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Optimizing Binary Decision Diagrams with MaxSAT for Classification

The growing interest in explainable artificial intelligence (XAI) for critical decision making motivates the need for interpretable machine learning (ML) models. In fact, due to their structure (especially with small sizes), these models are inherently understandable by humans. Recently, several exact methods for computing such models are proposed to overcome weaknesses of traditional heuristic methods by providing more compact models or better prediction quality. Despite their compressed representation of Boolean functions, Binary decision diagrams (BDDs) did not gain enough interest as other interpretable ML models. In this paper, we first propose SAT-based models for learning optimal BDDs (in terms of the number of features) that classify all input examples. Then, we lift the encoding to a MaxSAT model to learn optimal BDDs in limited depths, that maximize the number of examples correctly classified. Finally, we tackle the fragmentation problem by introducing a method to merge compatible subtrees for the BDDs found via the MaxSAT model. Our empirical study shows clear benefits of the proposed approach in terms of prediction quality and interpretability (i.e., lighter size) compared to the state-of-the-art approaches.

Introduction

Due to the increasing concerns in understanding the reasoning behind AI decisions for critical applications, interpretable Machine Learning (ML) models gained a lot of attention. Examples of such ML applications include job recruitment, bank credit applications, and justice [START_REF] Voigt | The EU General Data Protection Regulation (GDPR): A Practical Guide[END_REF]. Most of traditional approaches for building interpretable models are greedy, for example, decision trees [START_REF] Breiman | Classification and Regression Trees[END_REF][START_REF] Quinlan | Induction of Decision Trees[END_REF][START_REF] Quinlan | C4.5: programs for machine learning[END_REF], rule lists [START_REF] Cohen | Fast Effective Rule Induction[END_REF][START_REF] Clark | Rule induction with CN2: Some recent improvements[END_REF], and decision sets [START_REF] Kaufmann | Interpretable Decision Sets: A Joint Framework for Description and Prediction[END_REF]. Compared to traditional approaches, exact methods offer guarantee of optimality, such as model size and accuracy. In this context, combinatorial optimisation methods, such as Constraint Programming [START_REF] Bonfietti | Embedding Decision Trees and Random Forests in Constraint Programming[END_REF][START_REF] Verhaeghe | Learning optimal decision trees using constraint programming[END_REF], Mixed Integer Programming [START_REF] Angelino | Learning certifiably optimal rule lists for categorical data[END_REF][START_REF] Verwer | Learning optimal classification trees using a binary linear program formulation[END_REF][START_REF] Aglin | Learning Optimal Decision Trees Using Caching Branch-and-Bound Search[END_REF], or Boolean Satisfiablility (SAT) [START_REF] Bessiere | Minimising Decision Tree Size as Combinatorial Optimisation[END_REF][START_REF] Narodytska | Learning Optimal Decision Trees with SAT[END_REF][START_REF] Avellaneda | Efficient Inference of Optimal Decision Trees[END_REF][START_REF] Hu | Learning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost[END_REF][START_REF] Janota | SAT-Based Encodings for Optimal Decision Trees with Explicit Paths[END_REF][START_REF] Yu | Computing Optimal Decision Sets with SAT[END_REF]) have been successfully used to learn interpretable models. These declarative approaches are particularly interesting since they offer certain flexibility to handle additional requirements when learning a model.

By providing compact representations for Boolean functions, Binary Decision Diagrams (BDDs) [START_REF] Akers | Binary Decision Diagrams[END_REF][START_REF] Moret | Decision Trees and Diagrams[END_REF][START_REF] Bryant | Graph-Based Algorithms for Boolean Function Manipulation[END_REF][START_REF] Knuth | The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams[END_REF]) are widely studied for hardware design, model checking, and knowledge representation. In the context of ML, BDD could be viewed as an intrepretable model for binary classification. In addition, they were extended for multi-classification, known as decision graphs and heuristic methods were proposed in [START_REF] Oliver | Decision graphs: an extension of decision trees[END_REF][START_REF] Kohavi | Bottom-Up Induction of Oblivious Read-Once Decision Graphs[END_REF][START_REF] Kohavi | Oblivious Decision Trees, Graphs, and Top-Down Pruning[END_REF][START_REF] Mues | Decision Diagrams in Machine Learning: An Empirical Study on Real-Life Credit-Risk Data[END_REF]). Moreover, [START_REF] Ignatov | Decision Stream: Cultivating Deep Decision Trees[END_REF] proposed decision stream, a similar topology to BDD based on merging similar subtrees in each split made in decision trees to improve the generalization. [START_REF] Oliver | Decision graphs: an extension of decision trees[END_REF][START_REF] Kohavi | Bottom-Up Induction of Oblivious Read-Once Decision Graphs[END_REF] showed that decision graphs could avoid the replication problem and fragmentation problem of decision trees effectively, which BDDs also could avoid in binary classification. This fact indicates that generally in the practice of ML, a BDD have a smaller size than the corresponding decision tree.

