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Abstract: This paper investigates the stability analysis of time-delay systems through Lya-
punov arguments. Using the existence of a complete Lyapunov-Krasovskii functional and relying
on polynomial approximation theory, our main goal is to approximate the complete Lyapunov
functional and to take profit of a supergeometric convergence rate of the truncated error
part. Necessary and sufficient conditions in the linear matrix inequality (LMI) framework for
sufficiently large approximated orders are consequently proposed. Moreover, an estimation of
the necessary order is provided analytically with respect to system parameters.
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1. INTRODUCTION

An extension of the Lyapunov necessary and sufficient
theorem has been introduced in Datko (1970) to analyze
the stability of linear infinite-dimensional systems. This
contribution ensures the existence of a complete quadratic
Lyapunov functional without giving more details. Focusing
now on time-delay systems, such complete Lyapunov func-
tional has been constructed in Kharitonov (2013). Never-
theless, the Lyapunov inequalities conditions stay theo-
retical and cannot be implemented. In parallel, infinite-
dimensional systems are often modeled by approximated
methods to be analyzed numerically. It is the case of
Padé approximations in the frequency domain (see Golub
and Van Loan (1989)) or pseudo-spectral methods in the
time domain (see Gottlieb and Orszag (1977)). In this
approximation context, most of the results release in the
convergence of the solution towards the expected one.
However, few results are able to make the link between
stability properties provided by approximated model and
the original ones. Indeed, not enough attention has been
paid to error part.

In the wide variety of pseudo-spectral methods, two cat-
egories stand out. From one side, collocation methods
amounts to interpolate the state. The idea is to create
a discretization map such that the error is null at the
interpolated points. In between these points, function ap-
proximation can be chosen to be constant (see Gu et al.
(2003)), linear (see Gu (2013); Medvedeva and Zhabko
(2015)), polynomial (see splines method) or exponential
(see Egorov and Mondié (2014)). Applying an interpo-
lation, it leads to necessary conditions of stability as
in Egorov and Mondié (2014); Medvedeva and Zhabko
(2019) or to sufficient conditions of stability based on

discretized Lyapunov functional as in Gu et al. (2003). Re-
cently, these results have been proven to converge asymp-
totically using some convergence properties and deliver
inner and outer estimation of the stability regions (see
respectively Gu (2013) and Gomez et al. (2021)). From
the other side, tau methods amounts to approximate the
state. The idea is to take support of a complete Hilbert
basis in order to proceed approximation through Galerkin-
like methods. For instance, Fourier trigonometric basis
or Legendre polynomials have been used. Simple Lya-
punov functionals based on the first coefficient (i.e. the
mean value of the state) of such basis has led to linear
matrix inequality (LMI) conditions exposed in Fridman
(2014), which are, however, quite conservative. To reduce
this conservatism, hierarchic Lyapunov functionals taking
support on the n first Legendre coefficients have been
proposed in Seuret and Gouaisbaut (2013, 2015). It is
only recently that the gap between these approximated
functionals and the original complete functional has been
closed. In Bajodek et al. (2022), it is proven that sufficient
Legendre-LMI conditions converge and become necessary
for sufficiently large orders.

This conference paper explains the methodology, which
allows to obtain the necessary and sufficient stability con-
ditions developed in Bajodek et al. (2022), and provides
a better estimation of the necessary order n∗. First, the
complete Lyapunov functional of time-delay systems is re-
called. Then, an intermediate result quantifies the quality
of the approximation of the complete Lyapunov functional
so that the Lyapunov converse theorem holds. Based on
the selection of a Legendre approximation which ensures
exponentially fast uniform convergence, the necessary and
sufficient condition of stability for time-delay systems re-
sumes to an LMI of size n∗ expressed with respect to



system parameters. Finally, the LMI test as well as the
order n∗ are computed on an academic example.

Notations: Throughout the paper, N, Rm×p, Sm and
Sm+ denote the sets of natural numbers, real matrices of
size m × p, symmetric matrices of size m and positive
symmetric matrices of size m, respectively. For any square
real matrix M , M⊤ denotes the transpose of M and H(M)
stands for M + M⊤. Furthermore, for any M ∈ Sm,
its minimal and maximal eigenvalues are denoted σ(M)
and σ̄(M). The 2-norm of matrix M in Rm×p is |M | =√

σ̄(M⊤M). The vector u = vec(M) in Rmp×1 collocates
the columns of matrix M . Notation ⊗ refers to the matrix
Kronecker product. The set of square-integrable functions
from (−h, 0) to Rm×p is noted L2(−h, 0;Rm×p). Let also
H1(−h, 0;Rm×p) be the set of functions F , such that F
and F ′ are in L2(−h, 0;Rm×p). Lastly, denote xt such
that xt(θ) = x(t + θ), for any θ in (−h, 0]. The classical

norm is given by ∥φ∥ =
√
|φ(0)|2+

∫ 0

−h
|φ(θ)|2 dθ, for

any φ in Rnx × L2(0, 1;Rnz ). The sup-norm is given by
∥φ∥∞ = sup

[−h,0]

|φ(θ)|.

