD̂cj + BjD̂ci

]

,

Ξ5ij =
[

−(Êci + Êcj)
−(Bj + Bi)S

]

, and Û =
[

Y ⊤ M⊤

In X

]

.

Then, by choosing non-singular matricesW andZ such that
(24) holds, we have that the saturated LPV system (1) under
the dynamic output-feedback compensator (6) with matrices
defined by

[

Acij Bcij
Cci Dci

]

=
[

W ⊤ Y ⊤(Bi + Bj)
0 Inu

]−1

×
[

Âcij − Y ⊤(Ai + Aj)X B̂cij
Ĉi D̂i

] [

Z 0
CX Iny

]−1

Eci = (W −1)⊤(ÊciS−1 − Y ⊤Bi), (28)

subject to the ETMs (7) and (8) with matrices QΔu, Qu =
Q̂−1u , QΔy and Qy = Q̂−1y is regionally asymptotically sta-
ble and has a reduced number of data transmissions on the
sensor-to-controller and controller-to-actuator channels. Mo-
reover, the region , computed in (13)-(14), is an estimate
of the region of attraction of the origin for the closed-loop
system.

Proof 2. By supposing the feasibility of (26), from block
(1,1), we have that Û +Û⊤ > 0, and consequently, Û is non-
singular. In view of (23), X and Y are also non-singular,
and by rewritten Û as

[

Y ⊤ M⊤

In X

]

=
[

In Y ⊤
0 In

] [

0 M⊤ − Y TX
In X

]

, (29)

we can also verify the non-singularity of (M⊤−Y ⊤X). As a
result, it is always possible to choose non-singular matrices
W and Z, such that (24) is verified. This shows that the
gains (28) are well-defined.

Furthermore, consider the matrices (22)-(25) and the
following change of variables

[

Âcij B̂cij
Ĉi D̂i

]

=
[

W ⊤ Y ⊤(Bi + Bj)
0 Inu

] [

Acij Bcij
Cci Dci

]

×
[

Z 0
CX Iny

]

+
[

Y ⊤(Ai + Aj)X 0
0 0

]

,

Êci = W ⊤EciS + Y ⊤BiS, (30)

by pre- and post-multiplying (26) by diag{Φ−⊤, Inu , Iny ,Φ
−⊤,

Inu , Iny} and its transpose, respectively, one gets (15). Sim-
ilarly, by pre- and post-multiplying (27) by diag{Φ−⊤, 1}
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⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Û + Û⊤
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

− 12 (P̂i + P̂j)
0 QΔu ⋆ ⋆ ⋆ ⋆ ⋆
0 0 QΔy ⋆ ⋆ ⋆ ⋆

1
2 (Hi +Hj − Ξ1ij) −Inu − 12 (D̂ci + D̂cj) 2S ⋆ ⋆ ⋆

1
2Ξ2ij

1
2Ξ3ij

1
2Ξ4ij

1
2Ξ5ij P̂r ⋆ ⋆

1
2Ξ1ij 0 1

2 (D̂ci + D̂cj) 0 0 Q̂u ⋆
[

C CX
]

0 0 0 0 0 Q̂y

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

> 0, r, i ∈ [1, N], j ∈ [i,N] (26)

and its transpose, respectively, one obtains (16). Thus, as
in the proof of Theorem 1, these two equivalences allow to
conclude the proof.

Remark 3. The design of the dynamic controller (7) through
(26) in Theorem 2 imposes, for given X, Y andM , to com-
pute non-singularmatricesW andZ satisfying (24) or, equiv-
alently,W ⊤Z =M⊤ − Y ⊤X. However, the choice of these
matrices can be performed in different ways, for example,
we can set W = I, for any given scalar  , and compute
Z = (M⊤ − Y ⊤X)−1, or even use any matrix decomposi-
tion, such as LU and QR factorizations, to determine them.

Remark 4. Theorems 1 and 2 can be simplified to deal with
LTI and non-saturated systems. In the LTI case, it is re-
quired to set r = i = j = 1, which results in fixed matri-
ces. Notice that, the dynamic and input matrices of the con-
troller, Ac and Bc , are retrieved by setting Ac11 = 0.5Ac11
and Bc = 0.5Bc11, according to Assumption 1, with Ac11
and Bc11 calculated as in (28). In the non-saturated case,
the third line and column of the LMIs (15) and (26) must be
deleted, and the LMIs (16) and (27) discarded.

