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Abstract

The Activation-Relaxation Technique (ARTn) is an efficient technique for
finding the minima and saddle points of multidimensional functions such as
the potential energy surface of atomic systems in chemistry. In this work we
detail and illustrate significant improvements made to the algorithm, regard-
ing both preprocessing and the activation process itself. As showcased, these
advances significantly reduce ARTn computational costs, especially when
applied with ab initio description. With these modifications, ARTn estab-
lishes itself as a very efficient method for exploring the energy landscape and
chemical reactions associated with complex mechanisms.
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1. Introduction

Understanding molecular reactions and the evolution of atomic structures
is of crucial interest in modern chemistry and materials science. This objec-
tive requires a precise knowledge of the energy landscape associated with
diffusion pathways, including the initial, final and transition states, as well
as their relative free energies, i.e., barrier energy and entropy.

Mathematically, for purely activated events in which energy barriers are
high compared to temperature, the initial and final states can be assigned
to a local energy minimum on the potential energy surface (PES) of the
system, whereas the transition states are assigned to a first-order saddle
point, corresponding to the highest energy point on the minimum-energy
path connecting these two minima. Once these states are known, the kinetics
of the system can be described within the framework of the transition state
theory [1, 2]. The reader should refer to the Appendix A for a better
understanding of some key words used in this work.

The challenge to identify these states is two-fold: first, finding local points
of interest; second, sampling the landscape to ensure that all the relevant
mechanisms are identified. For a chemical system composed of Nat atoms,
the PES has 3Nat dimensions. While a local minimum of this PES can be
easily reached by any algorithm that follows the slope in all these dimensions,
saddle points are unstable along one particular dimension called the valley,
and are therefore harder to identify. Indeed, reaching a saddle point implies a
relaxation in the 3Nat − 1 other dimensions and a climb along this unknown
dimension of negative curvature. The curvature is, by definition, positive
around a local minimum and does not provide information concerning the
nature and position of saddle points sitting on the ridge between two min-
ima. Such information can become available only beyond the inflection line
surrounding a minimum: above this line, the valleys leading to these saddle
points start to form and to dissociate (see the shoulders area in Fig. A.7c
of Appendix A). For all these reasons, identifying local transition states
remains a formidable task.

The Activation Relaxation Technique nouveau (ARTn) [3, 4] has demon-
strated to be a very efficient and versatile approach for finding saddle points
on a PES using only local information (energy and forces). Doing so, it
addresses both challenges underlined in the previous paragraph: the identifi-
cation of local saddle point as well as, through its unbiased search approach,
the capacity to provide an extensive mapping of the PES through fully con-
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Figure 1: The three main steps of ARTn (in pink) that find a saddle point from an
initial input position X, a given random vector êrand, and a norm α for this random push.
The lowest eigenvalue λm (m as minimum) of the Hessian matrix and its corresponding
eigenvector êm are calculated with the Lanczos procedure. F⊥ = (F•ê)ê is the component
of the forces F that is parallel to the pushing direction ê and F⊥ = F−F‖ is the orthogonal
component.

nected activated paths. Over the last 20 years, ARTn has been applied to a
wide range of systems both to explore their energy landscape [5, 6, 7, 8, 9],
and to generate long-time kinetic trajectories [10, 11, 12, 13, 14, 15] when used
as kinetic ART, an off-lattice kinetic Monte Carlo algorithm with on-the-fly
cataloguing. When searching for a saddle point, a recent implementation
of ARTn coupled with Density Functional Theory (DFT) (ARTn-DFT in
the following) [16], was shown to result in more accurate saddle points —
i.e. with total force many orders of magnitude lower — and to be computa-
tionally less expensive than the climbing image-nudged elastic band (NEB)
method [17]. Previous work has also shown that ARTn is more efficient than
the dimer method [18] for generating a fully connected PES with multiple
saddle points search [19].

The scope of this work is to present an overview of the ARTn method
and the latest improvements on the core algorithm as well as pre-processing
strategies when running multiple-saddle-point search. These improvements
further reduce the number of energy and force evaluations while keeping
whole numerical accuracy. The basic structural elements of ARTn are out-
lined in section 2, while latest improvements and pre-processing strategies
are discussed in sections 3 and 4, respectively.