2. CONVERSE LYAPUNOV THEOREM FOR
TIME-DELAY SYSTEMS

2.1 Presentation of the system

Consider a linear time-delay system given by{
ẋ(t) = Ax(t) +Adx(t− h), ∀t ≥ 0,
x(θ) = φ(θ), ∀θ ∈ (−h, 0],

(1)

where the delay h > 0 and matrices A,Ad in Rnx×nx are
constant and known. Without loss of generality, decom-
pose Ad into a product BC such that

Ad = BC with |C| = 1, (2)

with B,CT ∈ Rnx×nz being full column rank matrices,
with nz the rank of matrix Ad. The initial condition x0 = φ
belongs to the set D given by

D =


φ(θ) =

{
φ0 if θ = 0,

φ1(θ) if θ ∈ (−h, 0),
such that[

φ0

φ1

]
∈ Rnx ×H1(−h, 0;Rnx), φ1(0) = Cφ0

.

Definition 1. (GES). The trivial solution to (1) is said
globally exponentially stable (GES), if there exist κ ≥ 1
and µ > 0 such that xt, solution to (1) generated by any
initial condition φ in D, verifies

∥xt∥ ≤ κ e−µt ∥φ∥ , ∀t ≥ 0. (3)

Remark 2. It is worth noticing that the regularity prop-
erties of the solutions of time-delay systems ensures thqt
such a definition in the sense of ∥·∥-norm implies that there
also exist κ̃ ≥ 1 and µ̃ > 0 such that

|x(t)| ≤ κ̃ e−µ̃t sup
[−h,0]

|φ(θ)|, ∀t ≥ 0. (4)

2.2 Existence of a complete Lyapunov functional

From Kharitonov and Zhabko (2003); Kharitonov (2013),
it is well known that a necessary and sufficient stability
condition of system (1) is the existence of a complete
Lyapunov functional, which is recalled here.

For any (W1,W2,W3) ∈ Snx
+ × Snz

+ × Snz
+ and for any xt in

D, define the following Lyapunov functional

V(xt)=x⊤
t (0)U(0)xt(0)+2x

⊤
t (0)

∫ 0

−h

U(θ+h)Adxt(θ)dθ

+

∫ 0

−h

∫ 0

−h

x⊤
t (θ1)A

⊤
d U(θ2 − θ1)Adxt(θ2)dθ1dθ2

+

∫ 0

−h

x⊤
t (θ)C

⊤
(
θ + h

h
W2 +W3

)
Cxt(θ)dθ,

(5)
where U is a matrix function from [−h, h] to Rnx×nx

and is called the Lyapunov matrix. Interestingly, referring
to (Kharitonov, 2013, Section 2.10), a method is provided
to build analytically this matrix. Denoting by K the
fundamental matrix, its expression is given by

U(θ) =

∫ ∞

0

K⊤(t)WK(t+ θ)dt,

=

{
vec−1

(
[ In2

x
0 ] eθM N−1

[−vec(W )
0

])
if θ ≤ 0,

U⊤(−θ) if θ > 0,
(6)

where matrices

W = W1 + C⊤(W2 +W3

)
C,

M =
[
−A⊤⊗Inx −A⊤

d ⊗Inx

Inx⊗A⊤
d Inx⊗A⊤

]
,

N =
[
A⊤⊗Inx+Inx⊗A⊤ A⊤

d ⊗Inx

I
n2
x

0

]
+
[
Inx⊗A⊤

d 0
0 −I

n2
x

]
e−hM ,

(7)
and where ‘vec’ is the operator that transforms a matrix

in Rnx×nx to a vector in Rn2
x that collects all the columns

of this matrix and ‘vec−1’ denotes the inverse operator.

Such a complete Lyapunov functional V has been built so
that its time-derivative along the trajectories of the system
yields

V̇(xt) = −x⊤
t (0)W1xt(0)−x⊤

t (−h)C⊤W3Cxt(−h)

− 1

h

∫ 0

−h

x⊤
t (θ)C

⊤W2Cxt(θ)dθ.
(8)

A necessary and sufficient condition of stability for sys-
tem (1) based on this functional is formulated below.

2.3 Necessary and sufficient condition of stability

The following theorem is obtained by application of the
Lyapunov theorem. The proposed formulation is issued
from (Gu et al., 2003, Theorem 5.19).

