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Abstract

5G mobile network services have made tremendous growth in the IoT network. As a result, a counters
number of battery-powered IoT devices are deployed to serve diverse scenarios, e.g., smart cities, autonomous
farming, smart manufacturing, to name but a few. In this context, energy consumption became one of
the most critical concerns in interconnecting smart IoT devices in such scenarios. Additionally, whenever
these IoT devices are distributed in space and time-evolving, they are expected to deliver high volume
data scalably/predictably while minimizing end-to-end latency. Furthermore, edge IoT nodes often face
the biggest hurdle of performing optimal resource distribution and achieving high-performance levels while
coping with task handling, energy conservation, and ultra-reliable low-latency variability.

This paper investigates an energy-aware and low-latency oriented computing task scheduling problem in a
Software-Defined Fog-IoT Network. We formulate the online task assignment and scheduling problem as an
energy-constrained Deep Q-Learning process as a kickoff. The latter strives to minimize the network latency
while ensuring energy efficiency by saving battery power under the constraints of application dependence.
Then, given the task arrival process, we introduce a deep reinforcement learning (DRL) approach for dynamic
task scheduling and assignment in SDN-enabled edge networks. We conducted comprehensive experiments
and compared the presented algorithm to three pioneering deep learning algorithms (i.e., deterministic, ran-
dom, and A3C agents). Extensive simulation results demonstrated that our proposed solution outperforms
these algorithms. Additionally, we highlight the characterizing feature of our design, energy-awareness, as
it offers better energy-saving by up to 87% compared against the other approaches. We have shown that
the offloading scheme could perform more tasks with the available battery power by up to 50% more minor
time delay. Our results support our claims that the solution we propose can readily be used to dynamically
optimize task scheduling and assignment of complex jobs with task dependencies in distributed Fog IoT
networks.
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1. A scrutiny of related work related Work

This section sketches the research directions that
paid close heed to on-task offloading and resource al-
location problems using Reinforcement Learning in
a fog-enabled network with SDN. In the following,
we sent by reviewing the task scheduling within an
SDN-enabled edge computing.

1.1. Task Scheduling SDN-enabled Edge Computing

SDN has been widely used to empower dynamic
and effective resource allocation in diverse cloud [1]
and data center networks [2]. Furthermore, it pro-
vided on-demand application and resource manage-
ment in wireless sensor networks [3] and network
edge [4]. For example, Wu et al. [5] introduced the
UbiFlow framework that combines ubiquitous flow
control and mobility management in heterogeneous
urban networks. The latter adopts distributed SDN
controller’s pattern to split traffic scale among geo-
graphically distributed IoT network silos, where each
controller can maintain network scalability, load bal-
ancing, and consistency. Chen et al. [6] proposed
an SDN-based heuristic model for offloading dis-
tributed computing resources in an ultra-dense net-
work. They formulated the task offloading problem
as a mixed-integer non-linear program to solve the
task placement and resource allocation problem in
mobile edge computing. Similarly, Pen et al. [7]
introduced a mobile task offloading framework for
device-to-device (D2D) fogging. They leveraged Lya-
punov optimization D2D fogging methods for achiev-
ing energy-efficient task executions for network-wide
users and reduce time-average task execution to avoid
over-exploiting and free-riding behaviors.

Furthermore, Kuang et al. [8] investigated a joint
problem of partial offloading scheduling and resource
allocation over multiple independent tasks in MEC
networks. They formulated their framework as a non-
convex mixed-integer optimization problem based on
Dual Decomposition and Lagrangian Relaxation to
minimize the weighted sum of the execution de-
lay and energy consumption while guaranteeing the
transmission power constraint tasks. Finally, Zhang
et al. [9] proposed a fair and energy-minimized task
offloading algorithm based on the fairness scheduling

metric. Their scheme considered task offloading en-
ergy consumption, historical average energy demand,
and the FN priority is to offer optimal transmis-
sion power for wireless fog-enabled mobile IoT nodes.
Chalapathi et al. [10] proposed a Latency Aware Task
Assignment (LATA) scheme for a multi-cloudlet net-
work to optimize the latency monetary cost in com-
puting the tasks of mobile devices by making opti-
mal task assignments among the micro-clouds. The
LATA model proposed an admission control policy
to maintain optimality in high traffic conditions. Be-
sides, the authors in [11] addressed the problem of
task offloading in SDN-enabled network by offering a
computation scheme for multi-hop IoT access points
(APs). The proposed scheme is formulated as an inte-
ger linear program (ILP) and greedy-heuristic-based
approach to offer an optimal decision on local or re-
mote task computation, optimal fog node selection,
and optimal path selection.

1.2. Reinforcement Learning Task Allocation

Task scheduling problem in dynamic IoT environ-
ment is often one of the most challenging resource
management problems. Indeed, it manifests as tricky
online decision-making where proactive solutions usu-
ally depend on the dynamic workload and the inter-
action with the surrounding environment [21]. Lei
et al. [12] provided a comprehensive survey of au-
tomating and orchestrating IoT resources using rein-
forcement learning (RL) to achieve autonomy. Wan
et al. [13] introduced DRL-based scheduling for Cel-
lular Networks. They proposed two methods, i.e.,
learning from a dual AI (Artificial Intelligence) mod-
ule and learning from the expert solution to perform
link adaption, feedback, and scheduling mechanisms
used in real LTE networks. The former uses two in-
dependent agents to train and learn from each other.
The latter relied on Proportional Fair (PF) schedul-
ing algorithm, which is used is employed as expert
knowledge to help with DRL agent training. Sen et
al. [14] proposed a Machine Learning (ML) approach
for scheduling application tasks in distributed Intel-
ligent Cognitive Assistants (ICA). They introduced
a heuristic method for solving task assignment prob-
lems between the three tiers in the edge computing
system (i.e., remote cloud, fog, and edge devices).
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Article Idea Criteria
Energy effeciency Scalability Latency Bandwidth