In this paper, we introduce a SAT-based model for learning optimal BDDs with the smallest number of features classifying all examples correctly, and a lifted MaxSAT-based model to learn optimal BDDs minimizing the classification error. We assume that all BDDs are ordered and reduced 1 , the limitation on the depth for a BDD, corresponds to the number of features to be selected by our model. To the best of our knowledge, [START_REF] Cabodi | Optimizing Binary Decision Diagrams for Interpretable Machine Learning Classification[END_REF] is the only exact method of learning optimal BDDs in the context of ML. The authors proposed a SAT model to learn optimal BDDs with the smallest sizes that correctly classify all examples. In their approach, the depth of the BDD is not restrained. In fact, it is possible that the constructed BDD is small in size (number of nodes) and high in depth. As the BDD is ordered, this approach could not limit the number of features used, making it not quite comparable with our proposition. Another related work is in [START_REF] Hu | Learning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost[END_REF] where the authors consider a MaxSAT model to learn optimal decision trees minimizing the classification error within a limited depth. The usage of the same solving methodology with the same objective function and the depth limit, makes these two MaxSAT models comparable. Finally, in order to increase the scalability of our approach, we propose a heuristic extension based on a simple pre-processing step. For the sake of space, some details are left in a technical report [START_REF] Hu | Optimizing Binary Decision Diagrams with MaxSAT for classification[END_REF].

Technical Background Classification

Consider a dataset E = {e q , . . . , e M } with M examples.

Each example e q ∈ E is characterized by a list of binary features L q = [f 1 , . . . , f K ] and a binary target cl q , representing the class of the example (cl q ∈ {0, 1}). The data set is partitioned into E + and E -, where E + (respectfully E -) is the set of positive (respectifully negative) examples. That is, cl q = 1 iff e q ∈ E + and cl q = 0 iff e q ∈ E -. We assume that, ∀1 ≤ q, q ′ ≤ M , L q = L q ′ implies cl q = cl q ′ . Let ϕ be the function defined by ϕ(L q ) = cl q , ∀q ∈ [1, M ]. The classification problem is to compute a function γ (called a classifier) that matches as accurately as possible the function ϕ on examples e q of the training data and generalizes well on unseen test data.

Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are used to provide compact representation of Boolean functions. Let [x 1 , . . . , x n ] be a sequence of of n Boolean variables. A BDD is a rooted, directed, acyclic graph G. The vertex set V of G contains two types of vertices. A terminal vertex v is associated to a binary value: value(v) ∈ {0, 1}. A nonterminal vertex v, is associated to a Boolean variable x i and has two children left(v), right(v) ∈ V. In this case, index(v) = i ∈ {1, . . . , n} is the index of the Boolean variable associated to v.

We assume that all BDDs are ordered and reduced. These two restrictions are widely considered in the literature as they guarantee a unique BDD for a given Boolean function. The restriction ordered indicates that for any nonterminal vertex v, index(v) < index(left(v)) and index(v) < index(right(v)). The restriction reduced indicates that the graph contains no nonterminal vertex v with left(v) = right(v), nor does it contain distinct nonterminal vertices v and v ′ having isomorphic rooted sub-graphs. Therefore, given an ordered reduced BDD G with root v, the associated Boolean function can be recursively obtained with the Shannon expansion process [START_REF] Shannon | A symbolic analysis of relay and switching circuits[END_REF].