2. Standard Activation Relaxation Technique nouveau

The core of ARTn is based on three stages that are executed at every
step of the search until convergence is achieved:

• Evaluation of the Hessian lowest eigenvalue λm (lowest curvature), the
one with the most negative value, or with the smallest value if they
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are all positive and its corresponding eigenvector êm (direction along
which the curvature is the lowest);

• Uphill push, against the forces;

• Relaxation into the hyperplane perpendicular to the push.

This workflow is shown in Fig. 1 (pink blocks). The choice of the initial push
(first grey block in Fig. 1) and the possibility for searching multiple-saddle
points are, here, considered as pre-processing and post-processing operations,
respectively. Fig. 2a illustrates ARTn search on a bi-dimensional (2D) po-
tential energy surface model.

The concept of the algorithm is simple. In practice, however, its perfor-
mances (reduced number of energy and force evaluations, numerical stability,
success rate and precision) rely on several numerical and mathematical tricks.

In this section we discuss a few central elements of ARTn.

2.1. Initial uphill push

Since a local energy minimum does not provide information regarding
the position or nature of the saddle points connected to it, by default, ARTn
generates a random push (êrand) from a local minimum to start an event
search.

In the absence of strong mathematical justification, many approaches can
be used for this initial deformation: the random displacement can be applied
to a single atom, a local environment, or to the entire system dimensions.
Since, irrespective of the number of atoms involved in the initial displace-
ment, ARTn imposes no constraints on the atoms that can move, all saddle
points can, in principle, be found, regardless of the initial push. In practice,
however, ”smart” choices of the initial push improve the sampling of the
saddle point. For example, global pushes tend to oversample collective tran-
sition states often related to soft degree of freedom. On the contrary, very
local pushes tend to sample transition states that only involve the breaking
or formation of few bonds (hard degree of freedom). Since activated events
away from phase transitions tend to be local in nature, typical initial random
deformation are therefore applied on local environments counting a limited
number of atoms.

While there is no formal proof that ARTn can generate an exhaustive
list of activation barriers connected to a local minimum, the random search
permits to limit the biases. In fact, it has been shown that a sufficient number
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of random explorations generates a larger catalogue of events than competing
algorithms, while always retrieving previously known barriers [4, 20, 12].

2.2. Evaluation of the lowest curvature

During this stage, the lowest eigenvalue (λm) and corresponding eigenvec-
tor (êm) of the Hessian matrix are evaluated by means of Lanczos algorithm
[21] (see Appendix B). This lowest eigenvalue determines if the system is be-
low (λm > 0), or above the inflection hyperplane (λm < 0). Once above this
hyperplane, the initial uphill push direction is switched to êm. To reduce
the computational cost, in practice, if ARTn search starts in a minimum,
the lowest curvature could be computed only after few uphill pushes as the
curvature is positive near a minimum, by definition.

2.3. Uphill push

The uphill push is performed to (i) escape from the harmonic basin sur-
rounding the minimum and (ii) to move towards a ridge. The push direction
depends on the position of ARTn on the PES:

1. Below the inflection hyperplane, i.e., where are directions have positive
curvature, the push direction is kept constant and equal to the initially
chosen direction.

2. Above the inflection, i.e, where the lowest curvature λm is negative,
with absolute value larger than a given threshold λthr, the push direc-
tion is updated to the corresponding eigenvector êm with an orientation
set opposite to the force and the norm of the displacement set as in
Ref. [22]:

dr = min

(
sizemax,

||F‖||
max(|λmin|, 0.5)

)
, (1)

where F‖ is the component of the force that is parallel to êmin and
sizemax is a user defined threshold. This adaptive norm reduces the size
of the displacement when the system is close to the saddle point and
was shown to accelerate convergence.

2.4. Orthogonal relaxation

To reach convergence to a first-order saddle, the 3Nat − 1 directions or-
thogonal to êm must be in a local minimum. As for the uphill push, this
orthogonal relaxation plays two different roles depending on whether the
system is below or above the inflection plane.
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1. Below the inflection, a weak orthogonal relaxation is applied to avoid
too short interatomic distances that could result from the application
of the uphill push. A small number of relaxation steps is then sufficient
to assure stability, whereas a whole relaxation (numerical accuracy) is
in general not recommended, because it might lead to the undesired
exploration of soft valleys often associated with large elastic deforma-
tion.