Theorem 1. System (1) is GES if and only if there exist
positive scalars α1, α2, α3 such that V defined by (5)
satisfies, for any xt in D, inequalities

α1 ∥xt∥2 ≤ V(xt) ≤ α2 ∥xt∥2 ,
V̇(xt) ≤ −α3 ∥xt∥2 ,

(9a)

(9b)

where V̇ denotes the time derivative of V along the
trajectories of system (1).

Remark 1. It is worth noticing that in the sense of the
stability definition given by (4), the Lyapunov-Krasovskii
version of this theorem also holds replacing (9) by

α1 |xt(0)|2 ≤ V(xt) ≤ α2 sup
[−h,0]

|xt(θ)|2,

V̇(xt) ≤ −α3 |xt(0)|2 .

(10a)

(10b)



Proof : For the sake of simplicity, the time argument will
be discarded in the following proof. To begin with, the suf-
ficiency refers to the application of the Lyapunov Theorem.
The proof of necessity starts by noting that (9b) already
holds by construction of the Lyapunov matrix (8). Indeed,
expression (8) leads to α3 = max(σ(W1), σ(W2), σ(W3)).
The right-hand side of (9a) is also easy to prove since V
is quadratic with respect to xt. Let focus now on the left-
hand side of (9a) and introduce a functional W as follows

W(xt) = V(xt)− α1 ∥xt∥2 .
According to (8), differentiating W along the trajectories
of (1) leads to

Ẇ(xt) = −
[

xt(0)
xt(−h)

]⊤[
W1 0

0 C⊤W3C

][
xt(0)
xt(−h)

]
− 1

h

∫ 0

−h

x⊤
t (θ)C

⊤W2Cxt(θ)dθ

−α1

[
xt(0)
xt(−h)

]⊤[H(A)+C⊤C B

B⊤ −Inz

][
xt(0)

Cxt(−h)

]
.

Then, there exists a positive number α1 sufficiently small
such that W is negative. Integrating the above inequality
from t to ∞, we obtain

lim
T→∞

W(xT )−W(xt) ≤ 0, ∀t ≥ 0.

As xT −→
T→∞

0 because system (1) is assumed to be GES,

inequality W(xt) ≥ 0 holds, which concludes the proof. □

In the following section, we will propose a modified version
of Theorem 1.

3. MODIFIED CONVERSE LYAPUNOV THEOREM

3.1 Approximated complete Lyapunov functional

The Lyapunov matrix U is composed of a complex com-
bination of exponential functions. In order to derive
tractable numerical tests, the idea is to introduce an ap-
proximation Û of U , which has the nice properties to ease
this purpose. Basically, define the function Û from [−h, h]
to Rnx×nx satisfying the symmetric relation

Û(θ) = Û⊤(−θ), ∀θ ∈ [−h, 0]. (11)

For any (W2,W3) ∈ Snz
+ × Snz

+ and xt in D, we introduce
a new functional

V̂(xt)=x⊤
t (0)Û(0)xt(0)+2x

⊤
t (0)

∫ 0

−h

Û(θ+h)Adxt(θ)dθ

+

∫ 0

−h

∫ 0

−h

x⊤
t (θ1)A

⊤
d Û(θ2 − θ1)Adxt(θ2)dθ1dθ2

+

∫ 0

−h

x⊤
t (θ)C

⊤
(
θ + h

h
W2 +W3

)
Cxt(θ)dθ.

(12)
Such a functional will be considered as an approximation
of the original V. Denoting Ṽ = V − V̂, we obtain

Ṽ(xt)=x⊤
t (0)Ũ(0)xt(0)+2x

⊤
t (0)

∫ 0

−h

Ũ(θ+h)Adxt(θ)dθ

+

∫ 0

−h

∫ 0

−h

x⊤
t (θ1)A

⊤
d Ũ(θ2 − θ1)Adxt(θ2)dθ1dθ2,

(13)

where Ũ = U − Û refers to the error done by comparing
the exact Lyapunov matrix U and Û .

The use of approximations of the complete Lyapunov
functional is worth of interest in two cases given below.

• The closed-form of the Lyapunov matrix U is un-
known or cannot be calculated precisely enough.

• The necessary and sufficient inequalities conditions (9)
need to be simplified to be tested.

Nevertheless, the price to pay is that the functional V̂
generated by this Û not necessarily verifies the condi-
tion (9) of the complete one. In this sequel, we provide
a new theorem stating necessary and sufficient condition
of stability even though the complete Lyapunov functional
is not built by U but by Û . This theorem naturally relies
on the distance between U and Û , which will be latter seen
as an approximation error.

3.2 A new necessary and sufficient condition of stability

The main result of the paper is presented below.