Let g be a Boolean function defined over a sequence X = [x 1 , . . . , x n ] of n Boolean variables. The function g can be represented by a truth table that lists the 2 n values of all assignments of the n variables. The value of the truth table is therefore associated to a string of 2 n binary values. A truth table β of length 2 n is said to be of order n. A truth table β of order n > 0 has the form β 0 β 1 , where β 0 and β 1 are truth tables of order n -1, and β 0 and β 1 are called subtables of β. The subtables of subtables are also considered to be subtables, and a table is considered as a subtable of itself. A bead of order n is a truth table T of order n that does not have the form αα where α is a subtable of T . The beads of g are the subtables of its truth table that happen to be beads. Proposition 1 from [START_REF] Knuth | The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams[END_REF] relates truth table and binary decision diagram for the same Boolean function. Proposition 1. All vertices in V of a binary decision diagram G, are in one-to-one correspondence with the beads of the Boolean function g it represents.

Based on Proposition 1, we can produce the ordered and reduced binary decision diagram of a Boolean function by finding its beads and combine its beads with its sequence of variables. Example 1. Consider the Boolean function from [START_REF] Knuth | The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams[END_REF]:

g 1 (x 1 , x 2 , x 3 ) = (x 1 ∨ x 2 ) ∧ (x 2 ∨ x 3 ) ∧ (x 1 ∨ x 3 ).
The binary string associated to its truth table β is 00010111. The beads of β are {00010111, 0001, 0111, 01, 0, 1}.

From Proposition 1, we can draw the BDD with the beads found, shown as the left part of Figure 1. The dashed (solid) line of each vertex indicates the left (right) child. Then, we can replace the beads by vertices associated with the sequence of Boolean variables. The final binary decision diagram for g 1 is shown as the right part of Figure 1. 

Oblivious Read-Once Decision Graphs

Oblivious Read-Once Decision Graphs (OODGs) are proposed in [START_REF] Kohavi | Bottom-Up Induction of Oblivious Read-Once Decision Graphs[END_REF] to overcome some limitations of decision trees for multi-classification, like replication and fragmentation problem. We refer the readers to [START_REF] Kohavi | Oblivious Decision Trees, Graphs, and Top-Down Pruning[END_REF][START_REF] Kohavi | Bottom-Up Induction of Oblivious Read-Once Decision Graphs[END_REF] for details on OODGs. An OODG is a rooted, directed, acyclic graph, which contains terminal category nodes labelled with classes to make decisions, and non-terminal branching nodes labelled with features to make splits. The property "read-once" indicates that each feature occurs at most once along any path from the root to a category node. The property "levelled" indicates that the nodes are partitioned into a sequence of pairwise disjoint sets, representing the levels, such that outgoing edges from each level terminate at the next level. The property "oblivious" extends the idea of "levelled" by guaranteeing that all nodes at a given level are labelled by the same feature.

For the classification process, top-down and bottom-up heuristic methods for building OODGs are proposed in [START_REF] Kohavi | Oblivious Decision Trees, Graphs, and Top-Down Pruning[END_REF][START_REF] Kohavi | Bottom-Up Induction of Oblivious Read-Once Decision Graphs[END_REF]. Here, we introduce briefly the top-down heuristic method, which is similar to the heuristic methods C4.5 and CART for computing decision trees. The top-down heuristic induction for OODG with given depth contains three critical phases: (1) selecting a sequence of features with the help of mutual information (the difference of conditional entropy (Cover and Thomas 2006)); ( 2) growing an oblivious decision tree (ODT) by splitting the dataset with features in the sequence selected; and (3) merging isomorphic and compatible subtrees from top to down to build the OODG. When building the ODT, the algorithm marks nodes that capture no example of the dataset as "unknwon". For the merging phase, two subtrees are compatible if at least one root is labelled as "unknown", or if the two root nodes are labelled with same feature and their corresponding children are the roots of compatible subtrees. The ODT grown could make classifications directly by assigning "unknown" nodes with the majority class of their parents. Figure 2 shows an example of two compatible subtrees and the merged tree, where "unknown" nodes are labelled as "u". Merging compatible subtrees changes the bias by assuming that a "unknown" node is likely to behave the same as another child if they belong to compatible subtrees.
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In binary classification for binary datasets, OODGs could be considered equivalent to BDDs, as the properties "oblivious" and "read-once" for OODGs are same as property "ordered" for BDDs. In addition, the use of merging compatible subtrees could also be applied for BDDs.