2. Above the inflection, an orthogonal relaxation is essential to reach the
actual valley in which F⊥, the component of the forces that is orthog-
onal to êm, is by definition null. To reduce its computational cost, this
relaxation can be stopped when F⊥ becomes smaller than the parallel
component F‖ by controlling its convergence threshold. However, if the
system is not significantly above the inflection, it might happen that
this relaxation brings the algorithm back below the inflection, meaning
that the lowest mode becomes positive and is associated with elastic
deformation, leading to an unsuccessful event. To mitigate the number
of unsuccessful searches, ARTn follows a 3-fold strategy by using: (i)
non-zero inflection threshold (below -0.5 eV Å2) to determine the point
where the system is first above the inflection; (ii) a progressive num-
ber of relaxation steps: small close to the inflection and progressively
larger; (iii) a smooth switch of the uphill push direction from the initial
to the lowest-curvature eigenvector êm [16].

2.5. Reaching adjacent minimum and checking the existence of a connected
path

Once the saddle point — defined as a point where λm < 0 and the total
force is below a threshold near zero — has been reached, an adjacent min-
imum can be found through standard energy minimization, completing the
event.

Since forces are zero at the saddle point, a push along the direction of
the eigenvector êm is applied before starting a standard unconstrained min-
imization to reach the adjacent minimum. This push must be large enough
to ensure that the forces are sufficiently large. Applying the push along the
opposite direction allows to check the existence of a connected path between
the two minima (blue arrows in Fig. 2b).
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3. Improvement of the ARTn core: reducing the number of Lanc-
zos iterations

The computation of the local curvature and associated eigenvectors rep-
resents the dominant computational cost for ARTn. This section presents
recent developments focused on reducing this cost and improving ARTn’s
overall computational efficiency.

We refer the reader to a comparative benchmark of the efficiency of ARTn
against other existing methods published recently by the authors to comple-
ment the benchmarks shown here (see Ref [16]).

A Lanczos chain starts with a guess basis vector L1 (see Appendix B) for
iteratively determining êm. This vector can be selected as random or based
on informed knowledge. As the ARTn kernel calls the Lanczos algorithm
after each push-relax, the eigenvector êi+1

m calculated at the ARTn step i+ 1
is generally close to the one calculated at the previous step i. Therefore, if for
the Lanczos of the initial ARTn step, the first basis vector L1 is generated at
random, the êi

m obtained as a result of the Lanczos chain at ARTn step i can
be used as the basis vector L1 at ARTn step i+1 (Li+1

1 = êi
m). Indeed, in our

experience, the dot product between two consecutive eigenvectors êi
m · êi+1

m is
usually lower than 0.7 below the inflection line and higher than 0.95 above it,
making the use of the previously converged eigenvector more efficient in this
second case (see Fig. 4). Moreover, in this region, the lowest eigenvalue is
negative above the inflection, opening up a gap in the spectrum between the
first and second lowest eigenvalues. This decreases the mixing of eigenvectors
with neighbouring eigenvalues and increases the ratio λi/λm (see Appendix
B, eq. B.2).

This means that, using an L1 close to the eigenvector associated with
the lowest curvature, in most cases, convergence can be obtained with a
small tridiagonal matrix, as represented in Fig. 3. Since force calculations
are much costlier than matrix diagonalisation, we implement an adaptive ap-
proach where, instead of keeping the Lanczos basis set fixed, as in previous
versions of ARTn, the size of the basis is progressively increased (see Ap-
pendix B) until the lowest eigenvalue reaches convergence (currently set to
λm < 10−2 eV/Å2).

In most cases, this iterative approach leads to a significant reduction in
the number of force calls associated with the Lanczos procedure with respect
to the previous version of the code, despite its former use of the smart starting
L1.
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For the systems presented in the next section, for example, this number
of force evaluations needed to converge the eigenvector is reduced from 16
(old version) to typically less than 10 below the inflection and less than 5
above the inflection (see black circles Fig. 4), since successive vectors are
more parallel.

