
HAL Id: hal-03649739
https://laas.hal.science/hal-03649739

Submitted on 22 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Game-Theoretic Algorithm for the Joint Routing and
VNF Placement Problem

Ali El Amine, Olivier Brun

To cite this version:
Ali El Amine, Olivier Brun. A Game-Theoretic Algorithm for the Joint Routing and VNF Placement
Problem. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium (NOMS
2022), Apr 2022, Budapest, Hungary. �10.1109/NOMS54207.2022.9789859�. �hal-03649739�

https://laas.hal.science/hal-03649739
https://hal.archives-ouvertes.fr

A Game-Theoretic Algorithm for the Joint Routing and VNF

Placement Problem

Ali El Amine and Olivier Brun
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Email: {aelamine, brun}@laas.fr

April 22, 2022

Abstract

Network Function Virtualization (NFV) simplifies the deployment of network services by
leveraging virtualization technologies to make the management of network functions more
flexible and cost efficient. The deployment of these services requires the allocation of Virtual
Network Function - Forwarding Graphs (VNF-FGs), which implies placing and chaining VNFs
according to the requests of VNF-FGs. In this paper, we consider the offline allocation of
VNF-FGs problem to improve resource utilization and reduce total costs. We focus on how
VNF-FG demands are routed so as to optimize resource utilization without adding capacity
to the infrastructure. Given a non-linear cost function associated to each network resource,
we formulate the problem as a non-linear single-path routing problem in an extended graph.
Then, we propose to adapt a single-path routing heuristic algorithm inspired from game theory
to solve it. We show that this algorithm converges and establishes its approximation ratio in a
number of cases. Experimental results obtained for different network topologies and different
cost functions show that this algorithm provides very good quality solutions with substantially
lower computing times compared to the optimal solution.

Service Function Chain, Virtual Network Function, Slice as a Service, Game Theory, Optimiza-
tion.

1 Introduction

Network Function Virtualization (NFV) opens up the possibility to replace hardwired middleboxes
implementing specific network functions (e.g., firewalls or Web proxies) by Virtual Network Func-
tions (VNFs) running in data centers and operated as cloud services. In addition to reducing the
cost and complexity of the network, this approach enables to deploy and compose VNFs so as to
create network slices on demand. Network slices are isolated logical networks coexisting simulta-
neously on the same Physical Substrate Network (PSN), each one being tailored to the needs of a
specific application. The VNFs composing the network slice as well as the virtual links established
between them are described by a VNF Forwarding Graph (VNF-FG). A VNF-FG, according to
ETSI, is a directed graph of an ordered set of VNFs that compose an end-to-end service [1].

The logical service graph described by a VNF-FG is decoupled from the network and has to be
mapped to existing PSN capabilities [2]. This implies not only the fulfillment of slice requirements
in terms of Quality of Service (QoS), but also considering the constraints of the underlying infras-
tructure. Two types of decisions have to be made: (a) where to run the VNFs, and (b) how to
interconnect them in the physical network, taking into account specific VNF ordering requirements.
They are usually made so as to optimize a certain performance objective, which may be related for
instance to the resource utilization of the PSN, while satisfying a number of technical constraints
(e.g., some VNFs should be placed in the vicinity of end users). This problem, which is known
as the VNF Forwarding Graph Embedding (VNF-FGE) problem, is an extension of the Virtual
Network Embedding problem [3,4] which is known to be NP-hard [5]. The VNF-FGE problem has
been studied in the online context, where requests to create network slices are submitted one after

1

the other [6–10], and in the offline context where multiple VNF-FGs have to be embedded in the
physical network at the same time [11–14].

In this work, we study the offline joint routing and VNF placement problem with non-linear
cost functions to reduce total costs and improve resource utilization under physical infrastructure
capacity constraints. In particular, we consider a physical infrastructure with known transmission
and capacity resources used to set up logical service requests. As these requests arrive one after
the other in time, without knowing neither the future requests nor the logical networks that will
be removed in the future, the individual placement and routing decisions made are necessarily
sub-optimal in hindsight, which may result in poor resource utilisation. Under this model, we
focus in this paper on the re-optimization of mapping existing logical networks onto the physical
infrastructure. This will allow for a better load distribution which in turn will increase the chance
to accommodate new logical networks without having to add additional infrastructure resources
capacity.

Despite the previous efforts on the VNF-FGE problem, little considered the re-optimization
of resources utilization on the physical infrastructure with non-linear cost functions. In [11], the
authors aimed at minimizing the number of VNF instances mapped on the infrastructure to improve
resource utilization. However, the work ignored the routing cost from connecting the VNFs of the
VNF-FG request. Inspired by the previous work to share the same VNF by multiple VNF-FGs,
the work in [12] and [13] studied the offline VNF-FGE problem to reduce both deployment and
forwarding traffic costs. In [12], the authors proposed a graph-based heuristic inspired from the
Viterbi algorithm to reduce the deployment cost of requested VNF-FG by reducing the number
of PoPs hosting the VNF instances. However, this solution results in an unbalanced resource
utilization. In [13], the authors focused at minimizing the cost of routing and deploying the
requested VNFs, while guaranteeing a certain level of reliability. The work however, does not
consider an efficient use of resources for future requests. The closest to our work is [14] that
focuses on minimizing both resource utilization and total placement costs. Despite the similarities
with our work, the model considered is different from ours. First, the authors considered an
infrastructure with only PoP nodes that are used to host VNFs. Hence, their work do not consider
the routing problem. Second, the authors considered the possibility to deploy only one type of
VNF in a PoP. In addition to the above limitations, none of the previous works considered non-
linear cost functions which are essential if one wishes to express that the cost per unit capacity of
a resource grows with its utilization rate.

