
HAL Id: hal-03648574
https://laas.hal.science/hal-03648574v2

Submitted on 28 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-aware task scheduling and offloading using deep
reinforcement learning in SDN-enabled IoT network

Bassem Sellami, Akram Hakiri, Sadok Ben Yahia, Pascal Berthou

To cite this version:
Bassem Sellami, Akram Hakiri, Sadok Ben Yahia, Pascal Berthou. Energy-aware task scheduling and
offloading using deep reinforcement learning in SDN-enabled IoT network. Computer Networks, 2022,
210, pp.108957. �10.1016/j.comnet.2022.108957�. �hal-03648574v2�

https://laas.hal.science/hal-03648574v2
https://hal.archives-ouvertes.fr

Energy-Aware Task Scheduling and Offloading using Deep Reinforcement
Learning in SDN-enabled IoT Network

Bassem Sellamia, Akram Hakirib, Sadok Ben Yahiac, Pascal Berthoud

aUniversity of Tunis El Manar, Faculty of Sciences, Dept of Computer Sciences, Campus universitaire, BP 37, Tunis, 1002, Tunisia
bUniversity of Carthage, SYSCOM ENIT, ISSAT Mateur, Route de Tabarka, Mateur, 7030, Tunisia

cTallinn University of Technology, Department of Software Science , Akadeemia tee 15a, Tallinn, 12618, Estonia
dCNRS, LAAS, UPS, 7 Avenue du colonel Roche, BP 54200, Toulouse, F-31031, France

Abstract

The fifth-generation (5G) mobile network services have made tremendous growth in the Internet of Things (IoT)
network. A counters number of battery-powered IoT devices are deployed to serve diverse scenarios, e.g., smart
cities, autonomous farming, smart manufacturing, to name but a few. In this context, energy consumption became one
of the most critical concerns in interconnecting smart IoT devices in such scenarios. Additionally, whenever these IoT
devices are distributed in space and time-evolving, they are expected to deliver high volume data scalably/predictably
while minimizing end-to-end latency. Furthermore, edge IoT nodes often face the biggest hurdle of performing optimal
resource distribution and achieving high-performance levels while coping with the variability of task handling, energy
conservation, and ultra-reliable low-latency.

This paper investigates an energy-aware and low-latency oriented computing task scheduling problem in a Software-
Defined Fog-IoT Network. First, we formulate the online task assignment and scheduling problem as an energy-
constrained Deep Q-Learning process as a kickoff. The latter strives to minimize the network latency while ensuring
energy efficiency by saving battery power under the constraints of application dependence. Then, given the task arrival
process, we introduce a deep reinforcement learning (DRL) approach for dynamic task scheduling and assignment in
the Software-Defined Networking (SDN)-enabled edge networks. We conducted comprehensive experiments and
compared the introduced algorithm to three pioneering deep learning algorithms (i.e., deterministic, random, and
A3C agents). Extensive simulation results demonstrated that our proposed solution outperforms these algorithms.
Additionally, we highlight the characterizing feature of our design, energy-awareness, as it offers better energy-saving
by up to 87% compared against the other approaches. We have shown that the offloading scheme could perform more
task assignments with the available battery power by up to 50% less time delay. Our results back our claims that the
solution we propose can readily be used to dynamically optimize task scheduling and assignment of complex jobs
with task dependencies in distributed Fog IoT networks.

Keywords: Task scheduling, Deep Reinforcing Learning SDN, Fog Computing, Internet of Things
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

The Internet of Things (IoT) is rocketly connecting a
considerable number of smart objects [1], which gener-
ate, gather, process, infer and transmit the massive amount

of sensory data that should be processed at network
edge nodes. Typical edge nodes, so-called fog comput-
ing nodes, often rely on discoverable, generic, forward-
deployed servers and IoT gateways located in single-hop

Preprint submitted to Elsevier April 25, 2022

proximity of wireless mobile IoT devices [2]. With the
acceleration of 5G commercial deployment, individual
fog nodes should coordinate their processing with neigh-
boring helper IoT nodes by offloading their tasks signif-
icantly to reduce task execution delay. Specifically, such
fog nodes should support burst flow and unpredictable IoT
traffic at different time scales. In addition, they are com-
pelling for new types of delay-sensitive IoT services and
applications, such as updating maps for self-driving cars
or delivery drones, energy usage measurements from a
smart grid, emergency monitoring, intelligent manufac-
turing, interactive multiplayer online games, and disaster
relief.

However, wireless communication and computing re-
sources (CPU, memory, storage) are usually highly lim-
ited and energy-consuming. Thus, it becomes more tricky
to meet the increasingly growing demand and dynamic
needs of IoT applications and address the heterogeneous
requirements of smart objects that communicate over the
Internet. Therefore, flexible resource management, intel-
ligent network control, and efficient task scheduling algo-
rithms are pivotal in ensuring fair and guaranteed steady
performance.

Furthermore, millions of battery-powered IoT devices
such as smart cameras, smartphones, home entertainment
systems, smart TVs, environmental monitoring sensors,
and smart meters are deployed to serve diverse scenarios
such as smart cities, autonomous farming, smart build-
ings, and smart manufacturing; and these applications re-
quire delivering high volumes of data over ultra-reliable,
low-latency wireless communication services [3]. The
growth of IoT services and applications, along with the
increasing traffic generated by IoT devices, raises the con-
cerns for the increase of energy consumption needed to
power, distribute and deploy IoT solutions [4].

In this respect, Software-Defined Networking (SDN) is
used to enable flexible and collaborative task offloading
service orchestration in cloud-Mobile Edge Computing
(MEC) [5]. Furthermore, a service orchestration scheme
is proposed to reduce network load, along with a differen-
tiated cloud-edge offloading decision algorithm that has
been submitted to improve cloud computation and energy
consumption. However, the cost of using the cloud re-
sources used in the above approach is often mistreated.

Similarly, an SDN scheme for balancing Edge-Cloud
traffic load and improving service response time has also

been introduced in [6]. A nature-inspired meta-heuristic
scheduler [7], based on ant colony optimization, has been
introduced to load balance IoT tasks between fog nodes
effectively. Nonetheless, the increasing growth of net-
work traffic generated by massive IoT applications and
services makes it hard to forecast energy-saving comput-
ing offloading. For example, recent studies revealed that
buildings account to nearly 40% of the global energy con-
sumption [8] and more than 35% of CO2 emissions [9] in
many countries.

Likewise, Cai et al. [10] proposed a framework for
tasks and energy offloading in a fog-enabled IoT net-
work while minimizing task’s execution delay. Recently,
machine learning techniques have become promising to
bring proactive adaptability to an SDN controller by per-
forming data analysis, network optimization, and auto-
mated provision of network services [11]. In fact, tradi-
tional task offloading schemes often assume that the mo-
bile communication and signal processing between mo-
bile edge devices and their radio base stations (i.e., eN-
odeB) are well modeled. This is, in contrast, very com-
plicated due to the mobility and highly dynamic aspect of
IoT devices, which is hard to predict. Furthermore, these
network provisioning approaches neither consider the dy-
namicity of IoT applications nor care about resource uti-
lization of fog-enabled IoT nodes. To curb both down-
sides, the network must be flexible enough to be repro-
grammed in compliance with any change in IoT applica-
tion needs.

The fog computing devices should provide : (i) An on-
demand resource allocation to support adaptive horizontal
and vertical scaling of the network resources; (ii) A flex-
ible infrastructure virtualization that exploits in-network
programmability capabilities to operate inside an SDN-
enabled virtualization platform; (iii) A device-driven and
human-driven intelligence to address the issues of energy
efficiency and ultra-low latency requirements for future
reliable and real-time IoT applications [12]. To address
the issues mentioned earlier, we introduce, in this paper,
a DRL energy-efficient task assignment and scheduling in
SDN-based fog IoT Network. An SDN-fog computing
model allows reducing network latency and traffic over-
head by centralizing the network control and orchestra-
tion in a single SDN controller layer. We also introduce a
DRL algorithm to tackle the task allocation and resource
planning issues in dynamic and distributed IoT environ-

2

ments to improve latency minimization and reduce energy
consumption. Our DRL relies on intelligent agents that
learn to update better decisions directly from the experi-
ence of interacting with the environment, while ensuring
optimization of consumable energy with minimization of
latency.