4. Pre-processing strategies: smart initial pushes

As mentioned previously, ARTn has been applied with success to many
systems with a ranging level of complexity and nature. The reader is in-
vited to look at these works for more details. In the following, we focus our
attention on two simple examples on which pre-processing strategies can re-
duce even more the computational cost. In these examples, ARTn is coupled
with the ab initio software Quantum Espresso v7.0 [23] for the evaluation of
energies and forces. ARTn can be used with any other quantum mechani-
cal code, including SIESTA [5], BigDFT [24, 25] and VASP [9], as well any
continuously derivable empirical potential.

4.1. Diffusion of Al adatom on Al(100) surface

In this first example, we look at the diffusion of an Al adatom on an
Al (100) surface, a well studied system with empirical potentials [18]. This
example shows how to adopt an event search strategy with minimum bias,
in order to reduce the computational cost of the search without affecting the
richness of results.

This system is known to be associated with non-intuitive diffusion mech-
anisms, so called exchange mechanisms, in addition to the simple hopping
from adsorption site to adsorption site on the Al(100) surface [26, 18]. These
exchange mechanisms occur when the adatom takes the place of its first
neighbour, which becomes the new adatom or pushes the second (3rd, or
4rth) to the surface. These two sets of mechanisms are respectively repre-
sented by red (hopping) and black (exchange) arrows in Fig. 5. For a full
description of all the possible exchanges, see Fig. 8 of Ref. [18].

If the input vectors are completely random, then half of them shift the
adatom in a direction that is opposite to the surface. In these cases, we can
easily predict that all the ARTn searches would lead to the dissociation of the
adatom from the surface, a physically important mechanism which is of little
interest, however, if we are interested in diffusion. To avoid this event, it is
possible to restrict the choices of the input vector. In this specific example,
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we reduce the displacement of the adatom so that it is oriented towards the
surface, and restricted to only a quarter of the space since it is symmetrically
equivalent to the others.

This constraint is obtained by adding a condition that accepts the random
input vector only if the displacement of the adatom is in a cone for which the
user gives the direction (11-1) and the half angle (45°), as presented Fig 5.
The push on this atom remains random, to preserve the exhaustiveness, but
restricted, to save computational cost. This approach can be used on a single
atom or generalized to a region, when appropriate.

The PES is calculated using a 300+1 atoms supercell of crystalline alu-
minum composed by 5×5 atoms along the surface, six bulk layers for which
the two bottom layers are fixed at the interatomic distance (5.30 Å) and a
18 Å vacuum on top of the surface. The Γ centred sampling of the supercell
Brillouin zone is 2× 2 along the reciprocal surface directions, and an energy
cutoff of 15 Ry limits the number of plane waves used to describe the wave-
functions. All explorations of the PES are run in parallel using four different
directions simultaneously, with each exploration also taking advantage of the
k-point and FFT parallelism capabilities of the DFT software. The total
number of explorations is stopped when 50 saddle points are found, as the
existence of only about ten low energy saddle points is an a posteriori knowl-
edge. All the atoms in the first layer of the surface are taken into account in
the initial random displacement.

In this work, ARTn is able to recover all previously identified diffusion
mechanisms without their previous knowledge: events with saddle point en-
ergies lower than 1 eV are described in Table given in Fig. 5. Each generated
events requires on average 170 force calls. Note that our DFT energy bar-
riers are different than the ones that had been obtained with an empirical
potential [18], but are similar as the ones previously obtained within DFT:
0.20 and 0.65 eV [26] respectively for the 1st neighbour exchange (Id 1) and
the hopping (Id 2).

4.2. Chemical reaction in the gas phase

In this second example, a CH3Cl molecule is close enough to another
Cl atom to form the well known Cl•...CH3Cl complex [27] shown in Fig. 6a.
From this configuration, the CH3 can reverse to catch this Cl• while breaking
its bond with the other Cl, thus forming the reversed ClCH3...Cl• complex
shown in Fig. 6c. To compute the energy barrier of this reaction, the system
is placed in a large unit cell with 15 Å of vacuum in the three directions
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(to reduce image-image interactions, as Quantum ESPRESSO uses periodic
boundary conditions). The position of the Cl atom initially bonded to CH3 is
kept fixed throughout the procedure to avoid translation of the system, while
all the other atoms are allowed to move, fixing the coordinates of an atom
not involved in the event has no impact on the result. The push size used
to escape the area below the inflection is 0.2 Å, which is also the maximum
push size above the inflection, the convergence condition on the forces used
to define a saddle point is 0.05 eV/Å.