In the setting that we consider, we are given a physical network whose links have known
transmission capacities and in which some nodes provide known computing resources. A non-
linear cost function is associated to each network resource and allows to measure its congestion
level. A set of traffic demands flow through the network, each traffic demand being characterised
by its source, destination, volume and the sequence of VNFs it must flow through. The volume of
a traffic demand may change after each VNF, due to, for example, encryption or data aggregation
operations. An initial solution specifies, for each traffic demand, on which compute nodes the VNFs
are executed and the path taken by the demand in the network between these VNFs. We show that
the VNF placement and chaining problem can be formulated as a non-linear single-path routing
problem in an extended graph. To solve this problem, we adapt a single-path routing algorithm
inspired from Game Theory which was proposed in [15]. We show that this algorithm converges
and establishes its approximation ratio in a number of cases. Experimental results obtained for
different network topologies and different cost functions show that this algorithm provides very
good quality solutions with a rather modest computation time.

The paper is organized as follows. We describe the problem addressed in this paper and
introduce our main notations in Section 2. In Section 3, we introduce the concept of expanded
network. The problem is then formulated as a non-linear single path routing problem in the
expanded network in Section 4. We present the proposed algorithm in Section 5. Section 6 is
devoted to the performance evaluation of this algorithm using diverse network topologies and cost
functions. Finally, some conclusions are drawn in Section 7.

2

Table 1: Notations.

G = (V, E) Physical network, where V is the set of nodes and E is the set of links.
D Set of function nodes.
R Set of network resources (transmission links and function nodes).

F (resp. Fw) Set of K network functions (resp. service chain for demand w).
D(f) Set of function nodes where VNF f can be executed.
W Set of traffic demands.

sw (resp. tw) Source (resp. destination) node of demand w.
Kw Number of VNFs in the service chain Fw.
fw
k kth VNF in the service chain Fw.

bwk,r Capacity required by demand w from resource r at stage k.

2 Problem Statement

We are given a physical network represented by a directed graph G = (V, E), where V is the set of
nodes and E is the set of links. A subset D ⊆ V of the nodes have the required compute and storage
resources to host VNF. These nodes will be called the function nodes in the following. They are
used to execute one or more VNFs out of a set F of K VNFs, where function f ∈ F is available
at function nodes v ∈ D(f) ⊆ D. A function node corresponds to a logical entity representing
reserved computing and storage capacity in a data center. Multiple VNFs may be deployed at the
same function node, and a VNF may be replicated at different function nodes. The transmission
links of the network and the function nodes are the critical resources in our problem and in the
following we shall denote by R = E ∪ D the set of these resources.

We are also given a set W of traffic demands. Each traffic demand w ∈ W is characterized by
its source node sw, its destination node tw and the sequence Fw =

(
fw
1 , fw

2 , . . . , fw
Kw

)
of network

functions it must flow through in that prescribed order. The sequence is called the Service Chain
associated to the traffic demand. The processing path of demand w may therefore be decomposed
in different stages, where stage 0 corresponds to the transmission of the original traffic volume from
the source to VNF fw

1 (excluded), stage 1 represents the processing at VNF fw
1 followed by the

transmission to VNF fw
2 , etc. The volume of a traffic demand may change at each stage due to, e.g.,

packet encryption/decryption or to data aggregation operations. Moreover, the processing capacity
required per unit of traffic may be different for one VNF to another. We therefore define bwk,r as
the capacity required from resource r for processing demand w at stage k. If r is a transmission
link e ∈ E , then this capacity just represents the volume of traffic send from VNF fw

k to VNF fw
k+1

for 0 < k < K(w), and the volume of traffic from sw (resp. VNF fw
K(w)) to VNF fw

1 (resp. tw) for

k = 0 (resp. = K(w)). This volume of traffic should be the same for all links e and is expressed
in bit/s. Similarly, if r is a function node v ∈ D(fw

k), the capacity bwk,r represents the (fractional)
number of cores required for processing the traffic of demand w by VNF fw

k . Our notations are
summarized in Table 1.

Figure 1 provides a simple example of the setting considered in the paper, in which there are
two traffic demands. The service chain for the traffic demand s1 − t1 is F1 = (f1, f2), whereas the
service chain for the traffic demand s2 − t2 is F2 = (f1). The volume of traffic demand s1 − t1
is b10 = 20 units of traffic and the volume of traffic demand s2 − t2 is 10 units. To simplify, we
assume that the volumes do not change along the paths from the sources to the destinations. We
also assume that VNF f1 requires 1.5 cores per unit of traffic, whereas VNF f2 requires 1.0 core
per unit of traffic. The capacity of all links are taken to be ce = 60 units of traffic, and the
processing capacity of the function nodes are cD = 70 and cE = 40. The figure illustrates two
possible deployment scenarios. In the first scenario (see Fig. 1a), all instances of all VNFs are
deployed at node D, whereas in the second scenario (see Fig. 1b) the instances of VNF 1 required
for processing the traffic demand s1− t1 are executed at node E. We analyze below each scenario,
assuming that the cost function for resource r is yr

cr−yr
, where yr is the traffic volume on resource

r and cr is the capacity of resource r:

(a) Scenario 1: In this scenario, the utilization rates of the network links are as follows: 1
3 for

one link, 1
6 for two links and 1

2 for four links. This yields a total link cost of 1 × 1/3
1−1/3 +

3

s2

b10 = 20

b20 = 10

f1

s1 t1

C

B

D

E

f1, f2

t2
A

(a) Deployment scenario 1 in which all VNFs
are executed at node D.

s2

b10 = 20

b20 = 10

f1

s1 t1

C

B

D

E

f1, f2

t2
A

(b) Deployment scenario 2 in which instances of
VNF 1 are executed at node E for the traffic
demand s1 − t1.

Figure 1: A simple example network , in which we assume that VNF f1 may be executed at nodes
D and E, whereas VNF f2 is only available at node D.

2 × 1/6
1−1/6 + 4 × 1/2

1−1/2 = 4.9. However, the total capacity required at node D is 65 cores

((20+ 10)× 1.5 for VNF f1, and 20× 1 for VNF f2), yielding a total cost for function nodes
equals to 65

70−65 = 13. Hence the total network cost for this deployment scenario is 17.9.

(a) Scenario 2: In this scenario, the utilization rates of the network links are as follows: 1
3 for

seven links, 1
6 for three links and 1

2 for three other links. The total link cost is therefore

7 × 1/3
1−1/3 + 3 × 1/6

1−1/6 + 3 × 1/2
1−1/2 = 7.1. The computing capacity required at node D is

35 cores: 10 × 1.5 for VNF f1, and 20 × 1 for VNF f2. The computing capacity required
at node E is 20 × 1.5 = 30 cores. The total computing cost of function nodes is hence

35
70−35 + 30

40−30 = 4. We conclude that the total network cost in this scenario is 11.1, which
shows that it achieves a better resource utilization.

The problem at hands amounts to choosing a single path through the network for each traffic
demand such that the function nodes are visited in the prescribed order and so that a certain
network cost function is minimized. We shall shortly discuss the network cost function to be
optimized, but we would first like to emphasize that a first difficulty is related to the modelling
of precedence constraints on the order in which the function nodes must be visited by each traffic
request. The key observation is that the overall path from sw to tw for traffic demand w can be
viewed as a collection of segments, the first segment connecting sw to one of the function nodes
hosting fw

1 through some intermediate nodes, the second segment connecting the end node of
the first segment with one of the function nodes hosting fw

2 , etc, until the destination node tw
is reached. These segments are connected by decision points where we choose which nodes will
compute the functions in Fw. As observed in [16], it is possible to construct an expanded network
to model both the segment construction and the function selection at the nodes. We shall discuss
the construction of this expanded network in Section 3. In Section 4, we formulate the single-path
routing problem considered in this paper using the concept of expanded network.

3 Expanded Network

The expanded network G∗ is made up of K layers. Each layer G(k) = (V(k), E(k)), k = 0, . . . ,K,
is a copy of of the original network G = (V, E). We shall use the notation v(k) (resp. e(k)) to
refer to node v ∈ V (resp. link e ∈ E) at layer k. We use each layer to find one segment of the
total path for each traffic demand w. Consecutive layers are connected by artificial edges which
are used to model the function selection at the nodes. More precisely, for each function node
v ∈ D and each layer k = 0, . . . ,K − 1, there is an artificial directed edge from node v(k) to node
v(k+1). The interpretation is that a path for traffic demand w goes through this artificial link if

4

f1f1

f1, f2

s
(0)
1

s
(0)
2

t
(0)
1

t
(0)
2

A(0)

C(0)

B(0)

D(0)

E(0)

s
(1)
1

s
(1)
2

t
(1)
1

t
(1)
2

A(1)

C(1)

B(1)

D(1)

E(1)

s
(2)
1

s
(2)
2

t
(2)
1

t
(2)
2

A(2)

C(2)

B(2)

D(2)

E(2)

f1, f2

Figure 2: Expanded network for the example of Figure 1. The artificial edges between consecutive
layers are shown with dotted lines. Two feasible paths for the demand from node s1 to node t1
are shown, with blue-coloured edges for the first one and with red-coloured edges for the other one
(common edges are purple-coloured).

and only if VNF fw
k is executed at node v ∈ D(fw

k). In the following, we shall use the notation ℓ
(k)
v

to refer to the artificial edge (v(k), v(k+1)) and we shall denote the set of artificial edges between

layers k = 0, . . . ,K − 1 and k + 1 by L(k) =
{
ℓ
(k)
v : v ∈ D

}
. In summary, the set of nodes of the

expanded network G∗ is

V∗ =

K⋃
k=0

V(k),

whereas its set of edges is

E∗ =

K⋃
k=0

E(k) ∪
K−1⋃
k=0

L(k).

The construction of the expanded network is shown in Figure 2 for the example network of
Figure 1.