Lei et al. [12] Automation and orchestra-
tion of IoT resources using
RL & DRL in IoT Network

- - X X

Wang et al. [13] DRL-based planning for LTE
cellular networks

- X - X

Sen et al. [14] Schedule application tasks
in intelligent cognitive assis-
tants distributed through ma-
chine learning

X X - -

Hongzi et al. [15] Introduced a DRL-based
framework to automatically
manage IOT resources from
their own experience

- X - -

Dhoha et al. [16] Improve resource sharing and
task allocation using a coop-
erative process based on DRL

- X - -

Wang et al. [17] Incremental approach based
on DRL for task allocation
strategies

- X - -

Ma et al. [18] Task planning optimization
scheme based on heuristic ap-
proaches

- - X -

H .Ye et al. [19] Develop a decentralized re-
source allocation mechanism
for V2V communications us-
ing multi-agent DRL

- X X -

S. Liang et al. [20] Introduce a mechanism to
address the customized job
scheduling problem in data
centers using DRL

- - - -

Our approach X X X X

Table 1: Reinforcing learning for Task Allocation

Hongzi et al. [15] introduced a DeepRM framework to
build autonomous and intelligent systems that learn
to manage resources from their own experience di-
rectly.

Likewise, the authors in [19] proposed a DRL ap-
proach for a decentralized resource allocation mech-
anism for vehicle-to-vehicle (V2V) communications.
They introduced a DRL agent that makes decisions to
find optimal sub-band and power levels for transmit-
ting V2V data. Doha et al. [16] proposed a coopera-
tive DRL-based task allocation process that combines

learning agents’ capabilities to improve resource shar-
ing and distributed task allocation. Finally, Wang et
al. [17] proposed a DRL-based incremental approach
for learning allocation strategies. They extracted di-
verse task patterns from the large volume of historical
allocation data to improve learning efficiency. The
authors in [20] introduced an RL approach for learn-
ing the scheduling policy automatically and reduce
the estimation error on data centers. Similarly, Ma
et al. [18] proposed an IoT-based deadline and cost-
aware task scheduling optimization scheme to satisfy
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the Quality of Service (QoS) requirements in cloud-
hosted IoT applications. The proposed algorithm
uses heuristic approaches to minimize the execution
cost of a workflow under deadline constraints in the
infrastructure as a service (IaaS) model.

1.3. Paper’s Contributions

Unlike the approaches above, which are mainly
based on meticulously designed heuristics that ignore
the patterns of incoming tasks, our approach uses
SDN to enhance the control and management of fog-
enabled IoT networks in terms of flexibility and in-
telligence. Our approach provides an intelligent IoT
network communication system to create a single, co-
herent and unifying control framework for real-time
fog-enabled IoT network design to resolve the task
scheduling problem.

Furthermore, compared with existing researches
for the energy consumption in fog-enabled networks,
which primarily focused on minimizing the overall en-
ergy consumed by the task offloading services, our
approach introduces an online Deep Reinforcement
Learning task assignment and scheduling scheme for
optimizing IoT network performance, minimizing the
energy demand and consumption—in the scenarios
with battery-powered distributed IoT nodes, offering
predictive behaviors on the network and avoiding the
impact of failures. Furthermore, the SDN capabilities
provided by the controller, e.g., logically centralized
control, global view of the network, software-based
traffic engineering, and dynamic updating of forward-
ing rules, make it straightforward to apply deep rein-
forcement learning for fully automated tasks assign-
ments and scheduling in IoT network. Specifically,
our approach offers a fully automated service deploy-
ment and resource/capacity planning mechanisms for
fast-path forwarding across ultra-low latency SDN-
enabled virtualized fog infrastructure. Our SDN-
based solution offers a programmable analytic to the
application layer through open interfaces to instanti-
ate service intelligence at the network edge.

2. A scrutiny of related work related Work

This section sketches the research directions that
paid close heed to on-task offloading and resource al-

location problems using Reinforcement Learning in
a fog-enabled network with SDN. In the following,
we sent by reviewing the task scheduling within an
SDN-enabled edge computing.

2.1. Task Scheduling SDN-enabled Edge Computing

SDN has been widely used to empower dynamic
and effective resource allocation in diverse cloud [1]
and data center networks [2]. Furthermore, it pro-
vided on-demand application and resource manage-
ment in wireless sensor networks [3] and network
edge [4]. For example, Wu et al. [5] introduced the
UbiFlow framework that combines ubiquitous flow
control and mobility management in heterogeneous
urban networks. The latter adopts distributed SDN
controller’s pattern to split traffic scale among geo-
graphically distributed IoT network silos, where each
controller can maintain network scalability, load bal-
ancing, and consistency. Chen et al. [6] proposed
an SDN-based heuristic model for offloading dis-
tributed computing resources in an ultra-dense net-
work. They formulated the task offloading problem
as a mixed-integer non-linear program to solve the
task placement and resource allocation problem in
mobile edge computing. Similarly, Pen et al. [7]
introduced a mobile task offloading framework for
device-to-device (D2D) fogging. They leveraged Lya-
punov optimization D2D fogging methods for achiev-
ing energy-efficient task executions for network-wide
users and reduce time-average task execution to avoid
over-exploiting and free-riding behaviors.