We compare here four pre-processing procedures applied to ARTn in or-
der to recover the saddle point structure detailed in Fig. 6b. Its energy
calculated in this work is 0.74 eV which is thus the activation barrier of this
chemical reaction. The basic ARTn-DFT approach corresponds to proce-
dure #1. Procedures #2 to #4 implement additional constraints based on
the knowledge of the system that save computational time by reducing the
number of force calculations. The number of force calls for each of them is
presented in the Table given in the Fig. 6.

Procedure #1: The only information used is that of the initial position.
To generated the desired mechanism, the PES must therefore be explored
following the standard unbiased ARTn algorithm shown in Fig. 1, generating
different events resulting from each initial random displacement. Here, ARTn
generates four different physically-relevant events for this system, for a total
of 463 force calls. These events include the separation of one hydrogen atom
from the carbon atom (not shown) and the binding transfer from one Cl to
the other that we are looking for.

Procedure #2: It requires the knowledge of the general direction to
the saddle point, which restricts the event search, in a similar spirit to the
first example. Instead of launching searches in many random directions and
waiting for the desired event to be generated, a specific displacement is di-
rectly inputted as the starting deformation: the carbon atom is moved in
the exact direction of the isolated Cl. By reducing the number of events
searches, this procedure drastically reduces the cost to 96 force calculations,
as the algorithm only needs to be run once to find the correct saddle.

Procedure #3: It requires the knowledge of the final products of the
reaction, which corresponds to a common case in chemistry. With this infor-
mation, a guessed path can be constructed between the known reactant and
the product. ARTn can then start with a structure that is an interpolation
between the initial and final structures, which is usually already above the
inflection line and close to the saddle point. Here, convergence to the saddle
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point is obtained in only 50 force evaluations, which is two times less than
in procedure #2 and almost 10 times less than in procedure #1. This pro-
cedure is also known as r-ARTn [16] and was suggested as an alternative to
the computationally expensive string methods.

Procedure #4: It requires the knowledge that the path is fully symmet-
rical. This is not true in general, but is sometimes the case for diffusion in
crystalline system, catalysis and simple molecular reactions. Let C represent
the point at the symmetric centre on the diffusion path. C is known and
can be computed for example as C = (ximax + xfmax)/2, where x

i(f)
max is the

triplet of initial (final) coordinates (x,y,z) of the atom that have the maximal
displacement, here the carbon atom. This symmetry implies that êm can
be accurately estimated and provided to ARTn as a pre-processing input.
Finally, as in procedure #3, the algorithm can start at an interpolated posi-
tion, which is, by symmetry, exactly in the center between the two minima,
Xmid = (Xi + Xf )/2. This starting point is located on a ridge that is or-
thogonal to the valley due to the symmetry. Each atom relaxes on a straight
line linking C with its starting middle position. The direction of this line
is Xmid

C = Xmid − (C,C, . . . , C), and êm is thus the component of the total
displacement vector ∆X = Xi −Xf that is orthogonal to this direction:

êm = ∆X− (∆X •Xmid
C )Xmid

C (2)

Reaching the saddle point costs less than half the previous price with only
20 force calculations all called by one single perpendicular relaxation.

