Ali El

Olivier Brun
email: brun@laas.fr

A Game-Theoretic Algorithm for the Joint Routing and VNF Placement Problem

Keywords: Service Function Chain, Virtual Network Function, Slice as a Service, Game Theory, Optimization

Network Function Virtualization (NFV) simplifies the deployment of network services by leveraging virtualization technologies to make the management of network functions more flexible and cost efficient. The deployment of these services requires the allocation of Virtual Network Function -Forwarding Graphs (VNF-FGs), which implies placing and chaining VNFs according to the requests of VNF-FGs. In this paper, we consider the offline allocation of VNF-FGs problem to improve resource utilization and reduce total costs. We focus on how VNF-FG demands are routed so as to optimize resource utilization without adding capacity to the infrastructure. Given a non-linear cost function associated to each network resource, we formulate the problem as a non-linear single-path routing problem in an extended graph. Then, we propose to adapt a single-path routing heuristic algorithm inspired from game theory to solve it. We show that this algorithm converges and establishes its approximation ratio in a number of cases. Experimental results obtained for different network topologies and different cost functions show that this algorithm provides very good quality solutions with substantially lower computing times compared to the optimal solution.

Introduction

Network Function Virtualization (NFV) opens up the possibility to replace hardwired middleboxes implementing specific network functions (e.g., firewalls or Web proxies) by Virtual Network Functions (VNFs) running in data centers and operated as cloud services. In addition to reducing the cost and complexity of the network, this approach enables to deploy and compose VNFs so as to create network slices on demand. Network slices are isolated logical networks coexisting simultaneously on the same Physical Substrate Network (PSN), each one being tailored to the needs of a specific application. The VNFs composing the network slice as well as the virtual links established between them are described by a VNF Forwarding Graph (VNF-FG). A VNF-FG, according to ETSI, is a directed graph of an ordered set of VNFs that compose an end-to-end service [START_REF] Nfv | Network Functions Virtualisation (NFV): Architectural framework[END_REF].

The logical service graph described by a VNF-FG is decoupled from the network and has to be mapped to existing PSN capabilities [START_REF] Herrera | Resource allocation in NFV: A comprehensive survey[END_REF]. This implies not only the fulfillment of slice requirements in terms of Quality of Service (QoS), but also considering the constraints of the underlying infrastructure. Two types of decisions have to be made: (a) where to run the VNFs, and (b) how to interconnect them in the physical network, taking into account specific VNF ordering requirements. They are usually made so as to optimize a certain performance objective, which may be related for instance to the resource utilization of the PSN, while satisfying a number of technical constraints (e.g., some VNFs should be placed in the vicinity of end users). This problem, which is known as the VNF Forwarding Graph Embedding (VNF-FGE) problem, is an extension of the Virtual Network Embedding problem [START_REF] Fischer | Virtual network embedding: A survey[END_REF][START_REF] Laghrissi | A survey on the placement of virtual resources and virtual network functions[END_REF] which is known to be NP-hard [START_REF] Amaldi | On the computational complexity of the virtual network embedding problem[END_REF]. The VNF-FGE problem has been studied in the online context, where requests to create network slices are submitted one after the other [START_REF] Soualah | A green VNF-FG embedding algorithm[END_REF][START_REF] Mechtri | VNF placement and chaining in distributed cloud[END_REF][START_REF] Carpio | Replication of virtual network functions: Optimizing link utilization and resource costs[END_REF][START_REF] Quang | Single and multi-domain adaptive allocation algorithms for VNF forwarding graph embedding[END_REF][START_REF] Amine | Shortening the deployment time of SFCs by adaptively querying resource providers[END_REF], and in the offline context where multiple VNF-FGs have to be embedded in the physical network at the same time [START_REF] Luizelli | Piecing together the NFV provisioning puzzle: Efficient placement and chaining of virtual network functions[END_REF][START_REF] Tastevin | A graph approach to placement of service functions chains[END_REF][START_REF] Zhong | Cost-aware service function chaining with reliability guarantees in NFV-enabled inter-dc network[END_REF][START_REF] Guo | Cost-aware placement and chaining of service function chain with VNF instance sharing[END_REF].

In this work, we study the offline joint routing and VNF placement problem with non-linear cost functions to reduce total costs and improve resource utilization under physical infrastructure capacity constraints. In particular, we consider a physical infrastructure with known transmission and capacity resources used to set up logical service requests. As these requests arrive one after the other in time, without knowing neither the future requests nor the logical networks that will be removed in the future, the individual placement and routing decisions made are necessarily sub-optimal in hindsight, which may result in poor resource utilisation. Under this model, we focus in this paper on the re-optimization of mapping existing logical networks onto the physical infrastructure. This will allow for a better load distribution which in turn will increase the chance to accommodate new logical networks without having to add additional infrastructure resources capacity.