Furthermore, Kuang et al. [8] investigated a joint
problem of partial offloading scheduling and resource
allocation over multiple independent tasks in MEC
networks. They formulated their framework as a non-
convex mixed-integer optimization problem based on
Dual Decomposition and Lagrangian Relaxation to
minimize the weighted sum of the execution de-
lay and energy consumption while guaranteeing the
transmission power constraint tasks. Zhang et al. [9]
proposed a fair and energy-minimized task offloading
algorithm based on the fairness scheduling metric.
Their scheme considered task offloading energy con-
sumption, historical average energy demand, and the
FN priority is to offer optimal transmission power for
wireless fog-enabled mobile IoT nodes. Chalapathi et
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al. [10] proposed a Latency Aware Task Assignment
(LATA) scheme for a multi-cloudlet network to op-
timize the latency monetary cost in computing the
tasks of mobile devices by making optimal task as-
signments among the micro-clouds. The LATA model
proposed an admission control policy to maintain op-
timality in high traffic conditions. Besides, the au-
thors in [11] addressed the problem of task offloading
in SDN-enabled network by offering a computation
scheme for multi-hop IoT access points (APs). The
proposed scheme is formulated as an integer linear
program (ILP) and greedy-heuristic-based approach
to offer an optimal decision on local or remote task
computation, optimal fog node selection, and optimal
path selection.

2.2. Reinforcement Learning Task Allocation

Task scheduling problem in dynamic IoT environ-
ment is often one of the most challenging resource
management problems. Indeed, it manifests as tricky
online decision-making where proactive solutions usu-
ally depend on the dynamic workload and the inter-
action with the surrounding environment [21]. Lei
et al. [12] provided a comprehensive survey of au-
tomating and orchestrating IoT resources using rein-
forcement learning (RL) to achieve autonomy. Wan
et al. [13] introduced DRL-based scheduling for Cel-
lular Networks. They proposed two methods, i.e.,
learning from a dual AI (Artificial Intelligence) mod-
ule and learning from the expert solution to perform
link adaption, feedback, and scheduling mechanisms
used in real LTE networks. The former uses two in-
dependent agents to train and learn from each other.
The latter relied on Proportional Fair (PF) schedul-
ing algorithm, which is used is employed as expert
knowledge to help with DRL agent training. Sen et
al. [14] proposed a Machine Learning (ML) approach
for scheduling application tasks in distributed Intel-
ligent Cognitive Assistants (ICA). They introduced
a heuristic method for solving task assignment prob-
lems between the three tiers in the edge computing
system (i.e., remote cloud, fog, and edge devices).
Hongzi et al. [15] introduced a DeepRM framework to
build autonomous and intelligent systems that learn
to manage resources from their own experience di-
rectly.

Likewise, the authors in [19] proposed a DRL ap-
proach for a decentralized resource allocation mech-
anism for vehicle-to-vehicle (V2V) communications.
They introduced a DRL agent that makes decisions to
find optimal sub-band and power levels for transmit-
ting V2V data. Doha et al. [16] proposed a coopera-
tive DRL-based task allocation process that combines
learning agents’ capabilities to improve resource shar-
ing and distributed task allocation. Finally, Wang et
al. [17] proposed a DRL-based incremental approach
for learning allocation strategies. They extracted di-
verse task patterns from the large volume of historical
allocation data to improve learning efficiency. The
authors in [20] introduced an RL approach for learn-
ing the scheduling policy automatically and reduce
the estimation error on data centers. Similarly, Ma
et al. [18] proposed an IoT-based deadline and cost-
aware task scheduling optimization scheme to satisfy
the Quality of Service (QoS) requirements in cloud-
hosted IoT applications. The proposed algorithm
uses heuristic approaches to minimize the execution
cost of a workflow under deadline constraints in the
infrastructure as a service (IaaS) model.

2.3. Paper’s Contributions

Unlike the approaches above, which are mainly
based on meticulously designed heuristics that ignore
the patterns of incoming tasks, the one that we intro-
duce uses SDN to enhance the control and manage-
ment of fog-enabled IoT networks in terms of flexibil-
ity and intelligence. Our approach provides an intel-
ligent IoT network communication system to create
a single, coherent and unifying control framework for
real-time fog-enabled IoT network design to resolve
the task scheduling problem.

Furthermore, compared with existing researches
for the energy consumption in fog-enabled networks,
which primarily focused on minimizing the overall en-
ergy consumed by the task offloading services, our
approach introduces an online Deep Reinforcement
Learning task assignment and scheduling scheme for
optimizing IoT network performance, minimizing the
energy demand and consumption—in the scenarios
with battery-powered distributed IoT nodes, offering
predictive behaviors on the network and avoiding the
impact of failures. Furthermore, the SDN capabilities
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Article Idea Criteria
Energy effeciency Scalability Latency Bandwidth

Lei et al. [12] Automation and orchestra-
tion of IoT resources using
RL & DRL in IoT Network

- - X X

Wang et al. [13] DRL-based planning for LTE
cellular networks

- X - X

Sen et al. [14] Schedule application tasks
in intelligent cognitive assis-
tants distributed through ma-
chine learning

X X - -

Hongzi et al. [15] Introduced a DRL-based
framework to automatically
manage IOT resources from
their own experience

- X - -

Dhoha et al. [16] Improve resource sharing and
task allocation using a coop-
erative process based on DRL