In the following, we say that an artificial edge ℓ
(k)
v ∈ L(k) is feasible for demand w if and only if

v ∈ D(fw
k), that is, it connects two consecutive copies of a node v hosting function fw

k . A feasible

path πw ⊂ E∗ for the traffic demand w ∈ W is then defined as a path from node s
(0)
w to node t

(Kw)
w

in the expanded network such that all artificial edges in the path are feasible for demand w. Figure
2 shows two feasible paths for the demand from node s1 to node t1. Note that the artificial edges
appearing in a path specify the function nodes at which the VNFs are executed, while the other
edges in the path specify the path segments used to reach these function nodes. The feasibility of
a path ensures that the network functions are executed in the prescribed order.

Given a set π ⊂ E∗ of edges in the expanded network and a link e ∈ E of the original network,
we define the constant δe,kπ as 1 if e(k) ∈ π, and 0 otherwise. Similarly, for any set π ⊆ E∗ and any

function node v ∈ D, we define the constant δv,kπ as 1 if the artificial edge ℓ
(k)
v ∈ π, and 0 otherwise.

In the following, the notation δr,kπ will refer to one of the above-defined constants, depending on
whether resource r ∈ R is a transmission link e or a function node v. We shall say for short that
resource r appears in path π at layer k of the expanded network and write (r, k) ∈ π when δr,kπ = 1.
Similarly, we write r ∈ π if δr,kπ = 1 for some k.

4 Single-Path Routing Problem

In the following, we shall assume that we are given a set Πw of candidate feasible paths through
the expanded network for each demand w ∈ W. A feasible solution for the joint routing and VNF
placement problem is then defined as a vector π = (πw) ∈ Π, where πw is the path assigned to
traffic demand w and Π =

⊗
w∈W Πw. Given such a feasible solution π, the traffic sent by demand

w on resource r ∈ R of the original network is:

5

ywr (πw) =

K∑
k=0

δr,kπw
bwk,r, (1)

from which it follows that the traffic flowing on resource r is yr(π) =
∑

w∈W ywr (πw).
We assume that to each resource r ∈ R of the physical network is associated a non-decreasing

function ϕr : R+ → R+ and that the cost of this resource has the form yrϕr(yr). The function ϕr()
may be interpreted as the cost per unit of capacity of resource r, and it may depend on the total
traffic flowing on that resource. A typical example is the Kleinrock function ϕr(yr) = 1/(cr − yr),
where cr is a constant representing the (transmission or processing) capacity of resource r. This
function assumes that the total traffic on a resource is smaller than its capacity and that the cost
per unit of capacity grows boundlessly as the former approaches the latter. Other examples are
the linear function ϕr(yr) = yr/cr or the quadratic function ϕr(yr) = y2r/c

2
r, which are valid even

for yr ≥ cr. In the above examples, the cost per unit capacity grows as the traffic yr on the
resource increases, in contrast with linear models in which ϕr is assumed to be a constant function.
We emphasize that the functions ϕr() may differ for different types of resources or even from one
resource to the other.

The goal is to find a feasible solution π ∈ Π that minimizes the network cost F (π) =∑
r∈R yr(π)ϕr (yr(π)). Formally, the problem is as follows:

minimize F (π) =
∑
r∈R

yr(π)ϕr (yr(π)) (OPT)

subject to:

πw ∈ Πw, w ∈ W. (2)

It is worth mentioning that problem (OPT) can be cast as a 0-1 mathematical programming
problem by introducing the following binary variables:

xw,π =

{
1 if demand w is routed along path π in G∗,
0 otherwise,

(3)

so that it becomes equivalent to:

minimize
∑
r∈R

yr ϕr(yr)

subject to:

yr =
∑
w∈W

∑
π∈Πw

(
K∑

k=0

δr,kπ bwk,r

)
xw,π, for all r ∈ R, (4)

∑
π∈Πw

xw,π = 1, for all w ∈ W, (5)

xw,π ∈ {0, 1}, for all π ∈ Πw and w ∈ W. (6)

Except when the functions ϕr() are constant functions, the above problem belongs to the class
of non-linear mathematical programs with integer variables, a class of mathematical programs
which are known to be extremely hard to solve. This motivates the development of an efficient
approximation method for solving problem (OPT).

5 Penalized Best-Response Algorithm

As discussed in Section 4, the joint routing and VNF placement problem can be cast as a non-linear
single path routing problem in the expanded network. The problem differs however significantly
from traditional single-path routing problems as on one hand the same resource appears at different
layers of the expanded network and on the other hand the volume of a traffic demand may change

6

from one layer to the other. Nevertheless the heuristic algorithm that we propose in this section
is directly inspired from an algorithm proposed in [15] for solving such problems. The idea of
the algorithm is to view the traffic demands as the players of a non-cooperative game in which
each each player independently optimizes its own objective function. Starting from an arbitrary
initial feasible solution, the algorithm then mimics the best-response dynamics of the game, that
is, the players take turns in some order to adapt their strategy based on the most recent known
strategy of the others. The players objective functions are designed in such a way that (a) the
best-response dynamics converges to a Nash equilibrium of the game in a finite number of steps,
(b) all optimal solutions of problem (OPT) are Nash equilibria of the game, and (c) an upper
bound on the approximation ratio of the algorithm can be proven in some cases.