Despite the previous efforts on the VNF-FGE problem, little considered the re-optimization of resources utilization on the physical infrastructure with non-linear cost functions. In [START_REF] Luizelli | Piecing together the NFV provisioning puzzle: Efficient placement and chaining of virtual network functions[END_REF], the authors aimed at minimizing the number of VNF instances mapped on the infrastructure to improve resource utilization. However, the work ignored the routing cost from connecting the VNFs of the VNF-FG request. Inspired by the previous work to share the same VNF by multiple VNF-FGs, the work in [START_REF] Tastevin | A graph approach to placement of service functions chains[END_REF] and [START_REF] Zhong | Cost-aware service function chaining with reliability guarantees in NFV-enabled inter-dc network[END_REF] studied the offline VNF-FGE problem to reduce both deployment and forwarding traffic costs. In [START_REF] Tastevin | A graph approach to placement of service functions chains[END_REF], the authors proposed a graph-based heuristic inspired from the Viterbi algorithm to reduce the deployment cost of requested VNF-FG by reducing the number of PoPs hosting the VNF instances. However, this solution results in an unbalanced resource utilization. In [START_REF] Zhong | Cost-aware service function chaining with reliability guarantees in NFV-enabled inter-dc network[END_REF], the authors focused at minimizing the cost of routing and deploying the requested VNFs, while guaranteeing a certain level of reliability. The work however, does not consider an efficient use of resources for future requests. The closest to our work is [START_REF] Guo | Cost-aware placement and chaining of service function chain with VNF instance sharing[END_REF] that focuses on minimizing both resource utilization and total placement costs. Despite the similarities with our work, the model considered is different from ours. First, the authors considered an infrastructure with only PoP nodes that are used to host VNFs. Hence, their work do not consider the routing problem. Second, the authors considered the possibility to deploy only one type of VNF in a PoP. In addition to the above limitations, none of the previous works considered nonlinear cost functions which are essential if one wishes to express that the cost per unit capacity of a resource grows with its utilization rate.

In the setting that we consider, we are given a physical network whose links have known transmission capacities and in which some nodes provide known computing resources. A nonlinear cost function is associated to each network resource and allows to measure its congestion level. A set of traffic demands flow through the network, each traffic demand being characterised by its source, destination, volume and the sequence of VNFs it must flow through. The volume of a traffic demand may change after each VNF, due to, for example, encryption or data aggregation operations. An initial solution specifies, for each traffic demand, on which compute nodes the VNFs are executed and the path taken by the demand in the network between these VNFs. We show that the VNF placement and chaining problem can be formulated as a non-linear single-path routing problem in an extended graph. To solve this problem, we adapt a single-path routing algorithm inspired from Game Theory which was proposed in [START_REF] Brun | A penalized best-response algorithm for non-linear singlepath routing problems[END_REF]. We show that this algorithm converges and establishes its approximation ratio in a number of cases. Experimental results obtained for different network topologies and different cost functions show that this algorithm provides very good quality solutions with a rather modest computation time.

The paper is organized as follows. We describe the problem addressed in this paper and introduce our main notations in Section 2. In Section 3, we introduce the concept of expanded network. The problem is then formulated as a non-linear single path routing problem in the expanded network in Section 4. We present the proposed algorithm in Section 5. Section 6 is devoted to the performance evaluation of this algorithm using diverse network topologies and cost functions. Finally, some conclusions are drawn in Section 7.

Problem Statement

We are given a physical network represented by a directed graph G = (V, E), where V is the set of nodes and E is the set of links. A subset D ⊆ V of the nodes have the required compute and storage resources to host VNF. These nodes will be called the function nodes in the following. They are used to execute one or more VNFs out of a set F of K VNFs, where function f ∈ F is available at function nodes v ∈ D(f) ⊆ D. A function node corresponds to a logical entity representing reserved computing and storage capacity in a data center. Multiple VNFs may be deployed at the same function node, and a VNF may be replicated at different function nodes. The transmission links of the network and the function nodes are the critical resources in our problem and in the following we shall denote by R = E ∪ D the set of these resources.

We are also given a set W of traffic demands. Each traffic demand w ∈ W is characterized by its source node s w , its destination node t w and the sequence F w = f w 1 , f w 2 , . . . , f w Kw of network functions it must flow through in that prescribed order. The sequence is called the Service Chain associated to the traffic demand. The processing path of demand w may therefore be decomposed in different stages, where stage 0 corresponds to the transmission of the original traffic volume from the source to VNF f w 1 (excluded), stage 1 represents the processing at VNF f w 1 followed by the transmission to VNF f w 2 , etc. The volume of a traffic demand may change at each stage due to, e.g., packet encryption/decryption or to data aggregation operations. Moreover, the processing capacity required per unit of traffic may be different for one VNF to another. We therefore define b w k,r as the capacity required from resource r for processing demand w at stage k. If r is a transmission link e ∈ E, then this capacity just represents the volume of traffic send from VNF f w k to VNF f w k+1 for 0 < k < K(w), and the volume of traffic from s w (resp. VNF f w K(w)) to VNF f w 1 (resp. t w) for k = 0 (resp. = K(w)). This volume of traffic should be the same for all links e and is expressed in bit/s. Similarly, if r is a function node v ∈ D(f w k), the capacity b w k,r represents the (fractional) number of cores required for processing the traffic of demand w by VNF f w k . Our notations are summarized in Table 1.