Theorem 2. Let (W1,W2,W3) in Snx
+ × Snz

+ × Snz
+ and

assume that the following inequality

Ψ(θ; Ũ) =

[
W1 +Ψ1(Ũ) Ψ2(θ; Ũ)

∗ W2

]
≻0, (14)

holds, for all θ in (−h, 0), with Ũ = U − Û and

Ψ1(Ũ) =H(Ũ(0)A) +H(Ũ(h)Ad),

Ψ2(θ; Ũ) =
(
A⊤Ũ(θ+h)+A⊤

d Ũ(θ)−Ũ ′(θ+h)
)
hB.

(15)

System (1) is GES if and only if there exist positive scalars

α1, α2, α3 such that V̂ defined by (12) satisfies, for any xt

in D, inequalities

α1 ∥xt∥2 ≤ V̂(xt) ≤ α2 ∥xt∥2 ,
˙̂V(xt) ≤ −α3 ∥xt∥2 ,

(16a)

(16b)

where
˙̂V denotes the time derivative of V̂ along the

trajectories of system (1).

Proof : Trivially, the sufficiency of the statement is ver-
ified. For the necessity of the proposed statement, let us
first note that the right-hand part of (16a) is directly ob-
tained because the Lyapunov functional is quadratic with
respect to xt. Let now focus on the two remained inequali-
ties. To begin with, the derivative of Ṽ given by (13) along
the trajectories of system (1) leads, after performing some
integration by parts and thanks to symmetric relation (11)
to the following expression
˙̃V(xt) = 2x⊤

t (0)Ũ(0)Axt(0) +((((((((((
2x⊤

t (0)Ũ(0)Adxt(−h)

+2

([
x⊤
t (0)Ũ(θ+h)Adxt(θ)

]0
��−h
−x⊤

t (0)

∫ 0

−h

Ũ ′(θ+h)Adxt(θ)dθ

)
+2(Axt(0) +�����Adxt(−h))⊤

∫ 0

−h

Ũ(θ + h)Adxt(θ)dθ

+2

∫ 0

−h

[
x⊤
t (θ1)A

⊤
d Ũ(θ2 − θ1)Adxt(θ2)

]θ1=0

���θ1=−h
dθ2

−
∫ 0

−h

∫ 0

−h

x⊤
t (θ1)A

⊤
d (∂θ1+∂θ2)Ũ(θ2 − θ1)︸ ︷︷ ︸

=0

Adxt(θ2)dθ1dθ2.

The last term of the previous expression vanishes and sim-
plifications are made. Then, using the previous expression
and (8), the time derivative of V̂ = V − Ṽ along the
trajectories of system (1) boils down to



˙̂V(xt) = − 1

h

∫ 0

−h

[
xt(0)
Cxt(θ)

]⊤
Ψ(θ; Ũ)

[
xt(0)
Cxt(θ)

]
−x⊤

t (−h)C⊤W3Cxt(−h).

(17)

Condition Ψ(θ; Ũ) ≻ 0 for all θ ∈ (−h, 0) ensures the
existence of a sufficiently small scalar α3 > 0 such that
inequality (16b) holds. On the other part, introduce the

functional Ŵ given by

Ŵ(xt) = V̂(xt)− α1 ∥xt∥2 .
According to the previous calculations (17), differentiating

Ŵ along the trajectories of (1) leads to

˙̂W(xt) = − 1

h

∫ 0

−h

[
xt(0)
Cxt(θ)

]⊤
Ψ(θ; Ũ)

[
xt(0)
Cxt(θ)

]
−x⊤

t (−h)C⊤W3Cxt(−h)

−α1

[
xt(0)
xt(−h)

]⊤[H(A)+C⊤C B

B⊤ −Inz

][
xt(0)

Cxt(−h)

]
.

Then, there exists a sufficiently small scalar α1 > 0 such

that
˙̂W is negative. Integrating the above from t to ∞, we

obtain
lim

T→∞
Ŵ(xT )− Ŵ(xt) ≤ 0, ∀t ≥ 0.

Since system (1) is GES, we have xT −→
T→∞

0 so that

inequality Ŵ(xt) ≥ 0 holds. That corresponds to the left-
hand part of (16a) and concludes the proof. □

Remark 2. In Bajodek et al. (2022), a similar theorem was
provided but the main difference relies on the fact that
functional V̂ has been defined U(0) instead of Û(0), which
leads to a different and more complex condition.

It is worth mentioning that, taking support on a judicious
choice of Û , inequalities (16) are easier to implement
numerically compared to inequalities (9). In practice, the

approximated function Û can come from interpolation
or approximation techniques. In particular, the Legendre
polynomial approximation will lead to the efficient LMI
developed in the next section.