Let us think of the traffic demands as the players of the game. The strategy of player w ∈ W
is the path πw it chooses in the set Πw, and a strategy profile of the game is a feasible solution to
problem (OPT), that is, a vector π ∈ Π. Given the strategy of the other players π−w = (πu)u ̸=w,
we shall assume that the player w seeks to solve the following problem:

minimizeπ∈Πwcw(π,π−w) = fw(π,π−w) + pw(π,π−w), (OPT-w)

where the value fw(π,π−w) associated to path π by player w reflects the cost of this path, whereas
the term pw(π,π−w) is a penalty term measuring the impact of player w’s choice on other players.
More precisely, we shall assume that the selfish objective function of player w is:

fw(π,π−w) =
∑
r∈π

ywr (π)ϕr

(
y−w
r + ywr (π)

)
, (7)

where y−w
r =

∑
u̸=w yur (πu) is the total traffic sent over resource r by all the other players u ̸= w.

The term fw(π,π−w) thus represents the cost of path π for player w, given the fixed strategies
π−w of the other players.

In order to define the penalty term pw(π,π−w), assume that player w chooses path π ∈ Πw

and consider a resource r appearing in the path π at some layer. Then, for all players u ̸= w, the
cost of this resource increases by:

yur (πu)
[
ϕr

(
y−w
r + ywr (π)

)
− ϕr

(
y−w
r

)]
.

As a consequence, we define the penalty term pw(π,π−w) as follows:

pw(π,π−w) =
∑
r∈R

∑
u̸=w

yu
r (πu)

[
ϕr

(
y−w
r + yw

r (π)
)
− ϕr

(
y−w
r

)]
=

∑
r∈π

y−w
r

[
ϕr

(
y−w
r + yw

r (π)
)
− ϕr

(
y−w
r

)]
(8)

With (7) and (8), the objective function cw(π,π−w) = fw(π,π−w) + pw(π,π−w) of player w is
perfectly defined. Given the strategies π−w of the other players, the path π minimizing cw(π,π−w)
in problem (OPT-w) is known as the best response of player w.

The pseudocode of our heuristic is given in Algorithm 1. Note that it is fully similar to the
algorithm in [15], the only difference being in the way the traffic flowing on a resource is computed.
The algorithm starts from an initial feasible solution π(0). At each iteration n, the players update
their strategies in a given order by computing their best responses to the strategies of the others

(lines 3− 5). Note that a player w deviates from its strategy π
(n)
w at iteration n to a new strategy

π′ if and only if cw

(
π′,π

(n)
−w

)
< cw

(
π(n)

)
. The algorithm stops when no player can decrease its

cost by unilaterally deviating from its strategy, that is, π(n+1) = π(n), which means that a Nash
equilibrium has been reached (line 7).

Theorem 1 below states the main properties of Algorithm 1. The proofs of properties (a), (b)
and (c) are straightforward adaptations of those of similar results in [15]. The proof of property
(d) is notably more involved, though it follows the same lines as the proof of Theorem 3 in [15].
The main difference is that we have to handle the fact that the volume of a traffic demand can
change along its path. Note that property (c) follows from property (d) by taking d = 0. All proofs
are omitted due to the lack of space but can be found in [17].

7

Algorithm 1 Penalized best-response

Require: π(0)

1: n← 0
2: repeat
3: for w ∈ W do
4: π

(n+1)
w ← argmin (OPT-w)

5: end for
6: n← n+ 1
7: until π(n+1) = π(n).
8: return π(n)

Theorem 1. Algorithm 1 has the following properties:

(a) It converges in a finite number of steps.

(b) If it ever reaches a global optimum of problem (OPT), it returns this optimal solution.

(c) It computes an optimal solution of problem (OPT) for linear resource costs, that is, when
the functions ϕr() are constant functions ϕr(y) = ar.

(d) Its approximation ratio is
(
2

1
d+1 − 1

)−(d+1)

when the functions ϕr() are polynomials of degree

d, that is, ϕr(y) =
∑d

n=0 ar,ny
n.

Algorithm 1 is optimal for linear resource costs and returns a solution whose cost is at most
5.83× the cost of an optimal solution for quadratic resource costs. Unfortunately, the approxima-
tion ratio of the algorithm for polynomial resource costs degrades quickly with the degree of the
polynomial (it is already equals to 56.9 for d = 2). Our numerical results suggest however that the
heuristic provides close-to-optimal solutions in most cases.

The proof of Theorem 1 shows that the game that we consider is a potential game, which implies
that the worst-case complexity of Algorithm 1 is exponential in the number of traffic demands [18].
However, as we will see in Section 6 below, its convergence in practice is much faster than suggested
by this worst-case result.

6 Performance Evaluation

In this section, we experimentally evaluate the performance of the penalized best-response algo-
rithm. We first describe the different types of objective functions used to solve the penalized
best-response algorithm and the procedure for generating random instances in sections 6.1 and
6.2. Then, we present in section 6.3 the numerical results for the different topologies evaluated
under the different types of objective functions.

6.1 Cost Functions

Given the cost per-unit of capacity of resource r function ϕr, we denote by Φr = yrϕr(yr) the cost
function of resource r. We consider four types of cost functions: linear, piece-wise linear, quadratic
and the Kleinrock Function (M/M/1).