Figure 1 provides a simple example of the setting considered in the paper, in which there are two traffic demands. The service chain for the traffic demand

s 1 -t 1 is F 1 = (f 1 , f 2), whereas the service chain for the traffic demand s 2 -t 2 is F 2 = (f 1). The volume of traffic demand s 1 -t 1 is b 1 0 = 20
units of traffic and the volume of traffic demand s 2 -t 2 is 10 units. To simplify, we assume that the volumes do not change along the paths from the sources to the destinations. We also assume that VNF f 1 requires 1.5 cores per unit of traffic, whereas VNF f 2 requires 1.0 core per unit of traffic. The capacity of all links are taken to be c e = 60 units of traffic, and the processing capacity of the function nodes are c D = 70 and c E = 40. The figure illustrates two possible deployment scenarios. In the first scenario (see Fig. 1a), all instances of all VNFs are deployed at node D, whereas in the second scenario (see Fig. 1b) the instances of VNF 1 required for processing the traffic demand s 1 -t 1 are executed at node E. We analyze below each scenario, assuming that the cost function for resource r is yr cr-yr , where y r is the traffic volume on resource r and c r is the capacity of resource r:

(a) Scenario 1: In this scenario, the utilization rates of the network links are as follows: 1 3 for one link, 1 6 for two links and 1 2 for four links. This yields a total link cost of 1

× 1/3 1-1/3 + s 2 b 1 0 = 20 b 2 0 = 10 f 1 s 1 t 1 C B D E f 1 , f 2 t 2 A
(a) Deployment scenario 1 in which all VNFs are executed at node D.

s 2 b 1 0 = 20 b 2 0 = 10 f 1 s 1 t 1 C B D E f 1 , f 2 t 2 A
(b) Deployment scenario 2 in which instances of VNF 1 are executed at node E for the traffic demand s1 -t1.

Figure 1: A simple example network , in which we assume that VNF f 1 may be executed at nodes D and E, whereas VNF f 2 is only available at node D.

2 × 1/6 1-1/6 + 4 × 1/2
1-1/2 = 4.9. However, the total capacity required at node D is 65 cores ((20 + 10) × 1.5 for VNF f 1 , and 20 × 1 for VNF f 2), yielding a total cost for function nodes equals to 65 70-65 = 13. Hence the total network cost for this deployment scenario is 17.9.

(a) Scenario 2: In this scenario, the utilization rates of the network links are as follows: 1 3 for seven links, 1 6 for three links and 1 2 for three other links. The total link cost is therefore 7

× 1/3 1-1/3 + 3 × 1/6 1-1/6 + 3 × 1/2 1-1/2 = 7.1.
The computing capacity required at node D is 35 cores: 10 × 1.5 for VNF f 1 , and 20 × 1 for VNF f 2 . The computing capacity required at node E is 20 × 1.5 = 30 cores. The total computing cost of function nodes is hence 35 70-35 + 30 40-30 = 4. We conclude that the total network cost in this scenario is 11.1, which shows that it achieves a better resource utilization.

The problem at hands amounts to choosing a single path through the network for each traffic demand such that the function nodes are visited in the prescribed order and so that a certain network cost function is minimized. We shall shortly discuss the network cost function to be optimized, but we would first like to emphasize that a first difficulty is related to the modelling of precedence constraints on the order in which the function nodes must be visited by each traffic request. The key observation is that the overall path from s w to t w for traffic demand w can be viewed as a collection of segments, the first segment connecting s w to one of the function nodes hosting f w 1 through some intermediate nodes, the second segment connecting the end node of the first segment with one of the function nodes hosting f w 2 , etc, until the destination node t w is reached. These segments are connected by decision points where we choose which nodes will compute the functions in F w . As observed in [START_REF] Nguyen | Routing via functions in virtual networks: The curse of choices[END_REF], it is possible to construct an expanded network to model both the segment construction and the function selection at the nodes. We shall discuss the construction of this expanded network in Section 3. In Section 4, we formulate the single-path routing problem considered in this paper using the concept of expanded network.