4. APPLICATION TO LEGENDRE POLYNOMIALS

4.1 Legendre approximation

Consider a polynomial approximation Ûn of U , which is
defined from [−h, h] to Rnx×nx as

Ûn(θ) =

{
ℓnx⊤
n (θ)Un if θ ∈ [−h, 0],
U⊤
n (−θ) if θ ∈ [0, h],

(18)

where matrix ℓnx
n in Rnnx×nx collocates the n first Legen-

dre polynomials scaled on [−h, 0]

ℓnx⊤
n (θ) = [l0(θ) . . . ln−1(θ)]⊗ Inx

, ∀θ ∈ [−h, 0], (19)

where the matrix Un in Rnnz×nz collocates the n first
Legendre coefficients of the Lyapunov matrix U

Un = Inx
n

(∫ 0

−h

ℓnx
n (θ)U(θ)dθ

)
, (20)

and where the normalization matrix of Legendre polyno-
mials is equal to

Inx
n =

(∫ 0

−h

ℓnx
n (θ)ℓnx⊤

n (θ)dθ

)−1

. (21)

4.2 Convergence properties

In the light of Dunkl and Xu (2001), the approximation
is selected in order to have uniform convergence on the
closed intervals [−h, 0] and [0, h] of Un and U ′

n towards
functions U and U ′, respectively.

Property 1. The Lyapunov matrix U associated to W and
defined in (6) satisfies

∥U (d)∥∞ ≤
(
2µ

h

)d

ρ, ∀d ∈ N, (22)

where U (d) is the dth derivative of U and where parameter
µ and ρ are given by

µ =
h |M |
2

, ρ =
√
nx e

h|M | ∣∣N−1
∣∣ |W | , (23)

and where the matrices W,M , N are given by (7).

Proof : Noticing that |W | ≤ |vec(W )| ≤ √
nx |W |, the

following inequalities hold∣∣∣U (d)(θ)
∣∣∣ ≤ ∣∣[ In2

x
0 ] eθM MkN−1

[−vec(W )
0

]∣∣ ,
≤

√
nx

∣∣eθM ∣∣ |M |k
∣∣N−1

∣∣ |W | , ∀θ ∈ [−h, 0],

Moreover, recalling eθM =
∑∞

k=0
(θM)k

k! , the following
upper bound is obtained∣∣eθM ∣∣≤ ∞∑

k=0

∣∣∣∣(θM)k

k!

∣∣∣∣≤ ∞∑
k=0

|θ|k|M |k

k!
≤

∞∑
k=0

hk|M |k

k!
=eh|M |,

and yields the result. □

Based on Property 1, the Legendre approximation erros
Ũn and its derivative Ũ ′

n are proven to converge uniformly
and exponentially fast to zero on the closed interval [−h, 0].

Property 2. For all d ≥ 4 and n ≥ d + 2, the Legendre
truncated error Ũn = U − Ûn satisfies the inequalities

∥Ũn∥∞ ≤

√
π3

2(n− 1− d)

µd+1ρ

(n− 3
2 ) . . . (n− d+ 1

2 )
, (24a)

h∥Ũ ′
n∥∞ ≤

√
2π3

(n− 1− d)

µd+1ρ

(n− 7
2 ) . . . (n− d+ 1

2 )
, (24b)

where parameter µ and ρ are given by (23).

Proof : The proof can be found in (Wang and Xiang, 2012,
Theorem 5.12) using Legendre polynomials properties and
d successive integrations by parts. □

When function U is smooth on [−h, 0], the convergence

is supergeometric since both errors ∥Ũn∥∞, ∥Ũ ′
n∥∞ are in

the range of 1
n! ∼

n→∞
1
nn = e−n log(n) from Stirling formula.

These properties unlock the following results.

4.3 Necessary and sufficient LMI condition of stability

For any (Pn, R, S) ∈ Snx+nnz × Snz
+ × Snz

+ , introduce the
Lyapunov candidate functional considered in Seuret and
Gouaisbaut (2014, 2015)



Vn(xt) =

[
xt(0)∫ 0

−h
ℓnz
n (θ)Cxt(θ)dθ

]⊤
Pn

[
xt(0)∫ 0

−h
ℓnz
n (θ)Cxt(θ)dθ

]
+

∫ 0

−h

x⊤
t (θ)C

⊤
(
θ + h

h
R+ S

)
Cxt(θ)dθ.

(25)

The time derivative of Vn along the trajectories of sys-
tem (1) are calculated using integrations by parts as fol-
lows

V̇n(xt) = 2

[
xt(0)∫ 0

−h
ℓnz
n (θ)Cxt(θ)dθ

]⊤
Pn

[
B

−ℓnz
n (−h)

]
Cxt(−h)

+ 2

[
xt(0)∫ 0

−h
ℓnz
n (θ)Cxt(θ)dθ

]⊤
Pn

[
A 0

ℓnz
n (0)C Ln

][ xt(0)∫ 0

−h
ℓnz
n (θ)Cxt(θ)dθ

]
+
[

xt(0)
Cxt(−h)

]⊤[
C⊤(hR+S)C 0

0 −S

][
xt(0)

Cxt(−h)

]
− 1

h

∫ 0

−h

x⊤
t (θ)C

⊤RCxt(θ)dθ, (26)

where the derivation matrix of Legendre polynomials is
equal to

Ln = −tril(ℓnz
n (0)ℓnz⊤

n (0)− ℓnz
n (−h)ℓnz⊤

n (−h))Inz
n . (27)

In this context, the following theorem can be established.