SAT and MaxSAT

We use standard terminology for Boolean Satisfiabily (Biere et al. 2009). A literal is a Boolean variable or its negation, and a clause is a disjunction of literals. An assignment of variables satisfies a clause if one of its literals is true. Given a set of Boolean variables and a set of clauses defined over these variables, the SAT problem can be defined as finding an assignment of the variables such that all the clauses are satisfied. Maximum Satisfiability (MaxSAT) is an optimization version of the SAT problem, where the clauses are partitioned into hard and soft clauses. Here we consider the Partial MaxSAT problem, that is to find an assignment of the Boolean variables that satisfies all the hard clauses and maximizes the number of satisfied soft clauses.

(Max)SAT-Based Model for Binary Decision Diagrams

In this section, we present our approach for learning BDDs for binary classification using SAT and MaxSAT.

Problem Definition

We firstly consider the following decision problem for classification with BDD in a given depth. To realize the SAT encoding, we introduce two sets of Boolean variables as follow:

• a i r : the variable a i r is 1 iff feature f r is selected as i-th feature in the feature ordering, where i = 1, . . . , H, r = 1, . . . , K.

• c j : the variable c j is 1 iff the j-th value of the truth table is 1, where j = 1, . . . , 2 H . The set of variables a i r guarantees the ordered restriction. Then, we introduce two constraints (1) and ( 2) for the feature ordering. Constraint 1 ensures that any feature f r can be selected at most once.

H i=1 a i r ≤ 1, r = 1, . . . , K (1) 
Then, there is exacty one feature selected for each index of the feature ordering.

K r=1 a i r = 1, i = 1, . . . , H (2) 
We use the classical sequential counter encoding proposed in [START_REF] Sinz | Towards an Optimal CNF Encoding of Boolean Cardinality Constraints[END_REF] to model constraints (1) and (2) as a Boolean formula.

The truth table we are looking for is the binary string of the values of variables c 1 c 2 . . . c 2 H . To avoid the first feature selected makes useless split, we need to make sure that the truth table is a bead.

2 H-1 j=1 (c j ⊕ c j+2 H-1 ) (3) 
There is a relationship between the values of a truth table and the assignments of the given sequence of Boolean variables. For example, the first value of a truth table corresponds to the assignment that x 1 = 0 and x 2 = 0. Therefore, we define the following function to obtain the value of the i-th feature in the feature ordering of size H given the j-th value in the truth table.

rel(i, j) = ⌊ j -1 2 H-i ⌋ mod 2, i ∈ [1, H], j ∈ [1, 2 H ] ( 
4) For an example e q ∈ E, we denote the value of the feature f r as σ(r, q). If rel(i, j) = σ(r, q), it indicates that for example e q , the feature f r can be at the i-th position in the feature ordering to produce the j-th value in the truth table.

To classify all examples correctly, we ensure that no example follows an assignment in the truth table leading to its opposite class. Thus, we propose the following constraints for classification. Let e q ∈ E + , for all j = 1, . . . , 2 H :

¬c j → H i=1 K r=1 (a i r ∧ rel(i, j) ⊕ σ(r, q)) (5) 
That is, for every positive example e q , any variable c j assigned to 0 must be associated to an assignment of features that contains at least one feature-value that is not coherent with e q . For negative examples, we use a similar idea. Let e q ∈ E -, for all j = 1, . . . , 2 H : The two sets of variables are: {a 1 1 , a 2 1 , a 1 2 , a 2 2 , a 1 3 , a 2 3 , a 1 4 , a 2 4 }, and {c 1 , c 2 , c 3 , c 4 }. The constraints 1, 2, and 3 are:

c j → H i=1 K r=1 (a i r ∧ rel(i, j) ⊕ σ(r, q)) (6) E0 f1 f2 f3 f4 c e1 1 0 1 0 0 e2 1 0 0 1 0 e3 0 0 1 0 1 e4 1 1 0 0 0 e5 0 0 0 1 1 e6 1 1 1 1 0 e7 0 1 1 0 0 e8 0 0 1 1 1 Table 1: A binary classification dataset f 1 f 2 0 1 0
a 1 1 + a 2 1 ≤ 1, a 1 2 + a 2 2 ≤ 1, a 1 3 + a 2 3 ≤ 1, a 1 4 + a 2 4 ≤ 1 a 1 1 + a 1 2 + a 1 3 + a 1 4 = 1, a 2 1 + a 2 2 + a 2 3 + a 2 4 = 1 (c 1 ⊕c 3 ) ∨ (c 2 ⊕ c 4 )
For classification constraints (i.e., 5 and 6), we show the encoding of e 1 ∈ E -with for value c 1 . The encoding for other examples and other values is similar.