- X - -

Wang et al. [17] Incremental approach based
on DRL for task allocation
strategies

- X - -

Ma et al. [18] Task planning optimization
scheme based on heuristic ap-
proaches

- - X -

H .Ye et al. [19] Develop a decentralized re-
source allocation mechanism
for V2V communications us-
ing multi-agent DRL

- X X -

S. Liang et al. [20] Introduce a mechanism to
address the customized job
scheduling problem in data
centers using DRL

- - - -

Our approach X X X X

Table 2: Reinforcing learning for Task Allocation

provided by the controller, e.g., logically centralized
control, global view of the network, software-based
traffic engineering, and dynamic updating of forward-
ing rules, make it straightforward to apply deep rein-
forcement learning for fully automated tasks assign-
ments and scheduling in IoT network. Specifically,
our approach offers a fully automated service deploy-
ment and resource/capacity planning mechanisms for
fast-path forwarding across ultra-low latency SDN-
enabled virtualized fog infrastructure. Our SDN-
based solution offers a programmable analytic to the

application layer through open interfaces to instanti-
ate service intelligence at the network edge.

3. Model for Task Assignment and Scheduling
problem

This section delves into the architectural details
that enable us to support task assignment and
scheduling, dynamic, and flexible resource manage-
ment with our SDN-based framework, and presents
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the problem statement and the algorithms to instan-
tiate service intelligence at the network edge.

3.1. System’s Architecture

Figure 1 glances at the architectural design of our
deep reinforcement assignment and scheduling solu-
tion to address the task scheduling problem in the IoT
network. We added the task scheduler at the SDN
controller level to find and select the best scheduling
decision policy. The Task scheduler algorithm con-
sists of a queue containing task processing requests
from mobile IoT applications, a learning-based input
representative, and a planning decision-maker based
on learning.

The SDN controller collaborates with our DRL
algorithm to usher the intelligent network resource
scheduling and management process. The SDN con-
troller uses a planner algorithm to manage task pro-
cessing requests and create the historical dataset from
incoming task requests. Figure 1 shows the internal
controller modules: i) the path computing module as-
signs optimal route paths for different types of traffics
generated by different IoT tasks and highly improves
the QoS settings (bandwidth and delay); ii) the net-
work monitoring module polls fog nodes to collect
flow statistics to determine throughput, packet loss,
and delay and; iii) trigger the flow scheduler mod-
ule to exploit multiple paths to select the best QoS-
aware path accordingly and uses queuing mechanisms
to achieve optimal bandwidth utilization and super-
vise traffic activities. The SDN controller acts as the
brain of the network by controlling the underlying fog
nodes through the OpenFlow secure channel.

Additionally, our agent in the controller SDN
learns to use the dataset to represent the state in-
formation of all the fog nodes and the task requests
to create a latent representation model. the latter
helps to avoid any kind of noise, useless and less es-
sential data just it will represent the relevant and
helpful information when going to use it the second
step to optimizing the problem-solving of scheduling
tasks. Once the information available on the dataset
is well filtered and represented in a network graph,
the SDN controller starts learning how to generate
learning policies to input programming decision val-
ues (Q-value). Then, it selects the best fog node and

sends the decision in OpenFlow rules for handling
the tasks. Finally, the SDN controller assigns the fog
nodes to decision for processing the task requests. Af-
ter that, the mobile device can download data from
the designated fog node.

3.2. Problem Statement

The task planning in fog computing is represented
by N different tasks T1,T2,. . . ,TN , which will be as-
signed to distinct fog nodesF1,F2,. . . ,FM to minimize
energy consumption and time delay by optimizing the
use of the transmission channel. Let us consider:

• Xij(t): denotes the assignment of task Ti on fog
node Fj

Xij(t) =

{
1, if Ti runs on Fj
0, otherwise

(1)

• Execution time to Ti task at fog node Fj

TTCij(t) = Di(t)θi/Cj(t) (2)

Where Di(t) standing for the data size for the
task Ti, θi is the computing intensity and Cj(t)
is the computing resource on the fog node Fj .

• The transmission time delay for task Ti on the
fog node Fj is denoted by equation 3:

TTRij(t) =
Di(t)

rij(t)
;

rij(t) = wij(t)× log(1 +
hij(t)× pij(t)

σ
)

(3)

Where wij(t) is the bandwidth, hij(t) is the
channel power gain, pij(t) is the transmission
power, and σ is the noise power.

• The total time delay is given by equation 4:

TTij(t) = TTRij(t)+TTCij(t)+TTWij(t) (4)

Where TTWij(t) is the waiting time for task
scheduling.
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Figure 1: Task scheduling an architecture at a glance

• Similarly, the energy consumption is denoted by
equation 5:

ECij = TTRij(t)×pir(t)+TTCij(t)×pie(t) (5)

Where pir(t) is the transmission power and pie(t)
is the idle power.

We model the task scheduling problem as a nonlin-
ear multi-objective combinatorial optimization prob-
lem with several objectives. The objective function
is multi-variables and multi-constraints. That is, it
is tricky to find an optimal solution using a polyno-
mial method. Thus, a compelling need is to design a
hybrid heuristic algorithm to build a task scheduling
strategy. In simplifying the complexity of the prob-
lem into a single problem, and reducing the difficulty
of solving, we consider the hypotheses:

• Each task is independent, and there are no con-
straints between the tasks.

• Each task can be assigned to only a node fog.

• No task can be allocated repeatedly.