Theorem 3. System (1) is GES if and only if there exists
an order n and matrices (Pn, S,R) ∈ Snx+nnz × Snz

+ × Snz
+

the following linear matrix inequalities hold

Ξ+
n = Pn + (ISn + JR

n ) ≻ 0,

Ξ−
n =

[
H(PnAn) +Cn(hR+ S)Cn − 1

h
IRn PnBn

∗ −S

]
≺ 0.

(28)
where matrices are defined by

ISn =

0 0

0 Inz
n

∫ 0

−h

ℓnz
n (θ)Sℓnz⊤

n (θ)dθInz
n

 , ∀S ∈ S+n ,

JS
n =

0 0

0 Inz
n

∫ 0

−h

ℓnz
n (θ)

(
θ + h

h

)
Sℓnz⊤

n (θ)dθInz
n

 ,

An =

[
A 0

ℓnz
n (0)C Ln

]
,

Bn =

[
B

−ℓnz
n (−h)

]
, Cn = [C 0] . (29)

Proof : For the sake of simplicity, the time argument
has been discarded in the following proof. Firstly, if LMI
condition (28) is true, then the Lyapunov candidate func-
tional given by (25) and its derivatives given by (26) sat-
isfy the positivity and negativity conditions, respectively.
Applying the Lyapunov theorem, the sufficiency of the
statement is verified. Secondly, concerning the necessity,
we take support on Theorem 2. For all (W1,W2,W3) in
Snx
+ × Snz

+ × Snz
+ , let matrices

Pn =

[
Un(0) Qn

∗ Tn

]
, R = W2, S = W3, (30)

Qn =

∫ 0

−h

U⊤(θ)Bℓnz⊤
n (θ)Inz

n dθ,

Tn=
∫ 0

−h

∫ 0

−h

Inz
n ℓnz

n (θ1)B
⊤Un(θ2−θ1)Bℓnz⊤

n (θ2)Inz
n dθ1dθ2.

In that case, the Lyapunov candidate functional Vn given
by (25) is the Legendre approximation of the Lyapunov
converse functional V given by (5). Indeed, the func-

tional V̂ given by (12) is recognized with Û = Ûn in (18).
More interestingly, Property 2 ensures that both ∥Un∥∞
and ∥U ′

n∥∞ tend to zero as n goes to infinity. Focusing on

matrix Ψ given by (14) with Ũ = Ũn, we have

Ψ(θ; Ũn) =
[
W1 0
∗ W2

]
+
[
Ψ1(Ũn) 0

∗ Ψ2(θ;Ũn)

]
, (31)

where matrices Ψ1,Ψ2 are given by

Ψ1(Ũn) =H(Ũn(0)A) +H(Ũn(h)Ad),

Ψ2(θ; Ũn) =
(
A⊤Ũn(θ+h)+A⊤

d Ũn(θ)−Ũ ′
n(θ+h)

)
hB.

Then, the second term in (31) tends to zero as n goes to
infinity. Therefore, there exists an order n∗ ∈ N such that
Ψ(θ; Ũn) ≻ 0 holds for all θ ∈ [−h, 0]. Assume now that
system (1) is GES. According to Theorem 2, for all n ≥ n∗,
there exist positive scalars α1, α2, α3 such for the following
inequalities hold

α1 ∥xt∥2 ≤ Vn(xt) ≤ α2 ∥xt∥2 ,
V̇n(xt) ≤ −α3 ∥xt∥2 .

(32a)

(32b)

Then, these inequalities are regarded for xt in Dn ⊂ D
given by

Dn=


φ(θ) =


φ0 if θ = 0,

C⊤(CC⊤)−1ℓnz⊤
n (θ)ζn if θ ∈ (−h, 0),

φ−h if θ = −h,

such that [φ0 ζn φ−h]
⊤ ∈ R2nx+nnz .

.

Thus, inequalities (32a),(32b) lead to Ξ+
n ≻ 0 and Ξ−

n ≺ 0,
respectively, and conclude the proof. □

Theorem 3 provides a necessary and sufficient LMI condi-
tion for the stability of system (1). Nonetheless, it only
guarantees the existence of an order n such that the
LMI must be satisfied. It does not provide however an
estimation of this order. The calculation of the order is
reserved to the next subsection.