The remainder of this paper is organized as follows:
Section 2 scrutinizes the related work. Then, in Sec-
tion 3, we depict the details of our architecture, and we
describe the analytical model for our DL-based dynamic
task scheduling and resource management. Section 4 de-
scribes our DRL algorithm to address the task offload-
ing and scheduling issue and describes the implementa-
tion details of our solution. Section 5 evaluates our so-
lution to validate our claims of flexible data delivery and
low latency communication overhead. Finally, Section 6
presents concluding remarks, alluding to lessons learned
and future work.

2. A scrutiny of the related work

This section sketches the research directions that paid
close heed to on-task offloading and resource allocation
problems using reinforcement learning in a fog-enabled
network with SDN. In the following, we start by review-
ing the task scheduling within SDN-enabled edge com-
puting.

2.1. Task Scheduling SDN-enabled Edge Computing

SDN has been widely used to empower dynamic and
effective resource allocation in diverse cloud [13] and
data center networks [14]. Furthermore, it provided on-
demand application and resource management in wire-
less sensor networks [15] and network edge [16]. For
example, Wu et al. [17] introduced the UbiFlow frame-
work that combines ubiquitous flow control and mobility
management in heterogeneous urban networks. The latter
adopts distributed SDN controller’s pattern to split traf-
fic scale among geographically distributed IoT network
silos, where each controller can maintain network scala-
bility, load balancing, and consistency.

Chen et al. [18] proposed an SDN-based heuristic
model for offloading distributed computing resources in
an ultra-dense network. Yang et al. [19] introduce an
online learning approach where mobile users can offload

their computational tasks to neighborhood fog [20] and
an extended approach that makes use of the adversar-
ial multi-arm bandit framework to construct an online
learning policy. The authors formulate a task offload-
ing problem as a mixed-integer non-linear program to
solve the task placement and the allocation of resources
problems in mobile edge computing. Similarly, Pen et
al. [21] introduced a mobile task offloading framework
for device-to-device (D2D) fogging. They leveraged Lya-
punov optimization D2D fogging methods to achieve
energy-efficient task executions for network-wide users
and reduce time-average task execution to avoid over-
exploiting and free-riding behaviors. Furthermore, Kuang
et al. [22] investigated a joint problem of partial offload-
ing scheduling and resource allocation over multiple in-
dependent tasks in MEC networks. They formulated their
framework as a non-convex mixed-integer optimization
problem based on dual decomposition and Lagrangian
relaxation to minimize the weighted sum of the execu-
tion delay and energy consumption while guaranteeing
the transmission power constraint tasks. Finally, Zhang
et al. [23] proposed a fair and energy-minimized task of-
floading algorithm based on the fairness scheduling met-
ric. Their scheme considered task offloading energy con-
sumption, historical average energy demand, and the FN
priority to offer optimal transmission power for wireless
fog-enabled mobile IoT nodes.

Chalapathi et al. [24] proposed a Latency Aware Task
Assignment (LATA) scheme for a multi cloudlets network
to optimize the latency monetary cost in computing the
tasks of mobile devices by making optimal task assign-
ments among the micro-clouds. Furthermore, the pro-
posed LATA model achieves admission control policies
to maintain optimal traffic conditioning when congestion
occurs. Besides, the authors in [25] addressed the prob-
lem of task offloading in SDN-enabled networks by offer-
ing a computation scheme for multi-hop IoT access points
(APs). The proposed scheme is formulated as an inte-
ger linear program (ILP) and greedy-heuristic-based ap-
proach to offer optimal local or remote task computation,
optimal fog node selection, and optimal path selection.

The authors in [26] proposed a framework for task
scheduling and resource allocation in cloud-hosted IoT
applications. The scheduling is performed on cloud-
hosted hosting multiple Virtual Machines (VMs). The au-
thors discussed VMs placement in the cloud, where each

3

VM hosts several IoT tasks. Compared to this approach,
our contribution relies on the edge-hosted nodes to per-
form resource allocation, where the SDN controller per-
forms all task scheduling and resource allocation. We
do not use VMs in the edge IoT network since they in-
crease the load in the IoT infrastructure, in contrast to
the logic to the Edge/Fog approach. Instead, we rely on
lightweight IoT functions hosted on low-computation and
energy-constrained devices.

2.2. Reinforcement Learning Task Allocation
Task scheduling problem in dynamic IoT environment

is often one of the most challenging resource manage-
ment problems. Indeed, it manifests as tricky online
decision-making, where proactive solutions usually de-
pend on the dynamic workload and the interaction with
the surrounding environment [39]. Table 1 compares be-
tween related work that studied different criteria, includ-
ing energy-efficiency, scalability, latency and bandwidth
utilization. Specifically, Lei et al. [27] provided a com-
prehensive survey of automating and orchestrating IoT re-
sources using reinforcement learning (RL) to achieve au-
tonomy. Wan et al. [28] introduced DRL-based schedul-
ing for cellular networks. They proposed two methods,
i.e., learning from a dual AI (Artificial Intelligence) mod-
ule and learning from the expert solution to perform link
adaption, feedback, and scheduling mechanisms used in
real LTE network. The former uses two independent
agents to train and learn from each other. The latter relied
on Proportional Fair (PF) scheduling algorithm, which
is used as an expert knowledge to help with DRL agent
training. Sen et al. [29] proposed a Machine Learning
(ML) approach for scheduling application tasks in dis-
tributed Intelligent Cognitive Assistants (ICA). They in-
troduced a heuristic method for solving task assignment
problems between the three tiers in the edge computing
system (i.e., remote cloud, fog, and edge devices). Hongzi
et al. [30] introduced a DeepRM framework to build au-
tonomous and intelligent systems that learn to manage re-
sources from their own experience directly.

Likewise, the authors in [34] proposed a DRL approach
for a decentralized mechanism for resource allocation in
vehicle-to-vehicle (V2V) communications. They intro-
duced a DRL agent that makes decisions to find opti-
mal sub-band and power levels for transmitting V2V data.
Doha et al. [31] proposed a cooperative DRL-based task

allocation process that combines learning agents’ capa-
bilities to improve resource sharing and distributed task
allocation. Finally, Wang et al. [32] proposed a DRL-
based incremental approach for learning allocation strate-
gies. They extracted diverse task patterns from the large
volume of historical allocation data to improve learning
efficiency. The authors in [35] introduced an RL approach
for learning the scheduling policy automatically and re-
ducing the estimation error on data centers. Similarly, Ma
et al. [33] proposed an IoT-based deadline and cost-aware
task scheduling optimization scheme to satisfy the Qual-
ity of Service (QoS) requirements in cloud-hosted IoT
applications. The proposed algorithm uses heuristic ap-
proaches to minimize the execution cost under deadline
constraints in the infrastructure as a service (IaaS) model.

Similarly, Liao et al. [36] propose a learning-based
framework for channel selection with service reliability
awareness, energy awareness, backlog awareness, and
conflict awareness, by leveraging the combined power of
machine learning, Lyapunov optimization, and matching
theory. The authors provide rigorous theoretical analysis
and prove that the proposed framework can achieve guar-
anteed performance with a bounded deviation from the
optimal performance with global state information (GSI)
based on only local and causal information. Furthermore,
the authors extended their work in [38] by introducing a
learning-based queue-aware task offloading scheme and
an algorithm for resource allocation, so-called QUAR-
TER. Specifically, the proposed algorithm can minimize
energy consumption under the long-term constraint of
queuing delay. They propose a queue-aware actor-critic-
based task offloading algorithm to cope with dimension-
ality curse. A closer work has been introduced by Sun
et al. [37], which developed a novel user-centric energy-
aware mobility management (EMM) scheme, in order to
optimize the delay due to both radio access and computa-
tion, under the long-term energy-consumption constraint
of the user. Based on Lyapunov optimization and multi-
armed bandit theories, EMM offers an online optimization
approach, without future system state information, and ef-
fectively handles the imperfect system state information.