6. Optimization procedures
The main objective here is to reduce the number of data

transmissions on the sensor-to-controller and the controller-
to-actuator channels. Let us remark that if

(

ŷk−1 − yk
)⊤(ŷk−1 − yk

)

�max(QΔy) − y⊤k yk�min(Qy) ≤0,
(

ûk−1 − uk
)⊤(ûk−1 − uk

)

�max(QΔu) − u⊤k uk�min(Qy) ≤0,

then, the triggering conditions (7) and (8) do not hold, avoid-
ing data transmission. Note that, in the worst case, that is,
when the conditions become equalities, one gets:

(

ŷk−1 − yk
)⊤ (ŷk−1 − yk

)

�max(QΔy)

y⊤k yk�min(Qy)
≤ 1 and

(

ûk−1 − uk
)⊤ (ûk−1 − uk

)

�max(QΔy)

u⊤k uk�min(Qu)
≤ 1,

(31)

respectively. Since �min(Qy)−1 = �max(Q−1y ) and �min(Qu)
−1

= �max(Q−1u ) , we can rewrite (31) as
(

ŷk−1 − yk
)⊤ (ŷk−1 − yk

)

y⊤k yk
�(QΔy, Q−1y ) ≤ 1 and

(

ûk−1 − uk
)⊤ (ûk−1 − uk

)

u⊤k uk
�(QΔu, Q−1u ) ≤ 1,

(32)

respectively, with �(QΔy, Q−1y ) = �max(QΔy)�max(Q
−1
y ) and

�(QΔu, Q−1u ) = �max(QΔu)�max(Q−1u ). Thus, the idea is to
minimize �(QΔy, Q̂y) and �(QΔu, Q̂u), with Q̂y = Q−1y and
Q̂u = Q−1u , so that the minimum time required for the ex-
pressions on the left hand-side of (31) to evolve from 0 to 1
is enlarged. However, �(QΔy, Q̂y), and �(QΔu, Q̂u) are not
convex functions and therefore it can be difficult to opti-
mize them. Nevertheless, one can observe that the event-
triggering functions depend on all the eigenvalues of QΔy,
Q̂y, QΔu and Q̂u. So, to formulate a convex objective func-
tion, we can minimize the sum of all eigenvalues of QΔy,
Q̂y, QΔy and Q̂y, which leads to the following convex opti-
mization procedure:

1 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min tr(QΔy + Q̂y) + tr(QΔu + Q̂u),

subject to
⎧

⎪

⎨

⎪

⎩

(15) and (16),
or

(26) and (27).

(33)

Let us point out that the data transmission is indirectly
reduced by means of the optimization procedure 1.

Another objective of optimization consists in consider-
ing a given region of admissible initial states 0 for which
we can reduce the update rate on the sensor-to-controller and
the controller-to-sensor channels. In this case, we should
ensure that 0 is included in the region of attraction of the
closed-loop systems, i.e. 0 ⊆  ⊆ . If 0 is spec-
ified as an ellipsoid (R, 1), defined similarly to (14), then
we have that

[

R ⋆
I2n Pi

]

> 0, or equivalently (34a)
[

R ⋆
Φ⊤ P̂i

]

> 0, (34b)
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with Φ given in (22), for all i ∈ [1, N]. However, the LMI
(34b) is non-convex due to the presence of the matrix W
in Φ. To make it convex, we can consider the partitioning

R =
[

R11 ⋆
R21 R22

]

and xc,0 = 0, which allows us to dismiss

the rows concerning the position ofW in Φ. With that, the
inequality (34b) can be rewritten as

⎡

⎢

⎢

⎣

R11 ⋆
Y
In

P̂i

⎤

⎥

⎥

⎦

> 0, (35)

for all i ∈ [1, N]. Thus, we have

2 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min tr(QΔy + Q̂y) + tr(QΔu + Q̂u),

subject to
⎧

⎪

⎨

⎪

⎩

(15), (16) and (34a),
or

(26), (27) and (35),

(36)

with Q̂y = Q−1y and Q̂u = Q−1u .
Although both optimization procedures aim at minimiz-

ing the data transmission, the optimization procedure2 dif-
fers from the optimization procedure 1 by the inclusion of
the restrictions (34a) and (35) to take into account a specific
region of initial condition. It is important to point out that,
the use of the optimization procedure 2 leads to deal with
a classical trade-off between the size of the estimate of the
basin of attraction and the transmission saving. Indeed, it re-
sults that the smaller the estimate of the basin of attraction,
the greater the transmission saving.

7. Simulation results
In this section, some examples addressing both the LPV

and the LTI cases, with and without saturating actuators, are
explored. First, we present two examples relating to LTI sys-
tems and then a third example concerning an LPV system
with saturating actuators.