4.4 Estimation of the necessary order n∗

The following property takes the advantages of the bounds
provided by Property 2 to estimate the smallest order
from which both ∥Ũn∥∞ and h∥Ũ ′

n∥∞ are smaller than
a prescribed ε > 0.

Property 3. For any scalar ε > 0, the Legendre truncated
error Ũn = U − Ûn verifies

max
(
∥Ũn∥∞, h∥Ũ ′

n∥∞
)
≤ ε, ∀n ≥ N (ε), (33)

where N (ε) is given by

N (ε) = max

(
6,

⌈
7

2
+µ e1+W

(
− log(λε)

µ e

)⌉)
, (34)

where

λ =
1

ρµ4

√
⌈µ⌉
2π3

(
µ e

⌈µ⌉+ 1
2

)⌈µ⌉+ 1
2

, (35)

where scalars µ, ρ are given by (23) and where W is the
Lambert function defined from R+ to R+ by W(z) = y
where y is uniquely defined by the relation ey y = z.



Proof : According to Property 2 with d = n−1−⌈µ⌉, the
Legendre truncated error function Ũn and its derivatives
are bounded by

εn : = max
(
∥Ũn∥∞, h∥Ũ ′

n∥∞
)
,

≤

√
2π3

⌈µ⌉
µn−⌈µ⌉ρ

(n− 7
2 ) . . . (1 + ⌈µ⌉+ 1

2 )
, ∀n ≥ 6.

(36)

Applying the logarithm to (36) leads to

log(εn)≤ log

(√
2π3

⌈µ⌉
ρ

)
+(n−⌈µ⌉)log(µ)−

n−4∑
k=1+⌈µ⌉

log

(
k+

1

2

)
.

(37)
By series-integral comparison, we obtain

n−4∑
k=1+⌈µ⌉

log

(
k+

1

2

)
≥
∫ n−4

x=⌈µ⌉
log

(
x+

1

2

)
dx,

=

[(
x+

1

2

)
log

(
x+ 1

2

e

)]n−4

x=⌈µ⌉
.

Then, introducing λ in (35), inequality (37) yields

log(λεn) ≤ −
(
n− 7

2

)
log

(
n− 7

2

µ e

)
. (38)

The orders n which allow to satisfy the following inequality

log(εn) := log
(
max

(
∥Ũn∥∞, h∥Ũ ′

n∥∞
))

≤ log(ε)

are solution to

−
(
n− 7

2

µ e

)
log

(
n− 7

2

µ e

)
≤ log(λε)

µ e
. (39)

The definition of Lambert function implies that

yn := log

(
n− 7

2

µ e

)
≥ W

(
− log(λε)

µ e

)
. (40)

Therefore, the corresponding orders satisfy

n ≥ 7

2
+ µ e1+W

(
− log(λε)

µ e

)
, (41)

which leads to the expression of N (ε) together with the
initial constraint n ≥ 6. □

The following theorem is the final piece to estimate the
necessary order n∗ for which Theorem 3 holds.

Theorem 4. Theorem 3 holds for orders n ≥ n∗, where

n∗ = N (E (β1, β2)) , (42)

where scalars β1, β2 are equal to
β1 =

|A|+ |Ad|
3 (1 + h(|A|+ |Ad|))2 |B|2

,

β2 =
1

9 (1 + h(|A|+ |Ad|))2 |B|2
,

(43)

where functions N and E are defined by

N (ε) = max

(
6,

⌈
7

2
+µ e1+W

(
− log(λε)

µ e

)⌉)
,

E(β1, β2) = −β1 +
√
β2
1 + β2 =

β2

β1 +
√
β2
1 + β2

, (44)

and where parameters µ, ρ and λ are given by

µ =
h |M |
2

, ρ = 3
√
nxe

h|M | ∣∣N−1
∣∣ ,

λ =
1

ρµ4

√
⌈µ⌉
2π3

(
µ e

⌈µ⌉+ 1
2

)⌈µ⌉+ 1
2

.

(45)

Proof : Fix matrices W1 = Inx
, W2 = Inz

and W3 = Inz
.

The estimation of the order n∗ is made possible thanks
to the convergence properties of Legendre approximation.
According to Property 3, if n ≥ n∗ = N (E(β1, β2)), then
the following inequality holds

εn := max
(
∥Ũn∥∞, h∥Ũ ′

n∥∞
)
≤ E(β1, β2), (46)

and implies that the following inequality holds

β2 − 2β1εn − ε2n ≥ 0. (47)

In addition, it is worth noticing that Ψ1(Ũ) and Ψn,2 given
by (15) are upper bounded by∣∣∣Ψ1(Ũn)