Expanded Network

The expanded network G * is made up of K layers. Each layer G (k) = (V (k) , E (k)), k = 0, . . . , K, is a copy of of the original network G = (V, E). We shall use the notation v (k) (resp. e (k)) to refer to node v ∈ V (resp. link e ∈ E) at layer k. We use each layer to find one segment of the total path for each traffic demand w. Consecutive layers are connected by artificial edges which are used to model the function selection at the nodes. More precisely, for each function node v ∈ D and each layer k = 0, . . . , K -1, there is an artificial directed edge from node v (k) to node v (k+1) . The interpretation is that a path for traffic demand w goes through this artificial link if to refer to the artificial edge (v (k) , v (k+1)) and we shall denote the set of artificial edges between layers k = 0, . . . , K -1 and k + 1 by

f1 f1 f1, f2 s (0) 1 s (0) 2 t (0) 1 t (0) 2 A (0) C (0) B (0) D (0) E (0) s (1) 1 s (1) 2 t (1) 1 t (1) 2 A (1) C (1) B (1) D (1) E (1) s (2) 1 s (2) 2 t (2) 1 t (2) 2 A (2) C (2) B (2) D (2) E (2) f1, f2
L (k) = ℓ (k) v : v ∈ D . In summary, the set of nodes of the expanded network G * is V * = K k=0 V (k) ,
whereas its set of edges is

E * = K k=0 E (k) ∪ K-1 k=0 L (k) .
The construction of the expanded network is shown in Figure 2 for the example network of Figure 1.

In the following, we say that an artificial edge ℓ

(k) v ∈ L (k) is feasible for demand w if and only if v ∈ D(f w k)
, that is, it connects two consecutive copies of a node v hosting function f w k . A feasible path π w ⊂ E * for the traffic demand w ∈ W is then defined as a path from node s (0) w to node t (Kw) w in the expanded network such that all artificial edges in the path are feasible for demand w. Figure 2 shows two feasible paths for the demand from node s 1 to node t 1 . Note that the artificial edges appearing in a path specify the function nodes at which the VNFs are executed, while the other edges in the path specify the path segments used to reach these function nodes. The feasibility of a path ensures that the network functions are executed in the prescribed order.

Given a set π ⊂ E * of edges in the expanded network and a link e ∈ E of the original network, we define the constant δ e,k π as 1 if e (k) ∈ π, and 0 otherwise. Similarly, for any set π ⊆ E * and any function node v ∈ D, we define the constant δ v,k π as 1 if the artificial edge ℓ

(k)
v ∈ π, and 0 otherwise. In the following, the notation δ r,k π will refer to one of the above-defined constants, depending on whether resource r ∈ R is a transmission link e or a function node v. We shall say for short that resource r appears in path π at layer k of the expanded network and write (r, k) ∈ π when δ r,k π = 1. Similarly, we write r ∈ π if δ r,k π = 1 for some k.

Single-Path Routing Problem

In the following, we shall assume that we are given a set Π w of candidate feasible paths through the expanded network for each demand w ∈ W. A feasible solution for the joint routing and VNF placement problem is then defined as a vector π = (π w) ∈ Π, where π w is the path assigned to traffic demand w and Π = w∈W Π w . Given such a feasible solution π, the traffic sent by demand w on resource r ∈ R of the original network is:

y w r (π w) = K k=0 δ r,k πw b w k,r , (1)
from which it follows that the traffic flowing on resource r is y r (π) = w∈W y w r (π w). We assume that to each resource r ∈ R of the physical network is associated a non-decreasing function ϕ r : R + → R + and that the cost of this resource has the form y r ϕ r (y r). The function ϕ r () may be interpreted as the cost per unit of capacity of resource r, and it may depend on the total traffic flowing on that resource. A typical example is the Kleinrock function ϕ r (y r) = 1/(c r -y r), where c r is a constant representing the (transmission or processing) capacity of resource r. This function assumes that the total traffic on a resource is smaller than its capacity and that the cost per unit of capacity grows boundlessly as the former approaches the latter. Other examples are the linear function ϕ r (y r) = y r /c r or the quadratic function ϕ r (y r) = y 2 r /c 2 r , which are valid even for y r ≥ c r . In the above examples, the cost per unit capacity grows as the traffic y r on the resource increases, in contrast with linear models in which ϕ r is assumed to be a constant function. We emphasize that the functions ϕ r () may differ for different types of resources or even from one resource to the other.

The goal is to find a feasible solution π ∈ Π that minimizes the network cost F (π) = r∈R y r (π) ϕ r (y r (π)). Formally, the problem is as follows:

minimize

F (π) = r∈R y r (π) ϕ r (y r (π)) (OPT)
subject to:

π w ∈ Π w , w ∈ W. (2)
It is worth mentioning that problem (OPT) can be cast as a 0-1 mathematical programming problem by introducing the following binary variables:

x w,π = 1 if demand w is routed along path π in G * , 0 otherwise, (3)
so that it becomes equivalent to: minimize r∈R y r ϕ r (y r) subject to:

y r = w∈W π∈Πw K k=0 δ r,k π b w k,r
x w,π , for all r ∈ R,

x w,π = 1, for all w ∈ W,

x w,π ∈ {0, 1}, for all π ∈ Π w and w ∈ W.