5. Conclusion

This paper presents a fundamental description of ARTn using an original
point of view that clearly shows the link between the various steps of ARTn
and the evolution of a system on its own potential energy surface. This
knowledge was refined over the last few years, leading to various technical
improvements that were presented recently [16], but never explicitly detailed
and illustrated. The capacity of ARTn to explore the PES at the ab initio
accuracy is demonstrated on two systems using a version of the code that
includes all these latest improvements and that is embedded into Quantum
Espresso [23]. These examples show how to make use of prior knowledge
of PES to reduce the computational cost of an unbiased exploration and
demonstrate the remarkable efficiency of ARTn local approach to characterize
diffusion and activated mechanisms in complex environments.
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Over the last two decades, ARTn has already been applied with great suc-
cess to a wide range of complex systems ranging from proteins aggregation to
amorphous surfaces reactions or diffusion in glassy materials. It can there-
fore be applied to any complex materials to look problems such as catalysis,
chemical reaction, structural evolution and much more. With these latest
improvements, the method now has unsurpassed accuracy and efficiency and
is therefore one of the most powerful tools for the investigation and charac-
terization of activated atomic mechanisms. These significant improvements
to ARTn are now available with the Quantum Espresso electronic structure
relaxation code. In order to help the development and dissemination of ART
in the rest of the community, we are currently working on a more portable
version of ART that can be plugged into any software capable of calculating
energy and forces with DFT or simple empirical potentials. ARTn will then
present itself as a valuable alternative tool to the more conventional meth-
ods widely used in the atomic scale community today both for single and
double-ended problems.
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Appendix A. Few definitions regarding the potential energy sur-
face

We provide here a few definitions for some of the concepts used in this
article regarding the potential energy surface. There are largely based on
Ref. [28]. For a summarized version, see Table A.1.

• A first-order saddle point, represented Fig. A.7a, is a maximum along
one dimension, and a minimum along the other 3Nat − 1. This implies
that all the first-order derivatives are zero at this point, and all but
one of the Hessian eigenvalues are positive, not counting the trivial
macroscopic rotation and translation degrees of freedom. Physically,
they are unstable structures that correspond to transition states.

• The inflection line, represented by the blue lines Fig. A.7c, is the set
of points for which the smallest eigenvalue of the Hessian is zero.

• The configuration space below the inflection, represented in blue Fig. A.7c,
is the space in which all the Hessian eigenvalues are positive: this is
where the minima (represented Fig. A.7a) are located and where the
valleys and ridges begin. When no minima is present, it is a shoulder.
Its complementary part is the configuration space above the inflection,
in which at least one Hessian eigenvalue is negative.

• The valleys, represented in black Fig. A.7c, are the set of points for
which the gradient is parallel to the eigenvector êm, i.e for which the
component of the gradient that is orthogonal to êm is null. This is

1st derivatives 2nd derivatives
Minimum ∇E = 0 ∀i ∈ J1, 3NatK, λi > 0
Saddle point ∇E = 0 ∃i ∈ J1, 3NatK, λi < 0
Inflection - ∃i ∈ J1, 3NatK, λi = 0
Below-inflection - ∀i ∈ J1, 3NatK, λi > 0
Above-inflection - ∃i ∈ J1, 3NatK, λi < 0
Valley ∇E⊥êm = 0 -
Ridge ∇E‖êm = 0 -

Table A.1: Properties of the main remarkable regions and points on the potential energy
surface. λi represents a Hessian eigenvalue.
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calculated by splitting the gradient in two components: ∇E = ∇E⊥ +
∇E‖, where ∇E⊥ = ∇E − (∇E • êm)êm. Along the valley, the points
of highest energy are the saddle points.

• The ridges, represented in white Fig. A.7c, are the set of points for
which the gradient is orthogonal to the eigenvector êm, i.e. for which
∇E‖ is null. The ridges cross the valleys at the saddle points and at
the minima.

• A basin, represented in blue Fig. A.7b, is a set of atomic positions for
which an atomic relaxation moves the system toward a same minimum.
This is a global definition contrary to all the others which are local. A
basin is surrounded by steep energy rises that generally correspond to
the ridges except around the extrema where forbidden crossings occur
due to the use of eigenvectors in the ridges definition.