1. Linear cost function: the per-unit cost does not depend on the utilization rate of the resource
r (ϕr(yr) = a, where a is a constant). Here, the objective function is linear with the amount
of traffic which is solved using Gurobi 9.0 as the ILP solver. We note that in this case the
solution may over utilize the resources capacity. We choose a = 5, and we have:

Φr = 5× yr (9)

8

2. Piece-Wise Linear cost function: we consider the following increasing per-unit cost function:

ϕr(yr) =


3 if 0 ≤ yr

cr
≤ 1

4 ,

5− 1
2
cr
yr

if 1
4 < yr

cr
≤ 3

4 ,

10− 17
4

cr
yr

if 3
4 < yr

cr
.

(10)

where cr is the capacity of resource r. This function expresses that it is cheap to utilize a
resource with a small utilization rate, whereas, as the load approaches cr, it becomes more
expensive. Problem (OTP) can then be formulated as a Mixed-Integer Linear Problem and
solved using Gurobi 9.0 as the MILP solver:

minimize
∑
r∈R

Φr

subject to:

yr =
∑
w∈W

∑
π∈Πw

(
K∑

k=0

δr,kπ bwk,r

)
xw,π, for all r ∈ R, (11)

∑
π∈Πw

xw,π = 1, for all w ∈ W, (12)

Φr ≥ ayr − bcr, for all r ∈ R and (a, b) ∈ C, (13)

xw,π ∈ {0, 1}, for all π ∈ Πw and w ∈ W. (14)

yr ≥ 0,Φr ≥ 0, for all r ∈ R, (15)

where C = {(3, 0), (5, 1
2), (10,

17
4)}.

3. Quadratic cost function: The per-unit cost function is linear (ϕr(yr) = ayr). This results
in a quadratic objective function which is solved using Gurobi 9.0 as the Quadratic Integer
Program solver. Similar to the previous function, the more is the utilization rate of a resource,
the more expensive it becomes.

Φr = y2r/c
2
r (16)

4. Kleinrock cost function (M/M/1): with this function, it becomes hard to find the optimal
solution. However, it guarantees that the utilization of a resource r does not exceed its
capacity cr.

Φr =
yr

cr − yr
(17)

We formulate problem (OPT) as a Bilinear Program, and we solve it with Gurobi 9.0 Bilinear
solver.

minimize
∑
r∈R

Φr

subject to:

yr =
∑
w∈W

∑
π∈Πw

(
K∑

k=0

δr,kπ bwk,r

)
xw,π, for all r ∈ R, (18)

∑
π∈Πw

xw,π = 1, for all w ∈ W, (19)

yr − Φrcr +Φryr = 0, for all r ∈ R, (20)

xw,π ∈ {0, 1}, for all π ∈ Πw and w ∈ W. (21)

yr ≥ 0,Φr ≥ 0, for all r ∈ R, (22)

9

Table 2: Topologies : number of nodes and links.

Topology # Nodes # Links
AARNET 19 46
ARPANET 25 56
NSFNET 13 30

IBM 18 48
CESNET 10 18

s1 t1

t2

s2

s3

v2 v3

v1 f1, f2t3

f1, f3

f2, f3

Figure 3: NSFNET topology which has been expanded with function nodes v1, v2 and v3. The
nodes s1, s2 and s3 are the source nodes and the nodes t1, t2 and t3 are the destination nodes of
the traffic demands.

6.2 Generation of Random Instances

In order to evaluate the performance of the penalized best-response algorithm, we use five network
topologies (see Table 2) collected from the IEEE literature and from The Internet Topology Zoo [19].
As illustrated in Figure 3 for the NSFNET topology, we choose three source nodes (s1, s2 and s3)
and three destination nodes (t1, t2 and t3) in each topology. The original topology is also expanded
by adding three function nodes v1, v2 and v3 and connecting them to the other nodes. We consider
three VNFs f1, f2 and f3 and assume that each one requires one core per unit of traffic. Function
node v1 can host VNFs f1 and f2, whereas function node v2 (resp. v3) can host VNFs f1 and f3
(resp. f2 and f3). As shown in Figure 3, each VNF is thus available at two different locations.

We then generate 100 random instances for each network topology. A random instance is com-
posed of 25 traffic demands, which are randomly generated as follows. The source and destination
nodes of a traffic demand are chosen randomly in the sets {s1, s2, s3} and {t1, t2, t3}, respectively,
according to uniform distributions. The volume of a traffic demand is drawn from a uniform dis-
tribution in the interval [1, 5], and, to simplify, we assume that it does not change along the path
from the source to the destination. Finally, the processing path of a traffic demand in chosen
uniformly at random in the set {(f1, f2), (f1, f3), (f2, f3), (f1, f2, f3)}.

Each traffic demand must thus go through two or three VNFs, which are available at multiple
locations. The possible paths for a traffic demand w are generated as follows. We first compute two
possible paths between the source node sw and each location where the first VNF fw

1 is available by
solving a 2-shortest path problem (assuming unit weights for the edges of the expanded network).
We then apply the same procedure for computing two possible paths between each possible location
of the VNF fw

1 and each possible location of fw
2 , etc. The final set of candidate paths Πw is obtained

by connecting the different segments forming the overall path from sw to tw.
The initial solution is obtained by choosing randomly a path for each traffic demand. We

assume that all links and all function nodes have the same capacity. This capacity is computed for
each random instance so as to obtain a network congestion rate of 0.83.