2.3. Paper’s Contributions
Unlike the approaches mentioned above, which are

mainly based on meticulously designed heuristics that ig-
nore the patterns of incoming tasks, our approach uses

4

Article Idea Criteria
Energy effeciency Scalability Latency Bandwidth

Lei et al. [27] Automation and orchestration
of IoT resources using RL &
DRL in IoT Network

- - ✓ ✓

Wang et al. [28] DRL-based planning for LTE
cellular networks

- ✓ - ✓

Sen et al. [29] Schedule application tasks in
intelligent cognitive assistants
distributed through machine
learning

✓ ✓ - -

Hongzi et al. [30] Introduced a DRL-based frame-
work to automatically manage
IOT resources from their own
experience

- ✓ - -

Dhoha et al. [31] Improve resource sharing and
task allocation using a coopera-
tive process based on DRL

- ✓ - -

Wang et al. [32] Incremental approach based on
DRL for task allocation strate-
gies

- ✓ - -

Ma et al. [33] Task planning optimization
scheme based on heuristic
approaches

- - ✓ -

H .Ye et al. [34] Develop a decentralized re-
source allocation mechanism
for V2V communications using
multi-agent DRL

- ✓ ✓ -

S. Liang et al. [35] Introduce a mechanism to
address the customized job
scheduling problem in data
centers using DRL

- - - -

Liao et al. [36] Propose a learning-based
context-aware channel selection
framework

✓ - - -

Sun et al. [37] Develop a novel user-centric
energy-aware mobility manage-
ment (EMM) scheme to opti-
mize the delay

✓ - ✓ -

Liao et al. [38] Propose a learning-based
queue-aware task offloading
and resource allocation algo-
rithm

✓ - ✓ -

Our approach ✓ ✓ ✓ ✓

Table 1: Reinforcing learning for Task Allocation

5

SDN to enhance the control and management of fog-
enabled IoT networks in terms of flexibility and intelli-
gence. Our approach provides an intelligent IoT network
communication system to create a single, coherent and
unifying control framework for real-time fog-enabled IoT
network design to resolve the task scheduling problem.

Furthermore, recent studies [40] indicate that over 35
billions IoT devices are installed worldwide in 2021, and
we expect 50 billion by 2030. The IoT industry will re-
sult in an additional 53 TWh of fuel to power, distribute
and deploy IoT solutions [4]. Therefore, to ensure mitiga-
tion strategies and adaptation efforts to combat the climate
change, we consider in our IoT architecture renewable en-
ergy sources like solar, wind and small hydro; that charge
IoT batteries by enabling sensors to harvest energy. More-
over, by enabling battery-powered IoT devices, we fore-
cast future wireless battery charging for IoT devices that
simplifies their design and shortens their time-to market,
which in turn makes our contribution unique compared
against [36], [37], and [38].

Compared with existing research on energy consump-
tion in fog-enabled networks, which primarily focused on
minimizing the overall energy consumed by the task of-
floading services, our approach introduces an online Deep
Reinforcement Learning task assignment and scheduling
scheme for optimizing IoT network performance, mini-
mizing the energy demand and consumption—in the sce-
narios with battery-powered distributed IoT nodes, offer-
ing predictive behaviors on the network, and avoiding the
impact of failures. Additionally, the SDN capabilities pro-
vided by the controller, e.g., logically centralized control,
global view of the network, software-based traffic engi-
neering, and dynamic updating of forwarding rules, make
it straightforward to apply deep reinforcement learning
for fully automated tasks assignments and scheduling in
IoT network. Specifically, our approach offers a fully au-
tomated service deployment and resource/capacity plan-
ning mechanisms for fast-path forwarding across ultra-
low latency SDN-enabled virtualized fog infrastructure.
Our SDN-based solution offers a programmable analytic
to the application layer through open interfaces to instan-
tiate service intelligence at the network edge.

3. Model for Task Assignment and Scheduling prob-
lem

This section delves into the architectural details that en-
able us to support task assignment and scheduling, dy-
namic, and flexible resource management with our SDN-
based framework, and presents the problem statement and
the algorithms to instantiate service intelligence at the net-
work edge.

3.1. System’s Architecture

Figure 1 glances at the architectural design of our deep
reinforcement assignment and scheduling solution to ad-
dress the task scheduling problem in the IoT network. We
added the task scheduler at the SDN controller level to
find and select the best scheduling decision policy. The
algorithm that describes the task scheduler consists of a
queue containing task processing requests from mobile
IoT applications, a learning-based input representative,
and a planning decision-maker based on learning. Specifi-
cally, the dashed lines represent OpenFlow messages (i.e.,
FlowMod, OpenFlow Packet-IN and Packet-OUT, statis-
tics such as OFPMP FLOW that carry out Information
about individual flow entries, as described by the Open-
Flow Switch Specification [41]) exchanged between the
Ryu SDN controller and the underlying Fog nodes, which
are the data plane in our example. The messages are the
continuous lines between the task scheduler and the SDN
controller.

To usher the process, the SDN controller collaborates
with our DRL algorithm to carry out intelligent network
resource scheduling and management. The SDN con-
troller uses a planner algorithm to manage task process-
ing requests and create a historical dataset from incoming
task requests. Figure 1 shows the internal controller mod-
ules: i) the path computing module assigns optimal route
paths for different types of traffics generated by different
IoT tasks and highly improves the QoS settings (band-
width and delay); ii) the network monitoring module polls
fog nodes to collect flow statistics to determine through-
put, packet loss, and delay and; iii) the controller uses the
flow scheduling module to exploit multiple paths to se-
lect the best QoS-aware path accordingly and uses queu-
ing mechanisms to achieve optimal bandwidth utilization
and supervise traffic activities. The SDN controller acts

6

Reinforcement
LearningPre-processing

S* = Z

Tasks
queue

X

Fog node Fog node Fog node

Edge Network

Upload
request

Path
Computing

Network
Monitoring

Flow
Scheduler

Ryu SDN Controller

Bandwidth
DelayTask

Assignement

FlowMod

OpenFlowPackets

Fog Nodes
State Information

Decision

Statistics

Y
Path

Figure 1: Task scheduling an architecture at a glance

as the brain of the network by controlling the underlying
fog nodes through the OpenFlow secure channel.

Additionally, our agent in the controller SDN learns
to use the dataset to represent the state information of
all the fog nodes and the task requests to create a latent
representation model. Once the information available on
the dataset is well filtered and represented in a network
graph, the SDN controller starts learning how to gener-
ate learning policies to input programming decision val-
ues (Q-value). Then, it selects the best fog node and sends
the decision to OpenFlow rules for handling the tasks. Fi-
nally, the SDN controller assigns the fog nodes to process
the task requests. After that, the mobile device can down-
load data from the designated fog node.

3.2. Problem Statement

The task planning in fog computing is represented by N
different tasks T = T1,T2, . . . ,TN , which will be assigned
to distinct fog nodes F = F1, F2, . . . , FM to minimize en-
ergy consumption and time delay by optimizing the use of
the transmission channel. Let us consider:

• Xi j(t): denotes the assignment of task Ti on fog node

F j in respect of the time t.

Xi j(t) =
{

1, if Ti runs on F j

0, otherwise (1)

• Whenever a task is assigned to a fog node to run on
it, it takes some latency time to execute in that node.
We introduce the execution time of task Ti, when the
task Ti is assigned to a fog node F j, which can be
obtained through the following equation.

TTCi j(t) = Di/C j (2)

in which, Di stands for the number of instructions of
a task Ti over time, and C j is the CPU processing
rate at fog node F j.

The execution time cost in equation 2 describes the
operating costs for the task assignment and indicates
the complexity of the processing whenever the num-
ber of connected devices (i.e., requests) increase.