Example 1 Consider the following discretized version,
with sampling time Ts = 0.05 seconds, of the system inves-
tigated in [19].

xp,k+1 =
[

1 0.05
0.1 0.85

]

xp,k +
[

0.11
0.11

]

ûk,

yk =
[

−1 4
]

xp,k.
(37)

Our objective here is to compare our co-design and emu-
lation proposals with the one in [19]. The authors in [19] ad-
dress the co-design event-triggered dynamic output-feedback
control problem for continuous linear time-invariant (LTI)
system. The two independent ETMs are based on a condi-
tion that depends on the plant output and the controller out-
put taken at different times. The results obtained by [19]
are presented in Table 1, where the initial conditions xp,0 =
xc,0 =

[

40 −20
]⊤ were taken to simulate the closed-loop

response of the system. Observe that, in the first channel,
[19] got an average sampling time that corresponds to 3 times

Table 1
Comparison of the average sampling time - Example (37).

Design average sampling time [sec]
method output control

Theorem 2 in [19] 0.15 0.18
Theorem 1 0.2303 0.25
Theorem 2 0.2303 0.375

the sampling time of the system without ETM; and, in the
second channel, the average sampling time found corresponds
to 3.6 times the sampling time of the system without ETM.

First, to compare the co-design approach, we solve the
optimization procedure 1 given in (33) with conditions of
Theorem 2, and obtain the ETM matrices QΔy = 1.5489,
Qy = 0.7091, QΔu = 1.4102, and Qu = 0.6456 and the
following dynamic controller matrices

Ac =
[

6.1903 3.8725
−8.3910 −5.2462

]

, Bc =
[

−17.4254
23.6933

]

,

Cc =
[

0.1654 0.1180
]

, and Dc = −1.2314.

By simulating the closed-loop response of the system
for the same initial conditions, we got the average sampling
times presented in Table 1. Note that, in the first channel, we
obtained an average sampling time that corresponds to al-
most 5 times the sampling time of the system without ETM,
and in the second channel, the average sampling time found
corresponds to 7.5 times the sampling time of the system
without ETM. Therefore, we increased the average sampling
in 53.87% on the sensor-to-controller channel, and 108.33%
on controller-to-actuator channel, with respect to [19].

Then, to compare the emulation-approach, we design the
ETMs (7) and (8) for both the controller obtained in the
co-design and the one obtained by [19] using the optimiza-
tion procedure 1 given in (33) with conditions of Theorem
1. For the first case, we have found the same results, and
for the second, we got the ETM matrices QΔy = 1.8588,
Qy = 0.2646, QΔu = 3.7788 and Qu = 0.5380. By using
these matrices to simulate the closed-loop response of the
system, we find the average sampling times presented in Ta-
ble 1. Thus, using our controller, the sampling average in
the control ETM improved 50% in relation to the controller
of [19].

Example 2 Consider the following discretized version,
with sampling time Ts = 0.05 seconds, of the system inves-
tigated in [18]

xp,k+1 =
[

1 0.05
−0.25 1

]

xp,k +
[

0
0.05

]

ûk,

yk =
[

1 0
]

xp,k.
(38)

Our objective here is to compare our co-design approach
with the one in [18], where a co-design of a dynamic output-
feedback controllers and two independent ETMs for continu-
ous linear time-invariant system with communication delays
are proposed. The results obtained by [18] are showed in Ta-
ble 2, where the initial states condition xp,0 =

[

1 0.2
]⊤ and
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Table 2
Comparison of the updates rates - Example (38).

Design
Method

Updates rates (%)
output control

[18, Th. 2] 34.50% 38.25%
Theorem 2 30.50% 36.25%

xc,0 = 01,2 were taken to simulated the closed-loop response.
By taking into account the procedures described in Remark
4 to deal with LTI (�k = 0) and non-saturated system, we run
the optimization procedure 1 given in (33) with conditions
of Theorem 2, and got the ETM matrices QΔy = 2.6910,
Qy = 0.6063, QΔu = 1.6493, and Qu = 0.3716 and the
following dynamic controller matrices

Ac =
[

1.0819 0.5297
−0.4837 −0.2445

]

, Bc =
[

−5.9799
2.6499

]

,

Cc =
[

0.4254 1.1925
]

, and Dc = −2.3619.

For the same initial conditions, we simulated the response
of the closed-loop system and got the transmission rates showed
in Table 2. In this case, we reduced the update rate in 6.15%
and 5.23% on the sensor-to-controller and controller-to-actuator
channels, respectively, in relation to [18].