• In the calculation process, the task doesn’t con-
sider the impact of the mobility of the terminal
equipment.

• All nodes are static, and the current task cannot
be interrupted.

The objective function of task scheduling in fog nodes
is shown in equation 6, where both time delay and en-
ergy consumption constraints are formulated as fol-
lows:

f = min

n∑
i=1

(Wit

m∑
j=1

[Xij(t)

× TTij(t)] +Wie

m∑
j=1

[Xij(t)× ECij(t)]) (6)

Where Wit is the weight of delay, and Wie is the
weight of energy consumption. Both weighting fac-
tors are set to emphasize the importance of each type
of constraint. In other words, the choice of weights in
such multi-objective optimization approaches alludes
to the decision-makers preference.
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3.3. Deep Reinforcement Learning for resolving Task
Scheduling Problem

Figure 2 glances our approach to tackle the issue
scheduling problem using deep reinforcement learn-
ing. Because the task planning module contains a
small amount of information about the future arriv-
ing tasks, the SDN controller uses historical tasks to
build the deployment decisions. In addition, the DRL
algorithms we implemented inside the controller can
analyze the performance of all connected fog-enabled
IoT nodes. In doing so, we build efficient schedul-
ing to execute several simultaneous tasks and predict
optimal scheduling on the network that meets both
low-latency and efficient-energy requirements.

First, we train the SDN controller to represent the
datasets of all tasks and fog nodes for performing
task assignments using the best optimal way under
the constraints mentioned above, minimizing the net-
work latency and reducing the energy consumption.
Therefore, we introduce our DRL algorithm to se-
lect and apply the best decision that distributes the
tasks on available fog nodes. As shown in Figure 2,
the compressed low-dimensional representation of the
input is used to find a latent representation of the
data between tasks that will be executed and fog
node states ready to execute these tasks. Then, an
auto-encoder model has been developed, which aims
to find a latent representation Z from data X using
an encoder and decoder networks. The main goal
of this model is to compute the following function
g(x) = sg(Wx+b) , where sg is an activation function
as sigmoid(), W is the weight, and b is the bias. After
that, a bottleneck layer Z = g(x) is used to filter the
incoming data from the encoder layer. Then, a de-
coder function defined as follows f(x) = sg(W ′z+b′)
is used to reconstruct the input X from Z (represen-
tation of latent space). The auto-encoder model is
trained using the mean squared error (MSE), which
minimizes the reconstruction error between the input
X and the reconstructed input (output) X’. Further-
more, the obtained latent representation Z obtained
by the encoder network, i.e., S∗ = Z = g(S), is used
to train the SDN controller to assign task Ti to node
Fj and generate the optimal decision to schedule the
tasks.

Algorithm 1: Task Assignment to Fog Nodes

Input:
1. Detection nodes N = {n1, n2, . . . , nj} with

their available energies,

2. Set of tasks T = {t1, t2, . . . , ti} with their
characteristics

Output: Assign a task ti to a node nj
1 while true do // infinite loop

// learn according to cases

2 Replay (n, t) ;
// Predict the value of the reward

3 act-values = predict (n, t) ;
// Choose the action according to

the expected reward

4 a = arg max(act-values[0]) ;
5 Execute a // Send t to n

6 end

Algorithm 1 illustrates the task assignment ap-
proach performed by the SDN controller, which col-
lects information from the underlying SDN routers
about the available fog node capacities, including
their available energy. Thence, the algorithm receives
a list of tasks and their characteristics and assigns
them to the available fog nodes. The DRL algorithm
selects the fog nodes based on their available energy
and current occupation rates to reduce the delay in
processing time. Once the controller has assigned
tasks to their relevant nodes, it keeps track of a log
dataset of the current node’s processing and available
energy. Whenever a task is successfully assigned to a
fog node, the controller increases the value of the local
reward and selects the forthcoming action according
to the expected reward. Then, to maximize the ob-
jective function (e.f., equation 6), the algorithm the
argmax operator to find the maximum values fulfill-
ing the constraints of low-energy consumption and
lower network latency.

As described in algorithm 2, the SDN controller
implements a Deep Q-learning algorithm to mimic a
learning agent that maps states of the environment
to actions. The agent considers these actions to move
from one state to another to maximize a numerical
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Figure 2: Deep Learning for Task Scheduling

reward over time. Specifically, the SDN controller se-
lects these actions during run-time, even if an agent
doesn’t complete the knowledge of rewards and state
transition functions. In each state, the agent can
choose between two types of behavior: (i) the con-
troller can continue exploring the state space to the
find optimal decision policy; or (ii) it can leverage the
information already given by the Q values defined by
equation 7:

Q(S∗) = R+ γmaxQ(s′, a′)

Action a = arg max
a′

Q(s, a′) (7)

The total reward is given by equation 8:

R =

n∑
i=1

(Wit

m∑
j=1

β[Xij(t)× TTij(t)]

+Wie

m∑
j=1

β[Xij(t)× ECij(t)]) (8)

Where Wit is the delay weight, and Wie is the weight
of energy consumption. The parameter β takes a pos-
itive sign if we execute the assigned task in the node,
whereas a negative sign otherwise remains pending in
the queue. We implemented the training algorithm
that uses a regression loss function to be little of the
total training data error. Worthy of mention, the
deep learning neural network loss function, to pre-
dict the states of Q values, given by equation 9:

L =
1

2
[r + γmax

a′
Q(s′, a′)−Q(s, a)]2 (9)
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Algorithm 2: Deep Q-learning algo-
rithm with experience replay