• The transmission time delay for task Ti on the fog

7

node F j is shown by equation 3:

TTRi j(t) =
Di(t)
ri j(t)

;

ri j(t) = wi j(t) × log(1 +
hi j(t) × pi j(t)

σ
)

(3)

Where: the transmission time TTRi j is the time re-
quired to transmit data in the uplink by a given IoT
fog node; we assume that all nodes have the same
bandwidth wi j(t); the uplinks quality of all fog nodes
is given by SINR, which is computed based on pa-
rameters wi j(t), hi j(t), and σ in Equation (3), where:
hi j(t) is the channel power-gain, pi j(t) is the trans-
mission power, and σ is the noise power. The fog
transmission service rate in equation 3 indicates the
communication time of task offloading while taking
into account the wireless path fading based on the
channel characteristics and the noise power spectrum
density, as well as the available bandwidth per fog
node.

• The queuing delay for the task Ti is denoted by equa-
tion 4:

TTWi j(t) =
Di(t)
wi j(t)

τ

1 − τ
;

τ =
Di(t) × ai j(t)

wi j(t)

(4)

Where ai j(t) is the average packet rate. The queuing
delay, aka. residence time, indicates how many per-
sistent tasks in the queue to offload to a neighboring
node based on the remaining queue size and incom-
ing tasks requests. τ stands for the traffic intensity,
which is a measure of the average occupation of a
task during a given period of time.

• The total time delay is given by equation 5:

TTi j(t) = TTRi j(t) + TTCi j(t) + TTWi j(t) (5)

Where TTWi j(t) is the queuing delay for task
scheduling.

• Similarly, the energy consumption is denoted by
equation 6:

ECi j = TTRi j(t) × pir(t) + TTCi j(t) × pie(t) (6)

Where pir(t) is the transmission power, and pie(t) is
the idle power.

We model the task scheduling problem as a nonlin-
ear multi-objective combinatorial optimization problem
with several objectives. The objective function is multi-
variables and multi-constraints. That is, it is tricky to find
an optimal solution using a polynomial method. Thus,
there is a compelling need to design a hybrid heuristic
algorithm proposed in this section to build a task schedul-
ing strategy. In simplifying the complexity of the problem
into a single objective problem and reducing the difficulty
of solving, we consider the following hypotheses:

• Each task is independent, and there is no constraint
between the tasks.

• Each task can be assigned to only a fog node.

• No task can be allocated repeatedly.

• In the calculation process, the task doesn’t consider
the impact of the mobility of the terminal equipment.

• All nodes are static, and the current task cannot be
interrupted.

The objective function of task scheduling in fog nodes is
shown in equation 7, where both time delay and energy
consumption constraints are formulated as follows:

f = min
N∑

i=1

(Wit

M∑
j=1

[Xi j(t)

× TTi j(t)] +Wie

M∑
j=1

[Xi j(t) × ECi j(t)]) ; (7)

Subject to:

N∑
i=1

M∑
j=1

ECi j(t) ≤ ECmax ;

N∑
i=1

M∑
j=1

TTi j(t) ≤ TTmax

Where, ECmax is the maximum energy consumption
of our system, which represents the sum of the batteries
available, TTmax is the maximum delay of our system, Wit

is the weight of delay, and Wie is the weight of energy

8

consumption. Both weighting factors emphasize the im-
portance of each type of constraint. In other words, the
choice of weights in such multi-objective optimization ap-
proaches alludes to the decision-maker’s preference.

4. Deep Reinforcement Learning for resolving Task
Scheduling Problem

The DRL learning algorithm consists of objective
(goal) oriented training and learning technique. An agent
learns the optimal policy actions to interact with the envi-
ronment and rewards it for every action it takes. Specifi-
cally, we define an action a belonging to a set of actions
A = {S erve, Forward, Encapsulate,Discard}, that cor-
responds to the action of serving the current request and
send it to normal processing pipeline, forwarding it to an-
other port for scheduling to another neighbor node, en-
capsulate and forward to controller, and discard the re-
quest whenever resources are no longer available. A fog
node tries to maximize its cumulative rewards and adapt
to its environment to achieve the goal. The observation
space (i.e., the state space) representing the environment
at a given step describes the state of task requests to access
a given service, e.g., number of task requests, number of
granted requests, and number of allocated resources for
that task request.

Figure 2 illustrates our approach to tackle the is-
sue scheduling problem using deep reinforcement learn-
ing. Because the task planning module contains a small
amount of information about the future arriving tasks,
such as arrival time and task size, the SDN controller uses
historical tasks to build the deployment decisions. The
DRL algorithms we implemented inside the controller
can analyze the performance of all connected fog-enabled
IoT nodes. In doing so, we build efficient scheduling to
execute several simultaneous tasks and predict optimal
scheduling on the network that meets both low-latency
and efficient-energy requirements.

First, we train the SDN controller to represent the
datasets of all tasks and fog nodes for performing task
assignments using the best optimal way under the con-
straints mentioned above, minimizing the network latency
and reducing the energy consumption. Therefore, we in-
troduce our DRL algorithm to select and apply the best
decision that distributes the tasks on available fog nodes.
As shown in Figure 2, the compressed low-dimensional

representation of the input is used to find a latent repre-
sentation of the data between tasks that will be executed
and fog node states ready to execute these tasks. Then,
an auto-encoder model has been developed, which aims
to find a latent representation Z from data X using an en-
coder and decoder networks. The main goal of this model
is to compute the following function g(x) = sg(Wx + b)
, where sg is an activation function as sigmoid(), W is
the weight, and b is the bias. After that, a bottleneck
layer Z = g(x) filters the incoming data from the en-
coder layer. Then, a decoder function defined as follows
f (x) = sg(W ′z + b′) is used to reconstruct the input X
from Z (representation of latent space). The auto-encoder
model is trained using the mean squared error (MSE),
which minimizes the reconstruction error between the in-
put X and the reconstructed input (output) X’. Further-
more, the obtained latent representation Z, obtained by
the encoder network, i.e., S ∗ = Z = g(S), is used to train
the SDN controller to assign the task Ti to the node F j and
generate the optimal decision to schedule the tasks.

4.1. Task Assignment

Algorithm 1 illustrates the task assignment we imple-
mented inside the SDN controller, which collects infor-
mation from the underlying SDN routers about the avail-
able fog node capacities, including their available energy.
Thence, the algorithm receives a list of tasks and their
characteristics, and then assigns them to the available fog
nodes. The DRL algorithm selects the fog nodes based on
their available energy and current occupation rates to re-
duce the delay in processing time. Once the controller has
assigned tasks to their relevant nodes, it keeps track of a
log dataset of the current node’s processing and available
energy.

Whenever a task is successfully assigned to a fog node,
the controller increases the value of the local reward and
selects the forthcoming action according to the expected
reward. Then, to maximize the objective function (e.f.,
equation 7), the algorithm applies the argmax operator to
find the maximum values that fulfill low-energy consump-
tion constraints, and lower network latency.

4.2. Deep Q-Learning Policy Algorithm

First, we introduce our Deep Q-Learning policy using
experience replay to learn a small data block to avoid bias-

9

Step
 2 : p

lacin
g tasks in

fog n

od
es

Input
Reconstructed

Input
Ideally they are identical

Decision-Making

D
ee

p

R
ei

n
fo

rc
em

en
t

L
ea

rn
in

g

Step
 1 : D

eep
 au

to
m

atic
rep

resen
tatio

n
 o

f d
ata

X
Encoder

g(X)
Z

Decoder
f(Z)

X’

X ≈ X’

A compressed low dimentional

representation of the input

X
Encoder

g(X)
Z

Decoder
f(Z)

X’

X ≈ X’

A compressed low dimentional

representation of the input

Figure 2: Deep Learning for Task Scheduling

ing the dataset distribution. Then, the algorithm approxi-
mates the Q-value function to explore all the states and de-
termine all possible actions to reach the optimal solution.
The algorithm uses continuous learning through the ex-
perience replay to update the algorithm parameters based
on the previous actions. As described in algorithm 2, the
SDN controller implements a Deep Q-learning algorithm
to mimic a learning agent that maps states of the envi-
ronment to actions. The agent considers these actions to
move from one state to another to maximize a numerical
reward over time.