∣∣∣ = ∣∣∣H(Ũn(0)A) +H(Ũn(h)Ad)
∣∣∣ ,

≤ 6(|A|+ |Ad|)εn =
2β1

β2
εn,

and by

∥Ψ2(θ; Ũn)∥∞=
∣∣∣(A⊤Ũn(θ+h)+A⊤

d Ũ
⊤
n (θ)−Ũ ′

n(θ+h)
)
hB
∣∣∣ ,

≤ 3
(
1 + h(|A|+ |Ad|)

)
|B| εn =

√
1

β2
εn,

because
∣∣W1 + C⊤(W2 +W3)C

∣∣ ≤ 3, ∥U∥∞ ≤ εn and
h∥U ′∥∞ ≤ εn. Consequently, inequality (47) means that
the following condition holds

Inx
+Ψ1(Ũ)−Ψ⊤

n,2(θ)Ψ2(θ; Ũ) ≻ 0, ∀θ ∈ [−h, 0]. (48)

From Shur complement, inequality Ψ(θ; Ũ) ≻ 0 is satisfied
in the interval (−h, 0) and the proof of Theorem 3 can
be conducted for any orders n ≥ n∗, where the estimated
order n∗ is given analytically by (42). □

Thanks to the approximation of U by Legendre poly-
nomials and leaning on its supergeometric convergence
rate, we greatly reduce the estimate of the order n∗ done
in Bajodek et al. (2022). Here, the necessary order n∗

grow extremely slow with respect to system parameters
and make the necessary and sufficient LMI test provided
in Theorem 3 tractable numerically as shown in the last
example section.

5. NUMERICAL EXAMPLE

Consider the system (1) with

A =

[
0 1
0 0

]
, Ad =

[
0 0

−k1 −k2

]
, h = 1, (49)

for proportional gains k1 > 0 and k2 ≥ 0.

Thanks to Theorems 3 and 4, the necessary and sufficient
LMI conditions (28) can be tested for the orders n∗ given
by (42) and several gains (k1, k2) in [0, 1] × [0, 2]. If the
test is true, then system (49) is GES. If the test if false,
then system (49) is unstable. Figure 1 shows the result of
such an LMI test. One can see that stable and unstable
regions with respect to parameters k1 and k2 can be easily
detected (see green and red bars, respectively).



Fig. 1. Application of Theorem 3 for order n∗.

Fig. 2. Estimation of the necessary order n∗.

Fig. 3. Sufficient order n to satisfy LMI (28).

Furthermore, Figure 2 reports the necessary orders n∗

given by (42) that corresponds to system (49). To begin
with, the order n∗ is lower than 12 for almost every (k1, k2)
in [0, 1]2. This is rewarded by a low computational load and
a fast LMI test (less than 1 second). Indeed, it is worth
noticing that the number of LMI variables is given by

Nvar = (n∗ + 1)
(
2(n∗ + 1) + 1

)
+ 6, (50)

and that the feasibility of LMI (28) by the point interior
method requires at least a spacial and time complexity
which is polynomial with respect to order n∗. In addition,
when gains k1 and k2 approach the limit of stability, the
estimated order n∗ increases and exceeds 15. Indeed, in the
case that some characteristic roots of system (49) cross the
imaginary axis, matrix N is a singular matrix as proved
in (Kharitonov, 2013, Theorem 2.10) and scalar ρ0 as well
as order n∗ tend to infinity.

As a complement, Figure 3 reports the sufficient order n
such that our sufficient condition of stability holds. In-
creasing the order n from 1 to n∗, we are looking for the
first order ň from which the LMI condition (28) is true.
One remarks that there are lower than the necessary order,
which leaves a room for forthcoming improvements.

6. CONCLUSIONS

In this work, three steps leading to necessary and suffi-
cient LMI conditions of stability are highlighted. Firstly,
the complete Lyapunov functional is presented. Secondly,
from Theorem 2, we are now able to quantify the degree
of conservatism introduced by an approximation process.
Thridly, the necessary and sufficient Legendre-LMI test
provided by Theorem 3 is established. The size of the
LMI test can be calculated thanks to Theorem 4 and
the estimation of the LMI size was minimized by taking
advantage of the supergeometric convergence of Legendre
approximation.

Following the same methodology, this work open the way
to develop new LMI conditions for larger classes of sys-
tems. Future directions of research concern time-delay
systems with multiple delays (see Alexandrova and Zhabko
(2021)), distributed delays (see Egorov et al. (2017)) or
non linearities (see Di Ferdinando et al. (2021)). More
generally, an extension to linear ordinary-partial intercon-
nected differential equations would be promising to regard.

Future works could also be dedicated to the reduction
of the necessary order n∗ from which the necessary and
sufficient condition holds. The goal would be to get closer
to the sufficient order ň. To do so, we could consider
other pair of matrices W1, W2 and W3 and treat directly
the necessary condition Ψ(θ; Ũn) ≻ 0 or investigate other
pseudo-spectral methods.
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