Except when the functions ϕ r () are constant functions, the above problem belongs to the class of non-linear mathematical programs with integer variables, a class of mathematical programs which are known to be extremely hard to solve. This motivates the development of an efficient approximation method for solving problem (OPT).

Penalized Best-Response Algorithm

As discussed in Section 4, the joint routing and VNF placement problem can be cast as a non-linear single path routing problem in the expanded network. The problem differs however significantly from traditional single-path routing problems as on one hand the same resource appears at different layers of the expanded network and on the other hand the volume of a traffic demand may change from one layer to the other. Nevertheless the heuristic algorithm that we propose in this section is directly inspired from an algorithm proposed in [START_REF] Brun | A penalized best-response algorithm for non-linear singlepath routing problems[END_REF] for solving such problems. The idea of the algorithm is to view the traffic demands as the players of a non-cooperative game in which each each player independently optimizes its own objective function. Starting from an arbitrary initial feasible solution, the algorithm then mimics the best-response dynamics of the game, that is, the players take turns in some order to adapt their strategy based on the most recent known strategy of the others. The players objective functions are designed in such a way that (a) the best-response dynamics converges to a Nash equilibrium of the game in a finite number of steps, (b) all optimal solutions of problem (OPT) are Nash equilibria of the game, and (c) an upper bound on the approximation ratio of the algorithm can be proven in some cases.

Let us think of the traffic demands as the players of the game. The strategy of player w ∈ W is the path π w it chooses in the set Π w , and a strategy profile of the game is a feasible solution to problem (OPT), that is, a vector π ∈ Π. Given the strategy of the other players π -w = (π u) u̸ =w , we shall assume that the player w seeks to solve the following problem:

minimize π∈Πw c w (π, π -w) = f w (π, π -w) + p w (π, π -w), (OPT-w)
where the value f w (π, π -w) associated to path π by player w reflects the cost of this path, whereas the term p w (π, π -w) is a penalty term measuring the impact of player w's choice on other players. More precisely, we shall assume that the selfish objective function of player w is:

f w (π, π -w) = r∈π y w r (π) ϕ r y -w r + y w r (π) , (7)
where y -w r = u̸ =w y u r (π u) is the total traffic sent over resource r by all the other players u ̸ = w. The term f w (π, π -w) thus represents the cost of path π for player w, given the fixed strategies π -w of the other players.

In order to define the penalty term p w (π, π -w), assume that player w chooses path π ∈ Π w and consider a resource r appearing in the path π at some layer. Then, for all players u ̸ = w, the cost of this resource increases by:

y u r (π u) ϕ r y -w r + y w r (π) -ϕ r y -w r .
As a consequence, we define the penalty term p w (π, π -w) as follows: With (7) and (8), the objective function c w (π, π -w) = f w (π, π -w) + p w (π, π -w) of player w is perfectly defined. Given the strategies π -w of the other players, the path π minimizing c w (π, π -w) in problem (OPT-w) is known as the best response of player w.

The pseudocode of our heuristic is given in Algorithm 1. Note that it is fully similar to the algorithm in [START_REF] Brun | A penalized best-response algorithm for non-linear singlepath routing problems[END_REF], the only difference being in the way the traffic flowing on a resource is computed. The algorithm starts from an initial feasible solution π (0) . At each iteration n, the players update their strategies in a given order by computing their best responses to the strategies of the others (lines 3 -5). Note that a player w deviates from its strategy π n) . The algorithm stops when no player can decrease its cost by unilaterally deviating from its strategy, that is, π (n+1) = π (n) , which means that a Nash equilibrium has been reached (line 7).

(n) w at iteration n to a new strategy π ′ if and only if c w π ′ , π (n) -w < c w π (
Theorem 1 below states the main properties of Algorithm 1. The proofs of properties (a), (b) and (c) are straightforward adaptations of those of similar results in [START_REF] Brun | A penalized best-response algorithm for non-linear singlepath routing problems[END_REF]. The proof of property (d) is notably more involved, though it follows the same lines as the proof of Theorem 3 in [START_REF] Brun | A penalized best-response algorithm for non-linear singlepath routing problems[END_REF]. The main difference is that we have to handle the fact that the volume of a traffic demand can change along its path. Note that property (c) follows from property (d) by taking d = 0. All proofs are omitted due to the lack of space but can be found in [START_REF] Amine | Offline Re-Optimization of VNF Placement Decisions for Existing Network Slices -A Game-Theoretic Algorithm[END_REF]. (c) It computes an optimal solution of problem (OPT) for linear resource costs, that is, when the functions ϕ r () are constant functions ϕ r (y) = a r .

(d) Its approximation ratio is 2

1 d+1 -1 -(d+1)
when the functions ϕ r () are polynomials of degree

d, that is, ϕ r (y) = d n=0 a r,n y n .
Algorithm 1 is optimal for linear resource costs and returns a solution whose cost is at most 5.83× the cost of an optimal solution for quadratic resource costs. Unfortunately, the approximation ratio of the algorithm for polynomial resource costs degrades quickly with the degree of the polynomial (it is already equals to 56.9 for d = 2). Our numerical results suggest however that the heuristic provides close-to-optimal solutions in most cases.