Specifically, the SDN controller selects these actions
during run-time, even if an agent doesn’t complete the
knowledge of rewards and state transition functions. In
each state, the agent can choose between two types of be-
havior: (i) the controller can continue exploring the state
space to find optimal decision policy; or (ii) it can lever-
age the information already given by the Q values defined

by equation 8:

Q(S ∗) = R + γmax Q(s′, a′)
Action a = arg max

a′
Q(s, a′) (8)

The total reward is given by equation 9:

R =
n∑

i=1

(Wit

m∑
j=1

β[Xi j(t) × TTi j(t)]

+Wie

m∑
j=1

β[Xi j(t) × ECi j(t)]) (9)

Where Wit is the delay weight and Wie is the weight of
energy consumption. The parameter β takes a positive
sign if we execute the assigned task in the node, whereas
a negative sign otherwise remains pending in the queue.
We implemented the training algorithm that uses a regres-
sion loss-function to reduce the total training data error.
Worthy of mention, the deep learning neural network loss

10

Algorithm 1: Task Assignment to Fog Nodes
Input:

1. Detection nodes N = {n1, n2, . . . , n j} with their
available energies,

2. Set of tasks T = {t1, t2, . . . , ti} with their
characteristics

Output: Assign a task ti to a node n j

1 while true do // infinite loop

// learn according to cases

2 Replay (n, t) ;
// Predict the value of the reward

3 act-values = predict (n, t) ;
// Choose the action according to

the expected reward

4 a = arg max(act-values[0]) ;
5 Execute a // Send t to n

function, to predict the states of Q values, given by equa-
tion 10 with a hyper-parameter setting γ as a discount fac-
tor :

L =
1
2

[r + γmax
a′

Q(s′, a′) − Q(s, a)]2 (10)

Algorithm 2 learns the allocation policy to provide an
optimal decision regarding both the constraints mentioned
above, i.e., in terms of latency and energy and perfor-
mance of the system. First, to start the learning process,
the algorithm initializes a decision matrix with weights
(Q-values) of random policies and observes initial states
of the SDN network. Then, nodes will be chosen with
their smallest probability values from the matrix, which
already filled and assigns the tasks randomly to its dis-
tinct fog nodes. Once the first step is completed, the con-
troller can move to the following states, i.e., returning a
reward and performing the calculation, and transitioning
from one state to another. Each newly calculated step is
saved in the matrix, and we compare the existing policy
with the previous one. If the newer policy is better, it
will be considered locally, optimal, and so on. Thus, we
repeatedly operate until we get an optimal global assign-
ment for each task. Then, the operation is repeated until
all tasks in the waiting queue are processed and assigned
to the best available fog nodes.

Algorithm 2: Deep Q-learning algorithm with
experience replay

Input: Initialize replay memory M
Initialize action-value Q with random weights
Observe the initial state s
Output: A trained model to optimally assign a

task to node
1 repeat
2 Select an action a with probability ϵ
3 Select a random action;
4 Otherwise select a = arg maxa′ Q(s, a′)
5 execute action a
6 observe reward r and new state s′

// Store experience in memory

7 store exp < s, a, r, s′ > in memory M
8 sample random transitions < ss, aa, rr, ss′ >

from memory M
9 compute target for each minibatch transition

10 if ss′ is terminal state then
11 tt ← rr
12 else tt ← rr + γmax′a Q(ss′, aa′)
13

14 Train the Q network using (tt − Q(ss, aa))2 as
loss

15 s = s′

16 until terminated

4.3. Random Learning Policy
We introduced dense random neural networks that ran-

domly process a data block while simultaneously improv-
ing the learning policy’s robustness and accuracy. Algo-
rithm 3 represents the assignment of tasks using a random
agent. The latter is based on a strategy that assigns the
tasks one by one to the various available fog nodes ran-
domly without taking into account the quality of service
in terms of latency. It assigns each task to a randomly
chosen fog node and updates its energies each time. In
addition, it also updates the accumulated rewards.

4.4. Deterministic Learning Policy
We developed a deterministic learning policy to dictate

what action to take given a particular state. Indeed, we
consider a different situation where incoming IoT tasks
are known to forecast the next event precisely from the

11

Algorithm 3: Agent Random
Input:

1. Detection nodes N = {n1, n2, . . . , nn} with their
available energies,

2. Set of tasks T = {t1, t2, . . . , tm} with their
characteristics

Output: Assign task ti to node n j

1 i← 1
2 reward ← 0
3 totrewards← 0
4 while i <= m do // m is the number of

tasks

5 action← env.actions pace.sample()
// randomly choose an action

6

7 ob, reward ← env.step(action)
8 update(N,ob) // update of nodes

9

10 totrewards+ = reward
11 i + +

current event. The value of the state is the expected re-
ward if we start from it and continue using the same pol-
icy. Nonetheless, the deterministic policy does not involve
that the reward remains the same.

Algorithm 4 represents the assignment of tasks to the
corresponding nodes using a deterministic agent. The lat-
ter will schedule the tasks one by one according to their
order of arrival and assign them to nodes close to their
minimum latency. At each iteration, an update will be
performed on the energy state of the node that executed
the task.

4.5. Asynchronous Actor-Critic Agent (A3C) Algorithm

We design Asynchronous Advantage Actor-Critic
(A3C) Algorithm to involve global network optimization
in parallel by using multiple agents. These agents have
their own set of parameters to create different situations
to interact with the fog nodes distributed in the environ-
ment. Each agent harvests a different learning experience
and add it to the overall learning experience.

Algorithm 5 illustrates the task assignment and
scheduling scheme using the A3C approach, which relies

Algorithm 4: Agent deterministic
Input:

1. Detect nodes N = {n1, n2, . . . , nn} with their
available energies,

2. Set of tasks T = {t1, t2, . . . , tm} with their
characteristics

Output: Assign task ti to node n j

1 Sorted(N) i← 1
2 assign← f alse
3 reward ← 0
4 totrewards← 0
5 while i <= m do // m is the number of

tasks

6 for j← 1 to n do // n is the number of

nodes

7 if N[j][”energ”] > T [i][”energ”] then
8 N[j][”energ”]←

N[j][”energ”] − T [i][”energ”]
9 ob, reward ← Execute(T [i],N[j])

// execute task in node

10 assign← true
11 break

12 if !assign then
13 ob, reward ← env.step()

14 update(N,ob) // update of nodes

15 Sort(N)
16 totrewards+ = reward
17 i + +

on multiple agents that likely explore different states and
transitions. Each agent has its own network parameters
and a copy of the environment.

These agents interact with their respective environ-
ments asynchronously while learning at each iteration.
Thus, each agent gets its own copy of the environment
processes the gathered data samples at their arrival. The
main thrust of A3C is that the network controls each agent
to gain more acknowledge and contribute to the complete
knowledge of the network.

Algorithm 5 (lines 20-24) illustrates the policy update
we developed using the A3C approach. As shown in line
21, the A3C agents select different actions in order to

12

Algorithm 5: Asynchronous Advantage Actor-
Critic Agent (A3C)

Output: Model trained with workers to assign task
to node.