Input: Initialize replay memory M
Initialize action-value Q with random weights
Observe the initial state s
Output: model trained to assign task to node

1 repeat
2 Select an action a with probability ε
3 Select a random action;
4 Otherwise select a = arg maxa′ Q(s, a′)
5 execute action a
6 observe reward r and new state s′

// Store experience in memory

7 store exp < s, a, r, s′ > in memory M
8 sample random transitions

< ss, aa, rr, ss′ > from memory M
9 compute target for each minibatch

transition
10 if ss′ is terminal state then
11 tt← rr
12 else tt← rr + γmax′aQ(ss′, aa′)
13

14 Train the Q network using
(tt−Q(ss, aa))2 as loss

15 s = s′

16 until terminated

Algorithm 2 learns the allocation policy to provide
an optimal decision regarding both the constraints
mentioned above, i.e., in terms of latency and en-
ergy and performance of the system. First, to start
the learning process, the algorithm initializes a deci-
sion matrix with weights (Q-values) of random poli-
cies and observed initial states of the SDN network.
Then, nodes will be chosen with their smallest prob-
ability values from the filled matrix and randomly
assign the tasks to its distinct fog nodes. Once the
first step is completed, the controller can now move
to the following states, i.e., returning a reward and
performing the calculation and transitioning from one
state to another. Each newly calculated step is saved
in the matrix, and we compare the existing policy
with the previous one. If the newer policy is found to
be better, it will be considered locally optimal, and

so on. Thus, we repeatedly operate until we get an
optimal global assignment for each task. Then, the
operation is repeated until all tasks in the waiting
queue are processed and assigned to the best avail-
able fog nodes.

Algorithm 3: Agent Random

Input:
1. Detection nodes N = {n1, n2, . . . , nn} with

their available energies,

2. Set of tasks T = {t1, t2, . . . , tm} with their
characteristics

Output: Assign task ti to node nj
1 i← 1
2 reward← 0
3 totrewards← 0
4 while i <= m do // m is the number of

tasks

5 action← env.actionspace.sample()
// randomly choose an action

6

7 ob, reward← env.step(action)
8 update(N ,ob) // update of nodes

9

10 totrewards+ = reward
11 i+ +

12 end

Algorithm 3 represents the assignment of tasks us-
ing a random agent. The latter is based on a strategy
that assigns the tasks one by one to the various avail-
able fog nodes randomly without taking into account
the quality of service in terms of latency. It gives each
task to a randomly chosen fog node and updates the
fog node energies each time. In addition, it also up-
dates the accumulated rewards.

Algorithm 4 represents the assignment of tasks to
the corresponding nodes using a deterministic agent.
The latter will schedule the tasks one by one accord-
ing to their order of arrival and assign them to nodes
close to their minimum latency. At each iteration, an
update will be performed on the energy state of the
node that executed the task.

Algorithm 5 illustrates the task assignment and

11



Algorithm 4: Agent deterministic

Input:
1. Detect nodes N = {n1, n2, . . . , nn} with their

available energies,

2. Set of tasks T = {t1, t2, . . . , tm} with their
characteristics

Output: Assign task ti to node nj
1 Sorted(N) i← 1
2 assign← false
3 reward← 0
4 totrewards← 0
5 while i <= m do // m is the number of

tasks

6 for j ← 1 to n do // n is the number

of nodes

7 if N [j][”energ”] > T [i][”energ”] then
8 N [j][”energ”]←

N [j][”energ”]− T [i][”energ”]
9 ob, reward← Execute(T [i], N [j])

// execute task in node

10 assign← true
11 break

12 end

13 end
14 if !assign then
15 ob, reward← env.step()
16 end
17 update(N ,ob) // update of nodes

18 Sort(N)
19 totrewards+ = reward
20 i+ +

21 end

scheduling scheme using the A3C approach, which
relies on multiple agents that likely explore different
states and transitions. Each agent has its own net-
work parameters and a copy of the environment.

These agents interact with their respective envi-
ronments asynchronously while learning at each iter-
ation. Each agent gets its own copy of the environ-
ment, processes the gathered data samples at their
arrival. The main thrust of A3C is that the network
controls each agent to gain more acknowledge and

Algorithm 5: Asynchronous Advantage
Actor-Critic Agent (A3C)

Output: Model trained with workers to
assign task to node.

1 for i← 1 to n do // n is the number of

workers

2 Wi.run() // Start worker thread

3 end
4 step← 1 // ForEach worker Wi,

initialize step counter

5 T ← 0 // Initialize episode counter

6 repeat
7 dθ ← 0; dθv ← 0 // reset gradients

8 θ′ ← θ; θ′v ← θv; t← step // Synchronize

thread-specific parameters

9 s← st // Initialize iteration

// Get observation state

10 while s is not terminal and
step− t < tmax do

11 Simulate action at according to
π(at|s; θ )

12 Receive reward rt and next state st+1

13 step+ +;
14 T + +;

15 end
16 if st is terminal state then
17 R← 0
18 else R← V (st, θ

′
v) // Bootstrap from

last state

19

20 for i← step− 1 to t do
21 R← ri + γR
22 dθ ←

dθ+ ∆θ′ log(π(ai|si; θ′)(R− V (si; θ
′
v)))

// Accumulate gradients

23 dθv ← dθv +
∂((R−V (si;θ

′
v))

2)
∂θ′v

24 end
// Perform asynchronous update of θ

and θv
25 θ = θ + dθ
26 θv = θ + dθv
27 until T > Tmax

12



contribute to the full knowledge of the network.
Algorithm 5 (lines 20-24 ) illustrates the policy

update we developed using the A3C approach. As
shown in line 21, the A3C agents select different ac-
tions in order to maximize the discounted reward R
by updating the hyper-parameter settings such as dis-
count factor γ. The agents try to maximize the im-
mediate rewards by taking greedy actions using the
policy function π and the Value function V to impact
future global parameters vectors dθ, as shown in line
22. The update operation is performed until reaching
the maximum number of predefined iterations Tmax.