c 1 → (a 1 1 ∧ 0 ⊕ 1) ∨ (a 1 2 ∧ 0 ⊕ 0) ∨ (a 1 3 ∧ 0 ⊕ 1) ∨(a 1 4 ∧ 0 ⊕ 0) ∨ (a 2 1 ∧ 0 ⊕ 1) ∨ (a 2 2 ∧ 0 ⊕ 0) ∨(a 2 3 ∧ 0 ⊕ 1) ∨ (a 2 4 ∧ 0 ⊕ 0)
This could be simplified as follow: 2 illustrates the relationship between the values of truth table and the assignments of the given sequence Boolean variable of size 2. Figure 4 shows the corresponding BDD. This BDD classifies all examples of the dataset E 0 correctly, also provides more compact representation than the decision tree shown in Figure 3.

¬c 1 ∨ a 1 1 ∨ a 1 3 ∨ a 2 1 ∨ a 2 3 x1 = f1 x 2 = f 2 0 0 c 1 = 1 0 1 c 2 = 0 1 0 c 3 = 0 1 1 c 4 = 0
We refer to this first SAT encoding for P bdd (E, H) as BDD1. The size of BDD1 is given in Proposition 2.

Proposition 2. For a P bdd (E, H) problem with K binary features and M examples, the encoding size (in terms of the number of literals used in the different clauses

) of BDD1 is O(M × H × K × 2 H ).
Proof. Notice first that j ranges from 1 to 2 H , i ranges from 1 to H, and r ranges from 1 to K. The term M × 2 H results from constraint (5) and ( 6), each contains O(H × K) literals. For the remaining constraints, it is O(H × K) for constraints (1) and (2), O(2 H ) for constraint [START_REF] Breiman | Classification and Regression Trees[END_REF].

The size of BDD1 is quite huge due to the size of clauses generated by constraints ( 5) and ( 6) for classification. This makes BDD1 impractical in practice.

An Improved SAT Model for P bdd (E, H)

In order to reduce the size of BDD1, we propose new classification constraints to replace constraints ( 5) and ( 6). The idea is that every positive (respectivery negative) example follows an assignment leading to a positive (respectively negative) value of the truth table. We introduce a new set of Boolean variables:

• d q i : The variable d q i is 1 iff for example e q the value of the i-th feature selected in feature ordering is 1, where i = 1, . . . , H, q = 1, . . . , M .

Then, We describe constraints that relate the values of features for each example e q ∈ E, for i = 1, . . . , H, r = 1, . . . , K:

a i r → d q i if σ(q, r) = 1 a i r → ¬d q i if σ(q, r) = 0 (7)
Let e q ∈ E + , we have 2 H constraints for classifying examples correctly:

¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ ¬d q H → c 1 ¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ d q H → c 2 . . . d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ d q H → c 2 H (8)
That is, any positive example follows an assignment of the feature ordering that leads to a positive value in the truth table.

Similarly, for any e q ∈ E -, we also have 2 H constraints:

¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ ¬d q H → ¬c 1 ¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ d q H → ¬c 2 . . . d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ d q H → ¬c 2 H (9)
We refer to this new SAT encoding for P bdd (E, H) as BDD2. The encoding size of BDD2 is given in Proposition 3. Proposition 3. For a P dd (E, H) problem with K binary features and M examples, the encoding size of the SAT encoding

(BDD2) is O(M × H × (2 H + K)).
Proof. The term M × H × K results from constraint (7). For constraints ( 8) and (9), for each example, there are 2 H clauses containing H + 1 literals. The term M × H × 2 H results from that.

Propositions 2 and 3 show a clear theoretical advantage of BDD2 compared to BDD1 in terms of the encoding size, thus scalability.

MaxSAT Model for P *

bdd (E, H) :

We now present a MaxSAT encoding for the optimization problem P * bdd (E, H). That is, given a set of examples E, find a binary decision diagram of depth H that maximises the number of examples correctly classified.

We transform the SAT encoding of BDDs into a MaxSAT encoding following a simple technique. The idea is to keep structural constraints as hard clauses and classification constraints as soft clauses. We consider BDD2 as it has a reduced size. Constraints (1), ( 2), ( 3) and ( 7) are kept as hard clauses. To classify the examples, we declare all clauses of constraints ( 8) and ( 9) as soft clauses. For any example e q , the number of satisfied soft clauses associated to e q is either 2 H (indicating e q is classified correctly), or 2 H -1 (indicating e q is classified wrongly). Therefore, the objective of maximising the number of satisfied soft clauses is equivalent to maximise the number of examples that are correctly classified.