We report in Table 3 the number of candidate paths for a traffic demand |Πw| calculated for

10

Table 3: Number of candidate paths Πw.

Topology Max Min Average
AARNET 128 32 52
ARPANET 128 32 47
NSFNET 128 32 48

IBM 128 32 51
CESNET 8 4 5

each studied topology. The max (min, resp.) value is obtained when the size of the processing
path is three (two, resp.) resulting in |Πw| = 27 (|Πw| = 25, resp.). We remind the reader that we
have k = 2 candidate paths for each VNF option. The average value is obtained over 100 problem
instances where traffic demands have a probability of 3/4 (1/4, resp.) to choose a processing path
size of two (three, resp.). In the case of CESNET topology and under all the generated instances,
we could not find two candidate paths for each VNF option, hence the reduced size of Πw.

The final set of candidate paths calculated for each traffic demand is used to find the optimal
solution with Gurobi solver. However, when running the penalized best-response algorithm, we
consider only the k′-shortest paths from the previously obtained set. For instance, a traffic demand
in the AARNET topology has on average 52 different paths that will be used to find the optimal
solution. For k′ = 10, only the 10 shortest paths will be considered in the penalized best-response
algorithm.

6.3 Numerical Results

We report in Tables 4 and 5 the performance of the penalized Best Response (BR) algorithm for
different cost functions under distinct topologies. We set k′ = 10, and we evaluate the algorithm
performance by calculating the relative gap between the penalized BR solution and the optimal
solution from Gurobi. Following the obtained results, the penalized BR algorithm provides very
good quality solutions for the different cost functions with impressive computation time. Its average
relative gap to the optimal solution is under 5%, and it is almost negligible for small topologies
such as CESNET that has a result value of at most 0.07%. The average execution time of the
algorithm depends on the size of the topology and on the cost function used. It is also directly
proportional to the number of paths considered for each demand. Nevertheless except for the
PWL cost function where the MILP solver is known to be efficient and quick at solving, the solver
is significantly slower for the other more complex cost functions. In the case of the quadratic
cost function, the maximum relative error of the BR algorithm over the 100 instances is 3.725%.
However, if we look at the computing times in Table 5, we observe that the BR algorithm is at
most 16 times faster and at worst 6.3 times faster than the solver. It is interesting to note that
for the M/M/1 cost function, the solver has reached its time limit that has been set to 5 minutes,
while the BR algorithm takes less than 10 seconds to execute with a solution as close as 1.43% to
the solver. While PWL approximations can sometimes be considered for non-linear functions, it is
not evident how to choose the intervals to build an approximation for non-linear cost functions.

The box plot in Figure 4 compares the distribution of the 100 instances generated for each
scenario. The line that divides the box into two parts marks the median (Q2) of the data. The
upper quartile (Q3) value is represented by the upper box line. 75% of the values fall below Q3.
The lower quartile (Q1) value is the lower box line. 25% of the values fall below Q1. Hence,
the values inside the box represent 50% of the data. The end of the lower and upper whiskers
represents the minimum and maximum values, respectively. We first note that there are no outliers
in the data samples which means that all the values of the data fall within the normal range. We
observe that the values obtained with the quadratic cost function are more dispersed than the
values obtained from the other cost functions.

In order to evaluate the choice of k′, we report in Table 6 the average relative gap and the
computing times over different values of k′. We evaluate the results with the quadratic cost
function (similar results were observed for the other cost functions). As expected, the optimality
gap decreases when more routing paths are added to the set of candidate paths. However, the

11

Table 4: Relative gap (%± std) to the optimal solution with k′ = 10.

Topology PWL Quadratic M/M/1
AARNET 0.71 ±0.65 1.81 ±0.85 1.43 ±1.76
ARPANET 1.15 ±0.5 3.725 ±1.55 1.5 ±0.79
NSFNET 0.42 ±0.49 1.67 ±1.12 0.31 ±0.32

IBM 1.7 ±0.8 2.85 ±0.98 0.53 ±0.71
CESNET 0.051 ±0.003 0.047 ±0.008 0.070 ±0.056

AARNET ARPANET NSFNET IBM CESNET
0

2

4

6

8

10

Re
la

tiv
e

ga
p

(%
)

PWL function
Quadratic function
M/M/1

Figure 4: Box plot of the relative gap to the optimal solution with k′ = 10.

Table 5: Average computing times (seconds±std) for the 100 problem instances with k′ = 10.

Function Costs
AARNET ARPANET NSFNET IBM CESNET
BR Gurobi BR Gurobi BR Gurobi BR Gurobi BR Gurobi

PWL 7.1±0 1.2 8.09±0 1.72 4.93±0 0.72 6.83±0 0.9 1.96±0 0.07
Quadratic 7.89±0 126±0 8.89±0 124±0 6.3±0 40±0 8.27±0 109±0 2.33±0 0.3
M/M/1 8.17±0 300 9.84±0 300 7.52±0 300 9.17 300 2.79±0 300

Table 6: Average relative gap and computing times for the 100 problem instances with the quadratic
cost function.