4. Performance Analysis

This section describes the testbed setup and shows
the evaluation of our solution. Specifically, we de-
scribe the results for commonly used evaluation met-
rics, such as latency, energy efficiency, and network
scalability.

4.1. Testbed Setup

We implemented our framework using an emu-
lated SDN environment comprising Mininet [22] as
our network emulators along with OpenFlow SDN
switches for creating different IoT scenarios. Fur-
thermore, we extended Mininet to support Open AI
Gym toolkit [23] for reinforcement learning and de-
ployed IoT nodes in the form of virtualized micro-
services using Docker containers in emulated Kuber-
netes clusters. We also implemented the SDN north-
bound application using Python-based Ryu [24] SDN
controller, which performs global traffic management,
load balancing, global topology discovery, and moni-
toring. We developed our solution using the Tensor-
Flow python interface for interacting with our SDN
environment. In the latter, we used to run tests
on more than 100 nodes, each running over 1, 000
tasks simultaneously. We assessed our solution ver-
sus deterministic algorithms, random, and A3C ap-
proaches. The deterministic agent plans tasks ac-
cording to their order of arrival and assigns them to
the nearest nodes regarding their minimum latency.
Whereas the random agent assigns tasks to the avail-
able nodes in a stochastic order, i.e., it assigns tasks

to the available nodes’ strategy less. That is, if a se-
lected node does not have the required capacity to
execute an incoming task, then the random agent
leaves it in-hold state in the waiting queue and as-
signs tasks to alternative nodes. Thus, the A3C ap-
proach uses multiple agents who independently learn
a policy from their environment and then collabo-
rate with other agents to create global knowledge to
choose the best decision.

4.2. Pre-processing

The first step we performed on our data sets com-
prises pre-processing input data to carry out the
training of our SDN controller (i.e., Ryu controller).
Carrying out data refinement allows properly repre-
senting and preparing data for our deep Q-learning
model to perform task assignments and scheduling.
Therefore, we implemented different techniques to re-
duce the dimension of our datasets to find the best
representation of our data.
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Figure 3: Data Pre-Processing

Figure 3 illustrates the Mean Square Error (MSE)
regression loss function we got for different refinement
techniques, including Principal Component Analy-
sis (PCA), Independent Component Analysis (ICA),
Deep auto-encoder with Sigmoid function, rectified
linear activation function (reLU), and linear function.
As underscored by Figure 3, the Deep auto-encoder
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with Sigmoid activation function (Relu-Sigmoid) per-
forms better filtering and refinement results while
keeping the MSE error minimum. Because the sig-
moid function makes the loss function non-convex,
then rather than creating a single global minimum
for our training, we create multiple local minima to
find optimal task assignment strategies.

4.3. Discounted Cumulative reward

The SDN agent, in run-time, collects states from
the environment and sends back information to the
controller. By trying different actions, the agent
learns to optimize the reward that he gets from the
environment. The controller can either decide to take
the current policy as the best decision to place tasks
on the selected fog-enabled nodes, or continue learn-
ing from the available distributed nodes to find a bet-
ter candidate to place the current task requests. All
agents are driven by the same goal, to maximize the
expected discounted return.
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Figure 4: Cumulative Rewards for Our approach against the
three other approaches.

Figure 4 compares the accumulated reward got by
our approach versus the deterministic, random, and
A3C approaches. After the deterministic agent in-
creases to almost 550 earned rewards, it decreases
and starts losing rewards. It ushers losing its compu-
tation power and its ability to complete the planning
of newer coming tasks. His cumulative reward curve

slowly increases for the random agent, which means
some tasks have not been assigned, and we have to
put them on hold state. For the A3C agent, its cu-
mulative rewards were slowly increasing compared to
our approach. Our approach performs better cumula-
tive rewards than the deterministic and random case,
which selects the available node based on the energy
level. For the A3C trial agent, it has a lower accumu-
lated reward compared to our approach. The update
of the cumulative reward curve of our agent is in-
creasing rapidly compared to other agents. Thus, the
agent has a very optimal investment strategy where
each time the action is selected. It motivates it to
maximize the rewarded return.
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Figure 5: Local Rewards with Increasing number of nodes

To evaluate the stability and the scalability of our
approach, we increased the number of fog nodes up
to 50, as shown in Figure 5. We observed that
our SDN-enabled decision-maker agent could quickly
learn from the SDN topology network to make op-
timal decisions. The local reward, i.e., optimal local
assignment, rapidly reaches almost 300 in a few dozen
episodes as illustrated in Figure 5, which means: that
optimal local minimum (i.e., local optimization) can
be performed rapidly. We also experimented with
our approach with over 100 in other scenarios (none
shown in Figure 5), and we observed the same behav-
ior. We based claim that our deep learning approach
is gainful to implement both local, optimal and global
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tasks assignments and to schedule for SDN-enabled
IoT networks while fulfilling the respect of QoS con-
straints.