Merging Compatible Subtrees

Consider a BDD G found by a MaxSAT solver and its associated truth table β. Based on the feature ordering of G, it is possible that some values in β capture no (training) example (Equivalent to "unknown" nodes for OODG). Such values are decided by the MaxSAT solver in an arbitrary way, which gives a certain bias in generalisation. We propose to merge compatible subtrees in G in order to handle this bias. This will result in changing some values in the truth table β (i.e. the arbitrary ones decided by MaxSAT).

We propose a post-processing procedure to merge compatible subtrees using the following three phase: (1) update the truth table β by replacing the values of β that capture no examples with a special value "u"; (2) for each level, check the beads, where "u" can be used to match 1 or 0, and create a node for each bead; (3) for each level, after creating the nodes, check the matches between all subtables of the next level. For matched subtables, update the corresponding beads of current level to eliminate the "u" values.

Experimental Results

We present our large experimental study to evaluate empirically our propositions on different aspects2 . We consider datasets from CP4IM 3 . These datasets are binarized with the one-hot encoding. Preliminary experiments on the decision problem P bdd (E, H) confirm the great improvements the encoding size of BDD2 compared to BDD1, as shown in propositions 2 and 3. However, solving the optimization problem of finding a BDD that classifies all examples in the dataset correctly with a minimum depth using linear calls to BDD1 and BDD2 was hard. We therefore focus on the optimisation problem P * bdd (E, H). This is also motivated by the fact that classifying all examples correctly induces overfitting.

At first, we evaluate the prediction performance between the proposed MaxSAT-BDD model and the heuristic method, ODT and OODG. Next, we compare our model with an exact method for building decision trees using MaxSAT [START_REF] Hu | Learning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost[END_REF]) in terms of prediction quality, model size, and encoding size. Finally, we propose and evaluate a simple heuristic version of our encoding to tackle scalability. For each dataset, we use random 5-fold cross-validation with 5 different seeds. All experiments were run on a cluster using Xeon E5-2695 v3@2.30GHz CPU and running xUbuntu 16.04.6 LTS. The MaxSAT solver we used is Loandra [START_REF] Berg | Core-Boosted Linear Search for Incomplete MaxSAT[END_REF], an efficient incomplete MaxSAT solver that return the best solution found within a limited computation time or report optimality. For each experiment, the time limit for generating formulas and the time limit for solver are set to 15 minutes.

Comparison with Existing Heuristic Approaches

We consider the P * bdd (E, H) problem with 5 different depths H ∈ {2, 3, 4, 5, 6}. We compare our MaxSAT-BDD model with the approach proposed in [START_REF] Kohavi | Oblivious Decision Trees, Graphs, and Top-Down Pruning[END_REF] to learn ODT and OODG. For the heuristic methods, as described in the background section, after merging isomorphic and compatible subtrees of ODT, the corresponding OODG changes the bias for those "unknown" nodes. In fact, different bias affects the prediction for unseen examples, but not for learned examples. Therefore, the training accuracy of ODT and OODG are equals, but the testing accuracy could be different. This fact also suits to the MaxSAT-BDD with different biases for the "unknown" nodes. In this experiment, we consider three different biases: assigning for each unknown node the majority class of its branch (denoted as MaxSAT BDD-P), merging compatible subtrees (MaxSAT BDD-C), and the class decided by the MaxSAT solver (MaxSAT BDD-S).

The left scatter plot in Figure 5 presents the comparison of the average training accuracy between OODG and MaxSAT-BDD model. In this figure, different datasets are marked with different colors, and different depths are labelled with points of different sizes. From the scatter plot, we observe that the average training accuracy of both approaches increase with the increase of depth. Overall, the MaxSAT-BDD model performs better than the heuristic OODG in training accuracy.