1 for i← 1 to n do // n is the number of

workers

2 Wi.run() // Start worker thread

3 step← 1 // ForEach worker Wi,
initialize step counter

4 T ← 0 // Initialize episode counter

5 repeat
6 dθ ← 0; dθv ← 0 // reset gradients

7 θ′ ← θ; θ′v ← θv; t ← step // Synchronize

thread-specific parameters

8 s← st // Initialize iteration

// Get observation state

9 while s is not terminal and step − t < tmax do
10 Simulate action at according to π(at |s; θ)
11 Receive reward rt and next state st+1
12 step + +;
13 T + +;

14 if st is terminal state then
15 R← 0
16 else R← V(st, θ

′
v) // Bootstrap from

last state

17

18 for i← step − 1 to t do
19 R← ri + γR
20 dθ ← dθ+∆θ′ log(π(ai|si; θ′)(R−V(si; θ′v)))

// Accumulate gradients

21 dθv ← dθv +
∂((R−V(si;θ′v))2)

∂θ′v

// Perform asynchronous update of θ
and θv

22 θ = θ + dθ
23 θv = θ + dθv
24 until T > Tmax

maximize the discounted reward R by updating the hyper-
parameter settings such as discount factor γ. The agents
try to maximize the immediate rewards by taking greedy
actions using the policy function π and the Value function
V to impact future global parameters vectors dθ, as shown
in line 22. The update operation is performed until reach-
ing the maximum number of predefined iterations Tmax.

5. Performance Analysis

This section describes the testbed setup and shows the
evaluation of our solution. Specifically, we describe the
results for commonly used evaluation metrics, such as la-
tency, energy efficiency, and network scalability.

5.1. Testbed Setup
We implemented our framework using an emulated

SDN environment comprising Mininet [42] as our net-
work emulators along with OpenFlow SDN switches for
creating different IoT scenarios. Furthermore, we ex-
tended Mininet to support Open AI Gym toolkit [43]
for reinforcement learning and deployed IoT nodes in
the form of virtualized micro-services using Docker con-
tainers in emulated Kubernetes clusters. We also imple-
mented the SDN northbound application using Python-
based Ryu [44] SDN controller, which performs global
traffic management, load balancing, global topology dis-
covery, and monitoring. We developed our solution us-
ing the TensorFlow python interface for interacting with
our SDN environment. In the latter, we used to run tests
on more than 100 nodes, each running over 1, 000 tasks
simultaneously. We assessed our solution versus deter-
ministic algorithms, random, and A3C approaches. The
deterministic agent plans tasks according to their order of
arrival and assigns them to the nearest nodes regarding
their minimum latency. Whereas the random agent as-
signs tasks to the available nodes in a stochastic order, i.e.,
it assigns tasks to the available nodes’ strategy less. That
is, if a selected node does not have the required capacity
to execute an incoming task, then the random agent leaves
it in-hold state in the waiting queue and assigns tasks to
alternative nodes. Thus, the A3C approach uses multiple
agents who independently learn a policy from their envi-
ronment and then collaborate with other agents to create
global knowledge to choose the best decision. The de-
tailed simulation hyperparameters are given in Table 2.

13

Hyperparameter Value
Learning rate 0.001
Gamma 0.95
Batch size 32
Exploration Max 1.0
Exploration Min 0.01
Exploration Decay 0.995

Table 2: Hyperparameter values in simulation

5.2. Pre-processing

The first step we performed on our datasets comprises
pre-processing input data to carry out the training of
our SDN controller (i.e., the Ryu controller). Carry-
ing out data refinement allows properly representing and
preparing data for our deep Q-learning model to perform
task assignments and scheduling. Therefore, we imple-
mented different techniques to reduce the dimension of
our datasets to find the best representation of our data.

2 4 6 8 10 12 14 16
Encoding dimension

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
co

ns
tru

ct
io

n
er

ro
r (

M
SE

)

MSE
mse_pca
linear_auto
linear_sigmoid
relu_sigmoid
mse_ica

Figure 3: Data Pre-Processing

Figure 3 illustrates the Mean Square Error (MSE) re-
gression loss function. This yield was obtained for dif-
ferent refinement techniques, including Principal Compo-
nent Analysis (PCA), Independent Component Analysis
(ICA), Deep auto-encoder with Sigmoid function, recti-
fied linear activation function (reLU), and linear function.
As underscored by Figure 3, the Deep auto-encoder with
Sigmoid activation function (i.e., the Relu-Sigmoid) per-

forms better filtering and refinement results while keeping
the MSE error minimum. We create multiple local min-
ima to find optimal task assignment strategies. The sig-
moid function makes the loss function non-convex, rather
than creating a single global minimum for our training.

5.3. Discounted Cumulative reward

The SDN agent in run-time collects states from the en-
vironment and sends back information to the controller.
By trying different actions, the agent learns to optimize
the reward from the environment. The controller can ei-
ther decide to take the current policy as the best decision
to place tasks on the selected fog-enabled nodes, or con-
tinue learning from the available distributed nodes to find
a better candidate to place the current task requests. All
agents are driven by the same goal, to maximize the ex-
pected discounted return.

0 200 400 600 800 1000
Episodes

500

0

500

1000

1500

2000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

wa
rd

Deterministic Trial
Random Trial
A3C Trial
Our approach

Figure 4: Cumulative Rewards for Our approach against the three other
approaches.

Figure 4 compares the accumulated reward got by our
approach versus the deterministic, random, and A3C ap-
proaches. After the deterministic agent increases to al-
most 550 earned rewards, it decreases and starts losing
rewards. It ushers, losing its computation power and its
ability to complete the planning of newer coming tasks.
As a result, his cumulative reward curve slowly increases
for the random agent, which means some tasks have not
been assigned, and we must put them on hold state. For
the A3C agent, its cumulative rewards slowly increase

14

compared to our approach. Our approach performs bet-
ter cumulative rewards than the deterministic and random
case, selecting the available node based on the energy
level. For the A3C trial agent, it has a lower accumulated
reward compared to our approach. The update of the cu-
mulative reward curve of our agent is increasing rapidly
compared to other agents. Thus, the agent has a very opti-
mal investment strategy where the action is selected each
time. It motivates it to maximize the rewarded return.

0 200 400 600 800 1000
Episodes

50

0

50

100

150

200

250

300

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

wa
rd

5_nodes
10_nodes
15_nodes
20_nodes
30_nodes
40_nodes
50_nodes

Figure 5: Local Rewards with Increasing number of nodes

To evaluate the stability and the scalability of our ap-
proach, we increased the number of fog nodes up to 50,
as shown in Figure 5. We observed that our SDN-enabled
decision-maker agent could quickly learn from the SDN
topology network to make optimal decisions. As a result,
the local reward, i.e., optimal local assignment, rapidly
reaches almost 300 in a few dozen episodes as illustrated
in Figure 5, which means: that optimal local minimum,
i.e., local optimization, can be performed rapidly. We also
experimented with our approach with over 100 in other
scenarios (none shown in Figure 5), and we observed the
same behavior. Thus, we claim that our deep learning
approach is gainful to implement both local, optimal and
global tasks assignments and schedules for SDN-enabled
IoT networks while respecting QoS constraints.

5.4. Energy-Efficiency
We aim to reduce the energy consumption on running

fog-enabled IoT nodes as we described in equation 6

and perform better energy efficiency as we considered all
nodes as batteries-powered ones. To evaluate the energy
efficiency of our SDN-enabled solution, the SDN con-
troller trained the agent by 1, 000 episodes. As a result,
the agent should be able to plan 100 tasks to energy-
constrained fog nodes. Each fog node has a limited power
capacity, i.e., their battery level during this planning pro-
cess is close to 5, 000wh.

0 20 40 60 80 100
Tasks

0

2000

4000

Av
ai

la
bl

e
en

er
gy

 (W
h)

Energy in node 1
determinist agent
Random agent
A3C agent
Our approach

0 20 40 60 80 100
Tasks

0

2000

4000

Av
ai

la
bl

e
en

er
gy

 (W
h)

Energy in node 2
determinist agent
Random agent
A3C agent
Our approach

Figure 6: Energy Consumption in both tasks’ executing fog nodes

Figure 6 illustrates the energy consumption of two
available fog nodes, each running up to 100 tasks simul-
taneously, using our training approach against determin-
istic, random, and A3C training agents. Throughout the
planning strategy of these tasks, the DRL agent in our ap-
proach keeps a better battery level in both nodes compared
to the three other algorithms.