The proof of Theorem 1 shows that the game that we consider is a potential game, which implies that the worst-case complexity of Algorithm 1 is exponential in the number of traffic demands [START_REF] Fabrikant | The complexity of pure nash equilibria[END_REF]. However, as we will see in Section 6 below, its convergence in practice is much faster than suggested by this worst-case result.

Performance Evaluation

In this section, we experimentally evaluate the performance of the penalized best-response algorithm. We first describe the different types of objective functions used to solve the penalized best-response algorithm and the procedure for generating random instances in sections 6.1 and 6.2. Then, we present in section 6.3 the numerical results for the different topologies evaluated under the different types of objective functions.

Cost Functions

Given the cost per-unit of capacity of resource r function ϕ r , we denote by Φ r = y r ϕ r (y r) the cost function of resource r. We consider four types of cost functions: linear, piece-wise linear, quadratic and the Kleinrock Function (M/M/1).

1. Linear cost function: the per-unit cost does not depend on the utilization rate of the resource r (ϕ r (y r) = a, where a is a constant). Here, the objective function is linear with the amount of traffic which is solved using Gurobi 9.0 as the ILP solver. We note that in this case the solution may over utilize the resources capacity. We choose a = 5, and we have:

Φ r = 5 × y r (9)
2. Piece-Wise Linear cost function: we consider the following increasing per-unit cost function:

ϕ r (y r) =      3 if 0 ≤ yr cr ≤ 1 4 , 5 -1 2 cr yr if 1 4 < yr cr ≤ 3 4 , 10 -17 4 cr yr if 3 4 < yr cr . (10)
where c r is the capacity of resource r. This function expresses that it is cheap to utilize a resource with a small utilization rate, whereas, as the load approaches c r , it becomes more expensive. Problem (OTP) can then be formulated as a Mixed-Integer Linear Problem and solved using Gurobi 9.0 as the MILP solver:

minimize r∈R Φ r
subject to:

y r = w∈W π∈Πw K k=0 δ r,k π b w k,r
x w,π , for all r ∈ R,

π∈Πw x w,π = 1, for all w ∈ W, (11)
Φ r ≥ ay r -bc r , for all r ∈ R and (a, b) ∈ C,

x w,π ∈ {0, 1}, for all π ∈ Π w and w ∈ W.

y r ≥ 0, Φ r ≥ 0, for all r ∈ R, (14)
where C = {(3, 0), (

Quadratic cost function: The per-unit cost function is linear (ϕ r (y r) = ay r). This results in a quadratic objective function which is solved using Gurobi 9.0 as the Quadratic Integer Program solver. Similar to the previous function, the more is the utilization rate of a resource, the more expensive it becomes.

Φ r = y 2 r /c 2 r (16)
4. Kleinrock cost function (M/M/1): with this function, it becomes hard to find the optimal solution. However, it guarantees that the utilization of a resource r does not exceed its capacity c r . Φ r = y r c r -y r

We formulate problem (OPT) as a Bilinear Program, and we solve it with Gurobi 9.0 Bilinear solver. minimize r∈R Φ r subject to:

y r = w∈W π∈Πw K k=0 δ r,k π b w k,r
x w,π , for all r ∈ R,

π∈Πw x w,π = 1, for all w ∈ W, (18)
y r -Φ r c r + Φ r y r = 0, for all r ∈ R,

x w,π ∈ {0, 1}, for all π ∈ Π w and w ∈ W.

y r ≥ 0, Φ r ≥ 0, for all r ∈ R, (21)

Generation of Random Instances

In order to evaluate the performance of the penalized best-response algorithm, we use five network topologies (see Table 2) collected from the IEEE literature and from The Internet Topology Zoo [START_REF] Knight | The internet topology zoo[END_REF]. As illustrated in Figure 3 for the NSFNET topology, we choose three source nodes (s 1 , s 2 and s 3) and three destination nodes (t 1 , t 2 and t 3) in each topology. The original topology is also expanded by adding three function nodes v 1 , v 2 and v 3 and connecting them to the other nodes. We consider three VNFs f 1 , f 2 and f 3 and assume that each one requires one core per unit of traffic. Function node v 1 can host VNFs f 1 and f 2 , whereas function node v 2 (resp. v 3) can host VNFs f 1 and f 3 (resp. f 2 and f 3). As shown in Figure 3, each VNF is thus available at two different locations.