Appendix B. Lanczos diagonalization

The Lanczos algorithm [21] is a particular case of the Arnoldi algorithm
[29] that can be simplified when the matrix to be diagonalized is hermitian.
This method can deliver the smallest eigenvalue λm and its corresponding
eigenvector êm of a potentially very large matrix through the knowledge of
the matrix-vector products. In ARTn, this matrix is the Hessian Hij = ∂2E

∂xi∂xj

with size 3Nat × 3Nat.
Knowledge of the full Hessian matrix is not needed, because the algorithm

only needs its product with a given vector, [H]dLk, at each step k, where
dL is a small displacement vector from a reference position. This product
can be obtained in only one force calculation:

• Do a small distortion dr of the atomic positions along L (forming dL)
:
XL = X + dL

• Calculate the forces at this displaced position with the software (here
Quantum Espresso):
F(XL) = −∇E(XL)

• Return the correct term:
[H]dL = ∆F = F(XL)−F(X)

dr
, where F(X) has already been calculated

in the last minimization step, before entering the Lanczos loop.
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To obtain êm, the powers method is used. It states that any matrix
elevated at a sufficiently high power k and multiplied by any vector L returns
an approximation of the eigenvector associated to the highest eigenvalue
(lowest for −k):

lim
k→+∞

[H]−kL = êm (B.1)

It can be simply demonstrated by decomposing L on the eigen basis of [H],
giving L =

∑3Nat

i=1 ciêi where c1 = cm (minimum), and by factorizing:

[H]−kL = λ−km cmêm +
3Nat∑

i=2

ciλ
−k
i êi (B.2)

= λ−km



cmêm +

3Nat∑

i=2

ci

(
λi
λm

)−k
êi

︸ ︷︷ ︸
−−−−→
k→+∞

0




Here the number of iterations k needed to converge depends on two conditions
:

• The ratio λi
λm

. If it is close to one, meaning that λm is not separated from
the other eigenvalues as it occurs below the inflection, then convergence
is slow; on the contrary, if it is close to 0, meaning that λm is separated
from the other eigenvalues as it occurs above the inflection where one
eigenvalue is negative, then convergence is faster.

• The amplitude of the coefficients ci 6=m. If they are small, this means
that the initial vector L is already quite converged to êm, and less
power iterations are needed to achieve the convergence.

With this approach, the algorithm finds an approximate eigenvector, that
gets closer and closer to êm at each increase of k. To avoid handling large
matrices, it is most cost efficient to use a recurrence scheme : Lk+1 = [H]Lk,
where the initial L1 can be random or, better, a reasonable guess for êm.

To reduce the number of iterations k needed to converge to êm, Lanczos
added two tricks to the power method. First, [H] is reduced on its subspace
generated by the basis of the Lk vectors. This is done using a reduction ma-
trix [R] = (L1|L2| · · · |Lk), leading to a tridiagonal matrix [T ] = [R]T [H][R].
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The size of [T ] is k × k and its lowest eigenvalue converges to λmin, because
its basis contains more and more parts of êm. However the Lk basis is not
orthogonal. Hence, the second Lanczos idea is to chose each new vector Lk

such that it is orthogonal to the previous ones by removing their respective
contribution:

Lk+1 = [H]Lk −
k∑

j=0

(Lk+1
TLj)Lj (B.3)

These vectors are called the Lanczos vectors and contain the part of êm

coming from the power, but not the parts that are already taken into account
in the previous basis vectors. Taking orthogonal vectors means that the next
Lanczos vector focuses the power method on the components of êm that
are still unknown, restricting the number of dimensions that still need to be
converged.

Thanks to recurrence, this form can be reduce to:

Lk+1 = [H]Lk − αkLk − βk−1Lk−1 (B.4)

where

αk =
Lk

T [H]Lk

Lk
TLk

and βk =
Lk−1

T [H]Lk

Lk−1
TLk−1

(B.5)

Finally, the [T ] matrix can be simply written as:

Tk =




α1 β2 0 · · · 0

β2 α2 β3
. . .

...