Recall that our primary objective is to minimize the
overall energy consumption of our SDN-enabled fog net-
work, as we described in equation 6. Figure 7 shows that
our approach flags out better energy efficiency, i.e., up to
87% compared against both deterministic agents, which
perform 48%, and the random agent that performs 58%,
and A3C agent, which performs 76%.

Our results confirm our claims that the solution we pro-
pose can readily be used to optimize task scheduling and
dynamically assignment of complex jobs with task depen-
dencies in distributed fog IoT networks.

15

0 20 40 60 80 100
Tasks

0

2000

4000

6000

8000

10000

Av
ai

la
bl

e
en

er
gy

 (W
h)

0.48 0.58 0.76 0.87

Overall energy consumption
determinist agent
Random agent
A3C agent
Our approach

Figure 7: Energy Saving and Efficiency for all available Fog nodes

5.5. Assessing the Latency performance

Our optimization approach aims at minimizing the net-
work latency for available nodes during the task execu-
tions, as we described in equation 5. We gauged the to-
tal time delay expected by available fog-enabled nodes to
process the current task’s requests and communicate the
results to remote IoT senders.

0 20 40 60 80 100
Tasks

0
25
50
75

100
125
150

La
te

nc
y(

m
s)

29.59 37.27
16.98 7.84

Latency in node 1
Determinist agent
Random agent
A3C agent
Our approach

0 20 40 60 80 100
Tasks

0
25
50
75

100
125
150

La
te

nc
y(

m
s)

29.32 39.71
21.23

8.31

Latency in node 2
Determinist agent
Random agent
A3C agent
Our approach

Figure 8: Evaluating Latency during Task Scheduling

We measured the total delay expected by the available
fog nodes to handle the pending task requests. The set

of latency values collected during task scheduling of our
approach, as well as with other approaches to scheduling
tasks in two battery-powered nodes, as shown in Figure 8.

The latency results of the different approaches have
been summarized in Table 3. As expected, the determin-
istic approach performed a time latency of 29.59 ms in
node 1 and 39.32 ms in node 2. Likewise, the random
algorithm carried out 37.27 ms in node 1 and 39.71 ms
in node 2. Finally, the A3C algorithm presents an aver-
age latency of 16.98 ms at node 1 and 21.23 ms at node
2. We repeated these experiments multiple times, and we
find the average latency expected by our approach is close
to 7.84ms in node 1 and 8.31 ms in node 2. Therefore, our
approach ensured a minimum latency of all fog nodes and
showed significant latency and energy consumption per-
formances.

Agent node 1 node 2
A3C 16.98 21.23
Random 37.27 39.71
Deterministic 29.59 39.32
Our approach 7.84 8.31

Table 3: Average latency

5.6. Evaluating the Bandwidth performance

To assess the performance of our approach, we studied
the bandwidth usage of our IoT network during the task
scheduling process. Figure 9 illustrates the bandwidth us-
age during the scheduling by the different approaches de-
scribed in section 4. According to Figure 9, our approach
outperforms all the other approaches during task schedul-
ing. Compared against both random and deterministic ap-
proaches, which performed 29.6 Gbits/s and 32.15 Gbits/
respectively, our approach outperformed both of them.
The reason is that the deterministic approach uses a deter-
ministic greedy policy to make the locally optimal choice
at each stage without exploration. Furthermore, in our IoT
network, the deterministic algorithm will stick to the cur-
rent state during that task assignment step, when it is bet-
ter than the observed states. Nonetheless, the determin-
istic greedy policy will find itself trapped in a local op-
timum, failing to explore certain other states, which may
hold a better local optimum solution. Similarly, the ran-
domized exploration approach (randomized policy) will

16

explore different states based on a specific probability dis-
tribution, making it slightly slower.

0 20 40 60 80 100
Tasks

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

Ba
nd

wi
th

 (G
bi

ts
/s

)

32.15

29.60

33.40
34.70

Determinist agent
Random agent
A3C agent
Our approach

Figure 9: Evaluating The bandwidth utilization during task Scheduling

Unsurprisingly, our approach reaches 34.70 Gbits/s,
which outperforms the 33.4 Gbits/s obtained with the
A3C approach, even when we use many parallel work-
ers (agents) that interact asynchronously with separate in-
stantiations of the environment. The A3C technique tends
to suffer when faced with more complex tasks, as it takes
long delays between actions and relevant reward signals,
i.e., known as Partially Observable Environments.

6. Conclusion

This paper showed the feasibility of developing task as-
signment and scheduling mechanisms for SDN-enabled
IoT networks using Deep Reinforcement Learning. We
formulated a task assignment and scheduling problem
that minimizes network latency while ensuring energy ef-
ficiency. The evaluation of our solution against deter-
ministic placement algorithm, random, and A3C strate-
gies showed it outperforms these algorithms in selecting
optimal allocation decision policies for task assignments
and scheduling in real-time. Furthermore, our approach
performed both local and global optimization, ensuring
lower-latency communication and increased energy effi-
ciency.

We claim we can extend our DRL algorithm to sup-
port intelligent multi-access Ultra-Dense Edge Comput-

ing (UDEC) to utilize multiple 5G resources efficiently.
Our future work will develop a Federated Machine Learn-
ing (FedML) approach to solve data ownership and pri-
vacy by training statistical security models in UDEC
nodes while keeping data samples localized inside fog
nodes. This promising undertaking will expand the ca-
pacity of federated learning to keep individual data sets
localized inside fog nodes while updating main model pa-
rameters and distributing them back to all edge nodes.

Acknowledgments

This work was partially funded by the Tunisian
Ministry of Higher Education and Scientific Research
(MES) under the Young Researchers Incentive Program
(19PEJC09-04) and the NGI Explorers Program under
the Horizon 2020 Research and Innovation Framework
(H2020), Grant Agreement number: 825183, Call iden-
tifier: H2020-ICT-31-2018. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of MES, NGI or H2020.

References

[1] F. Shan, J. Luo, J. Jin, W. Wu, Offloading delay con-
strained transparent computing tasks with energy-
efficient transmission power scheduling in wireless
iot environment, IEEE Internet of Things Journal
6 (3) (2019) 4411–4422.

[2] M. Qin, N. Cheng, Z. Jing, T. Yang, W. Xu, Q. Yang,
R. R. Rao, Service-oriented energy-latency trade-
off for iot task partial offloading in mec-enhanced
multi-rat networks, IEEE Internet of Things Journal
(2020) 1–1.

[3] H. Hejazi, H. Rajab, T. Cinkler, L. Lengyel, Sur-
vey of platforms for massive iot, in: 2018 IEEE In-
ternational Conference on Future IoT Technologies
(Future IoT), IEEE, New York, NY, USA, 2018, pp.
1–8.

[4] 6gworld, Sustainability in new and emerging tech-
nologies (April 2021).

17

[5] M. Huang, W. Liu, T. Wang, A. Liu, S. Zhang,
A cloud–mec collaborative task offloading scheme
with service orchestration, IEEE Internet of Things
Journal 7 (7) (2020) 5792–5805.

[6] Y. Liu, Z. Zeng, X. Liu, X. Zhu, M. Z. A. Bhuiyan, A
novel load balancing and low response delay frame-
work for edge-cloud network based on sdn, IEEE
Internet of Things Journal 7 (7) (2020) 5922–5933.

[7] M. K. Hussein, M. H. Mousa, Efficient task offload-
ing for iot-based applications in fog computing us-
ing ant colony optimization, IEEE Access 8 (2020)
37191–37201.

[8] E. I. A. (EIA), International energy outlook
(September 2019).
URL https://bit.ly/2CFN9QK

[9] E. E. Agency, Progress on energy efficiency in eu-
rope (Feb 2019).
URL https://bit.ly/2OygVJN

[10] P. Cai, F. Yang, J. Wang, X. Wu, Y. Yang, X. Luo,
Jote: Joint offloading of tasks and energy in fog-
enabled iot networks, IEEE Internet of Things Jour-
nal 7 (4) (2020) 3067–3082.