4.4. Energy-Efficiency

We aim to reduce the energy consumption on run-
ning fog-enabled IoT nodes as we described in equa-
tion 5 and perform better energy efficiency as we con-
sidered all nodes as batteries-powered ones. To eval-
uate the energy efficiency of our SDN-enabled solu-
tion, the SDN controller trained the agent by 1, 000
episodes. As a result, the agent should be able to plan
100 tasks to energy-constrained fog nodes. Each fog
node has a limited power capacity, i.e., their battery
level during this planning process is close to 5, 000wh.
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Figure 6: Energy Consumption in both tasks’ executing fog
Nodes

Figure 6 illustrates the energy consumption of two
available fog nodes, each running up to 100 tasks si-
multaneously, using our training approach against
deterministic, random, and A3C training agents.
Throughout the planning strategy of these tasks, the
DRL agent in our approach keeps a better battery
level in both nodes compared to the three other al-
gorithms.

Recall that our major objective is to minimize the
overall energy consumption of our SDN-enabled fog

network, as we described in equation 5. Figure 7
shows that our approach flags out better energy effi-
ciency, i.e., up to 87% compared against both deter-
ministic agents, which perform 48%, and the random
agent that performs 58%, and A3C agent, which per-
forms 76%.
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Figure 7: Energy Saving and Efficiency for all available Fog
Nodes

Our results confirm our claims that the solution we
propose can readily be used to dynamically optimize
task scheduling and assignment of complex jobs with
task dependencies in distributed fog IoT networks.

4.5. Assessing the Latency performance

As our optimization approach aims at minimizing
the network latency for available nodes during the
task executions, as we described in equation 4. We
gauged the total time delay expected by available fog-
enabled nodes to processing the current task’s re-
quests and communicate the results to remote IoT
senders.

To handle the pending task requests, we mea-
sured the total delay expected by the available fog
nodes. The set of latency values collected during task
scheduling of our approach, as well as with other ap-
proaches to scheduling tasks in two battery-powered
nodes, is shown in Figure 8.

The latency results of the different approaches have
been summarized in Table 3. As expected, the deter-
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Figure 8: Evaluating Latency during Task Scheduling

ministic approach performed a time latency of 29.59
ms in Node 1 and 39.32 ms in Node 2. Likewise, the
random algorithm carried out 37.27 ms in Node 1
and 39.71 ms in Node 2. Finally, the A3C algorithm
presents an average latency of 16.98 ms at Node 1 and
21.23 ms at Node 2. We repeated these experiments
multiple times, and we find the average latency ex-
pected by our approach is close to 7.84ms in Node 1
and 8.31 ms in Node 2. Therefore, our approach en-
sures a minimum latency of all fog nodes and showed
significant latency and energy consumption perfor-
mances.

Agent Node 1 Node 2
A3C 16.98 21.23
Random 37.27 39.71
Deterministic 29.59 39.32
Our approach 7.84 8.31

Table 3: Average latency

4.6. Evaluating the Bandwidth performance

To assess the performance of our approach, we
studied the bandwidth usage of our IoT network dur-
ing the task scheduling process. Figure 9 illustrates
the bandwidth usage during the scheduling by the dif-
ferent approaches described in section 3.3. Accord-

ing to Figure 9, our approach outperforms all the
other approaches during task scheduling. Compared
against both random and deterministic approaches,
which performed 29.6 Gbits/s and 32.15 Gbits/ re-
spectively, our approach surpassed both of them. The
reason is that the deterministic approach uses a de-
terministic greedy policy to make the locally optimal
choice at each stage without exploration. Further-
more, our IoT network means the deterministic algo-
rithm will stick to the current task assignment state
if it is better than the observed states. Nonethe-
less, the deterministic greedy policy will find itself
trapped in a local optimum, failing to explore certain
other states, which may hold the better local opti-
mum solution. Similarly, the randomized exploration
approach (randomized policy) will explore different
states based on a particular probability distribution,
making it slightly slower.
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Figure 9: Evaluating The bandwidth utilization during task
Scheduling

Additionally, while the A3C approach uses sev-
eral parallel workers (agents) that interact asyn-
chronously with separate instantiations of the envi-
ronment;,its bandwidth usage is close to 33.4 Gbit-
s/s; it is however defeated by our approach which
reaches 34.70 Gbits/s. The A3C technique tend to
suffer when faced with more complex tasks, as it
takes long delays between actions and relevant reward
signals, i.e., known as Partially Observable Environ-
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ments.

5. Conclusion

This paper showed the feasibility of developing
task assignment and scheduling mechanisms for SDN-
enabled IoT networks using Deep Reinforcement
Learning. We formulated a task assignment and
scheduling problem that minimizes network latency
while ensuring energy efficiency. The evaluation of
our solution against deterministic placement algo-
rithm, random, and A3C strategies showed it outper-
forms these algorithms in selecting optimal allocation
decision policies for task assignments and schedul-
ing in real-time. Furthermore, our approach per-
formed both local and global optimization, ensured
lower-latency communication and increased energy
efficiency.

We claim we can extend our DRL algorithm to sup-
port intelligent multi-access Ultra-Dense Edge Com-
puting (UDEC) to utilize multiple 5G resources ef-
ficiently. Our future work will focus on developing
a Federated Machine Learning (FedML) approach to
solve data ownership and privacy by training statis-
tical security models in UDEC nodes while keeping
data samples localized inside fog nodes. This promis-
ing undertaking will expand the capacity of federated
learning to keep individual data sets localized inside
fog nodes while updating central model parameters
and distributing them back to all edge nodes.
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