Topology
k′ = 5 k′ = 10 k′ = 20 k′ = 32

gap runtime gap runtime gap runtime gap runtime
AARNET 5.2% 3.8 sec 1.8% 7.9 sec 1.4% 17 sec 1.4% 26.7 sec
ARPANET 5.5% 4 sec 3.7% 8.9 sec 3% 19 sec 3% 30 sec
NSFNET 1.8% 2.9 sec 1.7% 6.3 sec 1.6% 12 sec 1.6% 18 sec

IBM 5.88% 3.5 sec 2.85% 8.2 sec 2.77% 12.8 sec 2.75% 30 sec
CESNET 0.05% 1.9 sec 0.05% 2.3 sec 0.05% 2.4 sec 0.05% 2.4 sec

decrease of this gap is insignificant for k′ > 10. In the case of the CESNET topology and since on
average there are only 5 possible paths for a given demand (refer to Table 3), the gap optimality
remains constant for k′ ≥ 5. On the other hand, increasing the routing paths increases the running
time of the BR algorithm. In this work, we found that the best trade-off between quality solution
and running time is for k′ = 10.

12

7 Conclusion

In this paper, we have considered the offline VNF placement and chaining problem, assuming that
a non-linear cost function is associated to each network resources. With respect to previous works,
the main originality of the considered model is that the cost per unit capacity of a resource is
not constant, instead it grows with its utilization rate, which is an essential feature to achieve a
better load distribution. We have formulated the problem as a single-path routing problem in an
extended network and adapted an existing game-theoretic algorithm to solve it. Our numerical
results suggest that the algorithm provides near-optimal solutions in substantially lower computing
times than the solver, in particular for highly non-linear cost functions.

8 Acknowledgment

This work was supported by the French DGA project ONSET.

References

[1] ISG NFV, ETSI, “Network Functions Virtualisation (NFV): Architectural framework,” 2013.

[2] J. Gil Herrera and J. F. Botero, “Resource allocation in NFV: A comprehensive survey,” IEEE
Transactions on Network and Service Management, vol. 13, no. 3, pp. 518–532, 2016.

[3] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach, “Virtual network
embedding: A survey,” IEEE Communications Surveys Tutorials, vol. 15, no. 4, pp. 1888–
1906, 2013.

[4] A. Laghrissi and T. Taleb, “A survey on the placement of virtual resources and virtual network
functions,” IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1409–1434, 2019.

[5] E. Amaldi, S. Coniglio, A. Koster, and M. Tieves, “On the computational complexity of the
virtual network embedding problem,” Electron. Notes Discret. Math., vol. 52, pp. 213–220,
2016.

[6] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “A green VNF-FG embedding algo-
rithm,” in 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft),
2018, pp. 141–149.

[7] M. Mechtri, C. Ghribi, and D. Zeghlache, “VNF placement and chaining in distributed cloud,”
in 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), 2016, pp. 376–
383.

[8] F. Carpio, W. Bziuk, and A. Jukan, “Replication of virtual network functions: Optimizing
link utilization and resource costs,” in 2017 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2017, pp. 521–526.

[9] P. T. A. Quang, A. Bradai, K. D. Singh, G. Picard, and R. Riggio, “Single and multi-domain
adaptive allocation algorithms for VNF forwarding graph embedding,” IEEE Transactions on
Network and Service Management, vol. 16, no. 1, pp. 98–112, 2019.

[10] A. El Amine, O. Brun, S. Abdellatif, and P. Berthou, “Shortening the deployment time
of SFCs by adaptively querying resource providers,” in 2021 IEEE Global Communications
Conference (GLOBECOM), 2021, pp. 01–06.

[11] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Piecing to-
gether the NFV provisioning puzzle: Efficient placement and chaining of virtual network
functions,” in 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM). IEEE, 2015.

13

[12] N. Tastevin, M. Obadia, and M. Bouet, “A graph approach to placement of service func-
tions chains,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM). IEEE, 2017.

[13] X. Zhong, Y. Wang, and X. Qiu, “Cost-aware service function chaining with reliability guaran-
tees in NFV-enabled inter-dc network,” in 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM). IEEE, 2019.

[14] H. Guo, Y. Wang, Z. Li, X. Qiu, H. An, N. Yuan et al., “Cost-aware placement and chaining of
service function chain with VNF instance sharing,” in NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2020.

[15] O. Brun, B. Prabhu, and J. Vallet, “A penalized best-response algorithm for non-linear single-
path routing problems,” Networks, vol. 69, no. 1, pp. 52–66, 2017.

[16] T.-M. Nguyen, A. Girard, C. Rosenberg, and S. Fdida, “Routing via functions in virtual
networks: The curse of choices,” IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp.
1192–1205, 2019.

[17] A. El Amine and O. Brun, “Offline Re-Optimization of VNF Placement Decisions for
Existing Network Slices - A Game-Theoretic Algorithm,” Dec. 2021, working paper or
preprint. [Online]. Available: https://hal.archives-ouvertes.fr/hal-03465101

[18] A. Fabrikant, C. Papadimitriou, and K. Talwar, “The complexity of pure nash equilibria,” in
Proc. of STOC’04, ACM, Ed., New York, NY, USA, 2004, pp. 604–612.

[19] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The internet topology
zoo,” IEEE Journal on Selected Areas in Communications, 2011.

14