We then generate 100 random instances for each network topology. A random instance is composed of 25 traffic demands, which are randomly generated as follows. The source and destination nodes of a traffic demand are chosen randomly in the sets {s 1 , s 2 , s 3 } and {t 1 , t 2 , t 3 }, respectively, according to uniform distributions. The volume of a traffic demand is drawn from a uniform distribution in the interval [START_REF] Nfv | Network Functions Virtualisation (NFV): Architectural framework[END_REF][START_REF] Amaldi | On the computational complexity of the virtual network embedding problem[END_REF], and, to simplify, we assume that it does not change along the path from the source to the destination. Finally, the processing path of a traffic demand in chosen uniformly at random in the set

{(f 1 , f 2), (f 1 , f 3), (f 2 , f 3), (f 1 , f 2 , f 3)}.
Each traffic demand must thus go through two or three VNFs, which are available at multiple locations. The possible paths for a traffic demand w are generated as follows. We first compute two possible paths between the source node s w and each location where the first VNF f w 1 is available by solving a 2-shortest path problem (assuming unit weights for the edges of the expanded network). We then apply the same procedure for computing two possible paths between each possible location of the VNF f w 1 and each possible location of f w 2 , etc. The final set of candidate paths Π w is obtained by connecting the different segments forming the overall path from s w to t w .

The initial solution is obtained by choosing randomly a path for each traffic demand. We assume that all links and all function nodes have the same capacity. This capacity is computed for each random instance so as to obtain a network congestion rate of 0.83.

We report in Table 3 the number of candidate paths for a traffic demand |Π w | calculated for) to choose a processing path size of two (three, resp.). In the case of CESNET topology and under all the generated instances, we could not find two candidate paths for each VNF option, hence the reduced size of Π w .

The final set of candidate paths calculated for each traffic demand is used to find the optimal solution with Gurobi solver. However, when running the penalized best-response algorithm, we consider only the k ′ -shortest paths from the previously obtained set. For instance, a traffic demand in the AARNET topology has on average 52 different paths that will be used to find the optimal solution. For k ′ = 10, only the 10 shortest paths will be considered in the penalized best-response algorithm.

Numerical Results

We report in Tables 4 and5 the performance of the penalized Best Response (BR) algorithm for different cost functions under distinct topologies. We set k ′ = 10, and we evaluate the algorithm performance by calculating the relative gap between the penalized BR solution and the optimal solution from Gurobi. Following the obtained results, the penalized BR algorithm provides very good quality solutions for the different cost functions with impressive computation time. Its average relative gap to the optimal solution is under 5%, and it is almost negligible for small topologies such as CESNET that has a result value of at most 0.07%. The average execution time of the algorithm depends on the size of the topology and on the cost function used. It is also directly proportional to the number of paths considered for each demand. Nevertheless except for the PWL cost function where the MILP solver is known to be efficient and quick at solving, the solver is significantly slower for the other more complex cost functions. In the case of the quadratic cost function, the maximum relative error of the BR algorithm over the 100 instances is 3.725%. However, if we look at the computing times in Table 5, we observe that the BR algorithm is at most 16 times faster and at worst 6.3 times faster than the solver. It is interesting to note that for the M/M/1 cost function, the solver has reached its time limit that has been set to 5 minutes, while the BR algorithm takes less than 10 seconds to execute with a solution as close as 1.43% to the solver. While PWL approximations can sometimes be considered for non-linear functions, it is not evident how to choose the intervals to build an approximation for non-linear cost functions.

The box plot in Figure 4 compares the distribution of the 100 instances generated for each scenario. The line that divides the box into two parts marks the median (Q2) of the data. The upper quartile (Q3) value is represented by the upper box line. 75% of the values fall below Q3. The lower quartile (Q1) value is the lower box line. 25% of the values fall below Q1. Hence, the values inside the box represent 50% of the data. The end of the lower and upper whiskers represents the minimum and maximum values, respectively. We first note that there are no outliers in the data samples which means that all the values of the data fall within the normal range. We observe that the values obtained with the quadratic cost function are more dispersed than the values obtained from the other cost functions.

In order to evaluate the choice of k ′ , we report in Table 6 the average relative gap and the computing times over different values of k ′ . We evaluate the results with the quadratic cost function (similar results were observed for the other cost functions). As expected, the optimality gap decreases when more routing paths are added to the set of candidate paths. However, the decrease of this gap is insignificant for k ′ > 10. In the case of the CESNET topology and since on average there are only 5 possible paths for a given demand (refer to Table 3), the gap optimality remains constant for k ′ ≥ 5. On the other hand, increasing the routing paths increases the running time of the BR algorithm. In this work, we found that the best trade-off between quality solution and running time is for k ′ = 10.

Conclusion

In this paper, we have considered the offline VNF placement and chaining problem, assuming that a non-linear cost function is associated to each network resources. With respect to previous works, the main originality of the considered model is that the cost per unit capacity of a resource is not constant, instead it grows with its utilization rate, which is an essential feature to achieve a better load distribution. We have formulated the problem as a single-path routing problem in an extended network and adapted an existing game-theoretic algorithm to solve it. Our numerical results suggest that the algorithm provides near-optimal solutions in substantially lower computing times than the solver, in particular for highly non-linear cost functions.