0 β3 α3
. . . 0

...
. . . . . . . . . βk

0 · · · 0 βk αk




(B.6)

Upon diagonalization of the matrix [T ], the lowest eigenvalue λTm and its cor-
responding eigenvector êTm are obtained. The eigenvalue λTm approximates
the lowest eigenvalue λm of matrix [H], and the corresponding eigenvector êm

can be constructed from the eigenvector êTm, by multiplying êm = [R]êTm.
The size of the Lanczos basis (number of iterations k) is increased until
reaching the convergence criterion, as represented Fig. B.8.
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(a) ARTn reaches the saddle point (b) Push from saddle and relax

Figure 2: A complete event generated with ARTn on a two-dimensional potential energy
surface. (2a) An ARTn even is launched from a local energy minimum. Each black dot
is an ARTn step. The black arrows are the pushing directions at each step. The first
steps, below the inflection line defined by all the point for which the lowest eigenvalue λm
is zero (in blue), are pushes in a predetermined random direction followed, at each step,
by a slight perpendicular relaxation to avoid collisions. Above the inflection line (in the
red region), steps follow the direction associated with the negative curvature (associated
with lowest eigenvalue of the hessian), while relaxing in the perpendicular direction until
a first-order saddle point is found (large black dot in the red region). (2b) Once at the
saddle point, the system is pushed along +êm and −êm to escape the zone where the
forces are null (blue arrows) and relaxed toward the adjacent minima (black arrows). Top
figures: 3D plot three dimensional landscape. Bottom figures: 2D plot of two-dimension
projection of the path; the small black lines are the isovalue levels lines for which the
energy is the same.
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(b) Lanczos method at ARTn step i+ 1

Figure 3: Scheme of two consecutive Lanczos procedures: one at ARTn step i and the
second at ARTn step i+1. The starting Lanczos vector L1 is random at ARTn step 0 and
is the previously converged at ARTn step i+ 1, which implies that fewer Lanczos vectors
are needed to converge to êm at step i + 1. Each vector is the 2D projection of a 3NatD
vector. The blue brackets 〈êm|Li〉 indicate the projection of the unknown êm on each of
the Lanczos basis vectors Lk. The previous algorithm was always using 16 Lanczos basis
vectors.
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Figure 4: Typical number of Lanczos iterations (number of force calls) at each new call of
the Lanczos algorithm by ART in three different cases. First case (violet triangles): when
the size of the Lanczos basis is fixed. Second case (red diamonds): when the size of the
Lanczos basis is not predetermined and randomly initialized. Third case (black circles):
same as second case but the Lanczos basis is initialized with the previously converged
eigenvector (Li+1

1 = êim).

21



adatom

exchange

hopping

Id 1 2 3 4
∆E (eV) 0.30 0.63 0.59 0.61

Figure 5: Top figure: The two first layers of the Al (100) surface and the Al adatom.
The cone is centred on the adatom, with the direction < 111 > and a 45° angle. An input
vector êrand is accepted only if its displacement of the Al adatom is located into this cone.
The two possible diffusion mechanisms are shown by the black (hopping - Event Id 2) and
red (exchange - Event Id 1) arrows. Bottom table: Transition energies ∆E for diffusion
events found with a barrier lower than 1 eV. The Id of each event is the same as the ones
used in Fig. 8 of Ref.[18]: Id 1, 4 and 3 respectively for the exchange with the 1rst, 3rd
and 2nd neighbour, and Id 2 for the hopping. Many other barriers lower than 1 eV have
been found around 0.90 eV, but they do not correspond to a diffusion of the addatom,
such as the creation of a second addatom or of a vacancy.
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(a) Initial (b) saddle (c) final

# method # of force calls
1 initial random direction 463
2 knowing the correct direction 96
3 knowing the final point 50
4 knowing the path is symmetrical 20

Figure 6: Top: Atomic structures of the reactants, transition state and products of the
chemical reaction of CH3Cl with a Cl atom. Below: Total number of force calls to find
the saddle point for the above reaction using each of the four procedures described in the
text. This number of force calls does not take into account the relaxation to the adjacent
minimum, which is the same for all.

(a) Optimal points and vec-
tors fields

(b) A Basin (c) Valleys, ridges and inflec-
tion

Figure A.7: Example of a two dimensions PES having A.7a- saddle points (green dots),
minima (blue dots), maxima (grey dots), a êm field (green lines pointing towards saddle
points), and a force field (blue lines pointing towards minima) A.7c- valleys (black lines),
ridges (white lines), inflection lines (blue line) surrounding a space below the inflection
(blue areas), and A.7b- a basin.
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T =
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. . .
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0 β3 α3
. . . 0
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. . .

. . .
. . . βk
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
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Figure B.8: Schematic representation of the Lanczos algorithm.
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