Example 3Consider the inverted pendulum shown in Fig-
ure 2. This system has been extensively investigated in the
literature (see, for example, [33, 11, 6]), but without taking
into account possible variations in the system parameters.
Let us then consider such variations by adding the parameter-
varying �k to the system model, as follows

xp,k+1 =
[

1.0018 0.01
0.04�k + 0.36 1.0018

]

xp,k

+
[

−0.001
0.025�k − 0.184

]

sat(ûk), (39)

with yk =
[

1 0
]

xp,k, ū = 1 and |�k| ≤ 1. Note that, this

Figure 2: An inverted pendulum [33]

arbitrary variation was added just to test our approach, and,
therefore, has no direct physicalmeaningwith the continuous-
time system’s variables. Our objective here is to made the

co-design of the dynamic controller (6) and the two ETMs
(7) and (8), for two different given admissible initial condi-
tions region 0, such that the number of data transmissions
in both channels is as low as possible.

For the first case, let us consider a given region of admis-
sible initial conditions0 = (R, 1)withR11 = diag{76, 2}
derived from the partitioning of R. By using the optimiza-
tion procedure 2 with conditions of Theorem 2, we design
simultaneously the dynamic controller (6) and the two inde-
pendent ETMs (7) and (8) such that the update on the sensor-
to-controller and the controller-to-actuator channels aremin-
imized. Through this, we got the ETM matrices QΔy =
18.8382, Qy = 0.2365, QΔu = 3.6281, and Qu = 0.0516
and the following dynamic controller matrices

Ac11 =
[

2.0127 2.1023
−0.3230 −0.3377

]

, Ac12 =
[

0.9254 −4.9222
−0.1469 0.7998

]

,

Ac22 =
[

0.0834 −10.4533
−0.0125 1.6824

]

, Bc11 =
[

−26.0948
4.1866

]

,

Bc12 =
[

−22.1621
3.5556

]

, Bc22 =
[

−16.4072
2.6323

]

, Ec1 =
[

0.3900
−0.0626

]

,

Ec2 =
[

2.5333
−0.4064

]

, Cc1 =
[

−0.2975
−2.1999

]⊤
, Cc2 =

[

−0.1745
−1.4513

]⊤
,

Dc1 = 6.8209, and Dc2 = 7.8238.

Figure 3 shows the projection (−) and the cut (−), on the
plane defined by the plant states, of the obtained,0 (−),
and also the projections of some convergent (−−) and some
divergent trajectories (−−) starting from the points marked
with ◦ and ∗, respectively. Notice that, as required, 
contains 0, i.e. 0 ⊂  . In particular, for the con-
vergent trajectory (−−) starting in the initial condition x0 =
[

−0.1480 −0.4735 0 0
]⊤ marked with ‘∙’, we plot in

the Figure 4 the states, the control input, the events of the
sensor and the controller, and the parameter-varying as a
function of the sampling instants. In the inter-events graph,
the events that occur asynchronously in the sensor and in the
controller are represented by ‘◦’ and ‘◦’, respectively, and
synchronous by ‘◦’. Thus, we can see the asymptotic sta-
bility of the system despite the saturation in the first instants
of the simulation. For this case, the update rate between the
sensor and controller and between the controller and actuator
was 50.33% and 43%, respectively, thus, saving a significant
amount of samples to be transmitted. However, the inclu-
sion of 0 yielded an ETM behavior that appears to have
some periodicity despite the asynchronous updates of sen-
sor and control ETMs. Moreover, the asynchronous ETMs
save transmissions because only one ETM is active over the
network.

Then, for the second case, we carried out the co-design
for a region of admissible initial conditions less stringent,
given by 0 = (R, 1) with R11 = diag{26.60, 0.70} de-
rived from the partitioning of R. For this case, we obtained
the ETM matrices QΔy = 29.5663, Qy = 0.0881, QΔu =
5.8971, and Qu = 0.0221 and the dynamic controller matri-
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Figure 3:  and 0 = (P , 1) with R11 = diag{76, 2}.

synchronous asynchronous

synchronous asynchronous

Figure 4: The closed-loop response of system (39) - 0 =
(P , 1) with R11 = diag{76, 2}.

ces

Ac11 =
[

5.2362 20.9969
−0.8710 −3.4869

]

, Ac12 =
[

2.9999 7.3585
−0.5051 −1.2549

]

,

Ac22 =
[

−0.0841 −11.4126
0.0137 1.9028

]

, Bc11 =
[

−6.4201
1.0716

]

,

Bc12 =
[

−4.9392
0.8246

]

, Bc22 =
[

−2.7266
0.4550

]

, Ec1 =
[

3.7979
−0.6337

]

,

Ec2 =
[

4.3923
−0.7330

]

, Cc1 =
[

1.7658
9.7753

]⊤
, Cc2 =

[

−0.0633
−1.2096

]⊤
,

Dc1 = 5.5867, and Dc2 = 6.2479.