[11] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang,
Y. Liu, A survey of machine learning techniques
applied to software defined networking (sdn): Re-
search issues and challenges, IEEE Communica-
tions Surveys Tutorials 21 (1) (2019) 393–430.

[12] Q. D. La, M. V. Ngo, T. Q. Dinh, T. Q. Quek,
H. Shin, Enabling intelligence in fog computing to
achieve energy and latency reduction, Digital Com-
munications and Networks 5 (1) (2019) 3 – 9.

[13] H. Yuan, J. Bi, M. Zhou, K. Sedraoui, Warm:
Workload-aware multi-application task scheduling
for revenue maximization in sdn-based cloud data
center, IEEE Access 6 (2018) 645–657.

[14] L. Yang, X. Liu, J. Cao, Z. Wang, Joint scheduling
of tasks and network flows in big data clusters, IEEE
Access 6 (2018) 66600–66611.

[15] J. Zhou, H. Jiang, J. Wu, L. Wu, C. Zhu, W. Li, Sdn-
based application framework for wireless sensor and
actor networks, IEEE Access 4 (2016) 1583–1594.

[16] C. Lin, G. Han, X. Qi, M. Guizani, L. Shu, A dis-
tributed mobile fog computing scheme for mobile
delay-sensitive applications in sdn-enabled vehicu-
lar networks, IEEE Transactions on Vehicular Tech-
nology 69 (5) (2020) 5481–5493.

[17] Z. Wu, B. Li, Z. Fei, Z. Zheng, Z. Han, Energy-
efficient robust computation offloading for fog-iot
systems, IEEE Transactions on Vehicular Technol-
ogy 69 (2020) 4417–4425.

[18] M. Chen, Y. Hao, Task offloading for mobile edge
computing in software defined ultra-dense network,
IEEE Journal on Selected Areas in Communications
36 (3) (2018) 587–597.

[19] M. Yang, H. Zhu, H. Qian, Y. Koucheryavy,
K. Samouylov, H. Wang, Peer offloading with de-
layed feedback in fog networks, IEEE Internet
of Things Journal 8 (17) (2021) 13690–13702.
doi:10.1109/JIOT.2021.3067919.

[20] M. Yang, H. Zhu, H. Wang, Y. Kouch-
eryavy, K. Samouylov, H. Qian, An online
learning approach to computation offload-
ing in dynamic fog networks, IEEE Internet
of Things Journal 8 (3) (2021) 1572–1584.
doi:10.1109/JIOT.2020.3015522.

[21] L. Pu, X. Chen, J. Xu, X. Fu, D2d fogging: An
energy-efficient and incentive-aware task offloading
framework via network-assisted d2d collaboration,
IEEE Journal on Selected Areas in Communications
34 (12) (2016) 3887–3901.

[22] Z. Kuang, L. Li, J. Gao, L. Zhao, A. Liu, Partial of-
floading scheduling and power allocation for mobile
edge computing systems, IEEE Internet of Things
Journal 6 (4) (2019) 6774–6785.

[23] G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang,
M. Zhou, Femto: Fair and energy-minimized task
offloading for fog-enabled iot networks, IEEE Inter-
net of Things Journal 6 (3) (2019) 4388–4400.

18

[24] S. C. G., V. Chamola, C.-K. Tham, G. S., N. Ansari,
An optimal delay aware task assignment scheme for
wireless sdn networked edge cloudlets, Future Gen-
eration Computer Systems 102 (2020) 862–875.

[25] S. Misra, N. Saha, Detour: Dynamic task offloading
in software-defined fog for iot applications, IEEE
Journal on Selected Areas in Communications 37 (5)
(2019) 1159–1166.

[26] F. Al-Turjman, M. Z. Hasan, H. Al-Rizzo, Task
scheduling in cloud-based survivability applications
using swarm optimization in iot, Transactions on
Emerging Telecommunications Technologies 30 (8)
(2019) e3539.

[27] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, X. Shen,
Deep reinforcement learning for autonomous inter-
net of things: Model, applications and challenges,
IEEE Communications Surveys Tutorials 22 (3)
(2020) 1722–1760.

[28] J. Wang, C. Xu, Y. Huangfu, R. Li, Y. Ge, J. Wang,
Deep reinforcement learning for scheduling in cellu-
lar networks, in: 2019 11th International Conference
on Wireless Communications and Signal Processing
(WCSP), 2019, pp. 1–6.

[29] T. Sen, H. Shen, Machine learning based timeliness-
guaranteed and energy-efficient task assignment in
edge computing systems, in: 2019 IEEE 3rd Inter-
national Conference on Fog and Edge Computing
(ICFEC), 2019, pp. 1–10.

[30] H. Mao, M. Alizadeh, I. Menache, S. Kandula, Re-
source management with deep reinforcement learn-
ing, in: FIXME, 2016, p. 50–56.

[31] D. B. Noureddine., A. Gharbi., S. B. Ahmed., Multi-
agent deep reinforcement learning for task alloca-
tion in dynamic environment, in: Proceedings of
the 12th International Conference on Software Tech-
nologies - Volume 1: ICSOFT,, 2017, pp. 17–26.

[32] J. Wang, J. Cao, S. Wang, Z. Yao, W. Li, Irda: Incre-
mental reinforcement learning for dynamic resource
allocation, IEEE Transactions on Big Data 01 (01)
(2020) 1–1.

[33] X. Ma, H. Gao, H. Xu, M. Bian, An iot-based
task scheduling optimization scheme considering
the deadline and cost-aware scientific workflow for
cloud computing, EURASIP Journal on Wireless
Communications and Networking 2019 (1) (2019)
249.

[34] H. Ye, G. Y. Li, Deep reinforcement learning for re-
source allocation in v2v communications, in: 2018
IEEE International Conference on Communications
(ICC), 2018, pp. 1–6.

[35] S. Liang, Z. Yang, F. Jin, Y. Chen, Data centers job
scheduling with deep reinforcement learning, Ad-
vances in Knowledge Discovery and Data Mining:
24th Pacific-Asia Conference, PAKDD 2020, Singa-
pore, May 11–14, 2020, Proceedings, Part II 12085
(2020) 906–917.

[36] H. Liao, Z. Zhou, X. Zhao, L. Zhang, S. Mumtaz,
A. Jolfaei, S. H. Ahmed, A. K. Bashir, Learning-
based context-aware resource allocation for edge-
computing-empowered industrial iot, IEEE Internet
of Things Journal 7 (5) (2019) 4260–4277.

[37] Y. Sun, S. Zhou, J. Xu, Emm: Energy-aware mobil-
ity management for mobile edge computing in ultra
dense networks, IEEE Journal on Selected Areas in
Communications 35 (11) (2017) 2637–2646.

[38] H. Liao, Z. Zhou, X. Zhao, Y. Wang, Learning-based
queue-aware task offloading and resource allocation
for space–air–ground-integrated power iot, IEEE In-
ternet of Things Journal 8 (7) (2021) 5250–5263.

[39] A. Haj-Ali, N. K. Ahmed, T. Willke, J. Gonza-
lez, K. Asanovic, I. Stoica, A view on deep rein-
forcement learning in system optimization (2019).
arXiv:1908.01275.

[40] H. Tankovska, Number of internet of things (iot)
connected devices worldwide in 2018, 2025 and
2030 (October, 26 2019).

[41] O. N. F. Open Network Foundation, OpenFlow
Switch Specification (April 2013).

19

[42] B. Lantz, B. Heller, N. McKeown, A network in a
laptop: Rapid prototyping for software-defined net-
works, in: Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX,
Association for Computing Machinery, New York,
NY, USA, 2010, p. 6.

[43] G. Brockman, V. Cheung, L. Pettersson, J. Schnei-
der, J. Schulman, J. Tang, W. Zaremba, Openai gym
(2016). arXiv:1606.01540.

[44] R. project team, Ryu SDN Framework, FIXME,
2014.

20