Acknowledgment

This work was supported by the French DGA project ONSET.

Figure 2 :

 2 Figure 2: Expanded network for the example of Figure 1. The artificial edges between consecutive layers are shown with dotted lines. Two feasible paths for the demand from node s 1 to node t 1 are shown, with blue-coloured edges for the first one and with red-coloured edges for the other one (common edges are purple-coloured).

Algorithm 1 n ← n + 1 7 :Theorem 1 .

 171 Penalized best-responseRequire: π (0)1: until π (n+1) = π (n) . 8: return π (n) Algorithm 1 has the following properties:(a) It converges in a finite number of steps.(b) If it ever reaches a global optimum of problem (OPT), it returns this optimal solution.

Figure 3 :

 3 Figure 3: NSFNET topology which has been expanded with function nodes v 1 , v 2 and v 3 . The nodes s 1 , s 2 and s 3 are the source nodes and the nodes t 1 , t 2 and t 3 are the destination nodes of the traffic demands.

Figure 4 :

 4 Figure 4: Box plot of the relative gap to the optimal solution with k ′ = 10.

Table 1 :

 1 Notations.Capacity required by demand w from resource r at stage k.

	G = (V, E)	Physical network, where V is the set of nodes and E is the set of links.
	D	Set of function nodes.
	R	Set of network resources (transmission links and function nodes).
	F (resp. F w) Set of K network functions (resp. service chain for demand w).
	D(f)	Set of function nodes where VNF f can be executed.
	W	Set of traffic demands.
	s w (resp. t w) Source (resp. destination) node of demand w.
	K w	Number of VNFs in the service chain F w .
	f w k b w k,r	k th VNF in the service chain F w .

Table 2 :

 2 Topologies : number of nodes and links.

	Topology	# Nodes # Links
	AARNET	19	46
	ARPANET	25	56
	NSFNET	13	30
	IBM	18	48
	CESNET	10	18
	s2	s1	t1
				f2, f3
	v2		t2	v3
	f1, f3		
			s3
	t3		v1 f1, f2

Table 3 :

 3 Number of candidate paths Π w . The max (min, resp.) value is obtained when the size of the processing path is three (two, resp.) resulting in |Π w | = 27 (|Π w | = 2 5 , resp.). We remind the reader that we have k = 2 candidate paths for each VNF option. The average value is obtained over 100 problem instances where traffic demands have a probability of 3/4 (1/4, resp.

	Topology Max Min Average
	AARNET	128	32	52
	ARPANET	128	32	47
	NSFNET	128	32	48
	IBM	128	32	51
	CESNET	8	4	5
	each studied topology.			

Table 4 :

 4 Relative gap (% ± std) to the optimal solution with k ′ = 10.

	Topology	PWL		Quadratic	M/M/1
	AARNET	0.71 ±0.65	1.81 ±0.85	1.43 ±1.76
	ARPANET	1.15 ±0.5		3.725 ±1.55	1.5 ±0.79
	NSFNET	0.42 ±0.49	1.67 ±1.12	0.31 ±0.32
		IBM	1.7 ±0.8		2.85 ±0.98	0.53 ±0.71
	CESNET	0.051 ±0.003 0.047 ±0.008 0.070 ±0.056
		8 10					PWL function Quadratic function M/M/1
	Relative gap (%)	4 6				
		2				
		0	AARNET	ARPANET	NSFNET	IBM	CESNET

Table 5 :

 5 Average computing times (seconds±std) for the 100 problem instances with k ′ = 10.

	Function Costs	AARNET BR Gurobi	ARPANET BR Gurobi	NSFNET BR Gurobi	BR	IBM Gurobi	CESNET BR Gurobi
	PWL	7.1±0	1.2	8.09±0	1.72	4.93±0	0.72	6.83±0	0.9	1.96±0	0.07
	Quadratic	7.89±0 126±0 8.89±0 124±0	6.3±0	40±0	8.27±0 109±0 2.33±0	0.3
	M/M/1	8.17±0	300	9.84±0	300	7.52±0	300	9.17		300	2.79±0	300

Table 6 :

 6 Average relative gap and computing times for the 100 problem instances with the quadratic cost function.

	Topology	gap	k ′ = 5 runtime	k ′ = 10 gap runtime	k ′ = 20 gap runtime	k ′ = 32 gap runtime
	AARNET	5.2%	3.8 sec	1.8%	7.9 sec	1.4%	17 sec	1.4% 26.7 sec
	ARPANET 5.5%	4 sec	3.7%	8.9 sec	3%	19 sec	3%	30 sec
	NSFNET	1.8%	2.9 sec	1.7%	6.3 sec	1.6%	12 sec	1.6%	18 sec
	IBM	5.88% 3.5 sec 2.85% 8.2 sec 2.77% 12.8 sec 2.75%	30 sec
	CESNET	0.05% 1.9 sec 0.05% 2.3 sec 0.05% 2.4 sec 0.05% 2.4 sec