Figure 5 presents the projection and the cut, on the plane
defined by the plant states, of the obtained. For the con-
vergent trajectory (−−) starting in the initial condition x0 =

[

−0.2117 −0.3245 0 0
]⊤ marked with “∙”, we simu-

lated the closed-loop response of the system, and the results
can be seen in the Figure 6. In this case, the update rates be-
tween the sensor and controller and between the controller
and actuator found were 67.33% and 59.67%, respectively.
Therefore, in relation to the update rate, there was a slight
worse performance than the more restrictive (on the plane
defined by the plant states) 0 specification. The ETMs
seem to present a more pronounced periodic behavior in this
case, whichmay be connected to the higher transmission rate
achieved due to the inclusion of a larger region of initial con-
dition considered here (w.r.t. that one in the previous case).
Another effect of including a larger0 is the reduction on the
asynchronous transmission, supporting the hypothesis of the
bigger the region of initial conditions, the smaller the trans-
missions saving.

Figure 5:  and 0 = (R, 1) with R11 = diag{26.60, 0.70}.

The inverted pendulum is also investigated in [6], where
the design of event-triggering static and dynamic state sta-
bilizing controllers for discrete-time linear systems with sat-
urating actuators is addressed. The number of updates ob-
tained by [6] are showed in Table 3, where the initial con-
ditions xp,0 =

[

0.2 0.8
]⊤ and xc,0 =

[

0 0
]⊤ were taken

to simulate the closed-loop response of the system. Observe
that since [6] does not consider a communication network
between the controller and actuator channel, then the system
updates the control at all sampling times.

As the authors in [6] explore the LTI case with satura-
tion, to compare our approach with theirs, we fix �k = 0, and
set C = I2. Also, we consider a region of admissible initial

conditions 0 = (R, 1) with R11 =
[

11.9987 0.2318
0.2318 0.5873

]

,

which is contained in the region of attraction estimated by
[6]. Thus, for the co-design, we run the optimization proce-
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synchronous asynchronous

synchronous asynchronous

0 3 6
-1.4
-1.2

-1
-0.8

Figure 6: The closed-loop response of system (39) - 0 =
(R, 1) with R11 = diag{26.60, 0.70}.

Table 3
Comparison of the number of samplings - Example (39).

Design update
method output control

Theorem 3.1 in [6] 67 1000
Theorem 4.1 in [6] 70 1000

Theorem 2 85 232

dure2 with conditions of Theorem 2, and got the following
ETM matrices

QΔy =
[

1.2955 0.9134
0.9134 0.6441

]

, Qy =
[

0.0758 0.0106
0.0106 0.0425

]

,

QΔu = 1.5369, and Qu = 0.0261,

and the following dynamic controller matrices

Ac =
[

−6.3069 −29.0632
1.5869 7.3118

]

, Bc =
[

−0.0264 −0.0186
0.0067 0.0047

]

,

Ec =
[

−0.1133
0.0288

]

, Cc =
[

−6.6853
−3.1688

]⊤
, and Dc =

[

1.3583
0.9577

]⊤
.

For the same initial condition, we simulate the closed-
loop response of the system, and found the updates rates
showed in Table 3. Although, in the first channel, the up-
date rates obtained by [6] with Theorem 3.1 and Theorem
4.1 are 21.18% and 17.65% smaller than ours, respectively,
in the second channel, they are in both cases 331.03% higher
than ours.

8. Conclusion
In this paper, the dynamic event-triggered control prob-

lem was investigated for a discrete-time LPV system subject
to actuator saturation. The measured output and the con-
trol input are transmitted based on two independent event-
triggering schemes. Both emulation-based approach and co-
design of the event-generators parameters and the controller
matrices were proposed. The convex conditions in form of

linearmatrix inequalities (LMIs) ensured the regional asymp-
totic stability of the closed-loop system for every initial con-
dition belonging to the estimated attraction region. Some
optimization procedures were also formulated allowing the
minimization of the data transmission on the sensor-to-control
and control-to-actuator channels. As future work, it would
be interesting to study if the two event-triggering mecha-
nisms (7) and (8) could be dependent (that is, each ETM
could use information from the other transmitted signal).
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