The middle boxplots of Figure 5 show the average testing accuracy of MaxSAT-BDD with different biases, ODT, and OODG using different depths averaged over all datasets. The white line and green triangle of each box indicate the median and the average value, respectively. Several observations from the boxplots are presented as follows. At first, for each bias, increasing the depth could improve the prediction performance. However, compared to ODT and OODG, all biases chosen for MaxSAT-BDD get less improvements with increasing depths. Next, there are slight differences for different biases of MaxSAT-BDD, indicating that it is quite robust. Then, generally, MaxSAT-BDD gets better prediction performance than ODT and OODG, in particular when depths are small. We noticed also that when the depth is 2, all datasets (except one), MaxSAT-BDD reports optimality.

Comparison with an Exact Decision Tree Approach

The purpose of this experiment is to compare our proposition with the exact method for learning decision trees using the same solving approach (MaxSAT). For MaxSAT-BDD, we consider only the bias of merging compatible subtrees (MaxSAT BDD-C) since no substantial difference was observed. We consider different values for depth: H ∈ {2, 3, 4, 5, 6}. For MaxSAT-BDD, the depth also corresponds to the number of selected features, whereas for MaxSAT-DT the depth chosen here indicate maximum depth of the BDD.

Table 3 presents the results of evaluation. In the column "Dataset", the dataset size (left) and the number of binary feature (right) are shown under the name. The column "Size" and "E S" indicate the number of nodes of model and the encoding size (number of literals in 100 thousands). The best values are marked in bold.

The results in Table 3 show that the MaxSAT-BDD is competitive to MaxSAT-DT in terms of prediction quality. In most cases, the training and testing accuracy of these two approaches are close. However, the size of the models are always smaller with MaxSAT-BDD. The difference grows bigger when the depth increases. The reduction in model size provides better intrepretability. Moreover, sometimes, compared to the optimal BDDs found via MaxSAT-BDD, the optimal decision trees found via MaxSAT-DT make useless splits improving no prediction performance, as we can see in the case of the datasets "car" and "hypothyroid" with depth 2. We observe also that MaxSAT-BDD has always a (far) lighter encoding size than MaxSAT-DT which makes it easier to handle and to report optimality in limited time. 

Evaluation of a Heuristic MaxSAT-BDD Method

To increase the scalability of our model, we propose a heuristic version of MaxSAT-BDD using CART [START_REF] Breiman | Classification and Regression Trees[END_REF], an efficient and scalable heuristic for learning decision trees. The idea is to run CART as a pre-processing step in order to choose a subset of (important) features. Then apply the MaxSAT-BDD approach using only the selected subset of features.

We first evaluate the prediction quality of this heuristic method with the original MaxSAT-BDD. The size of the encoding is in favor of the heuristic approach as expected, making large problems treatable. The results of average testing accuracy are shown in the right scatter of Figure 5. This heuristic approach is clearly very competitive to the original MaxSAT-BDD in generalization performance. Especially, for those datasets with more features, the heuristic approach obtains better prediction performance than the original within the same limited time. As a consequence, compared to OODG, our heuristic approach performs much better in terms of prediction quality. We also observed no significant prediction quality difference with CART.

Conclusion

We propose exact and heuristic methods for optimizing binary decision diagrams (BDDs) based on the (Maximum) Boolean Satisfiability framework. Our large experimental studies show clear benefits of the proposed framework in terms of prediction quality and interpretability compared to the existing heuristic approach. Besides, our approach has competitive prediction performance with far lighter encoding size compared to a similar approach for building decition trees.

In the future, it would be interesting to extend the proposed approach for multi-valued classification. Moreover, a deeper investigation of BDDs with other interpretable models (such as decision rules and decision sets) will be beneficial since it enhances alternatives for explainable AI.
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 1 Figure 1: The Binary decision diagram for g 1 (x 1 , x 2 , x 3 )
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 2 Figure 2: An example of two compatible subtrees (the left two) and the merged tree (the right one) from[START_REF] Kohavi | Oblivious Decision Trees, Graphs, and Top-Down Pruning[END_REF] 
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 3 Figure 3: Decision Tree found

Figure 5 :

 5 Figure 5: The left scatter shows the average training accuracy of OODG and MaxSAT model. The middle boxplots show the average testing accuracy with different biases: MaxSAT BDD-P(blue), MaxSAT BDD-C(yellow), MaxSAT BDD-S(green), ODT(red), OODG(purple). The right scatter shows the average testing accuracy of MaxSAT-BDD and its heuristic approach.

  Notice that the algorithm for P bdd (E, H) can be used to the alternative problem of optimizing a BDD that classifies all examples in the dataset correctly with a minimum depth. For that purpose, one can use a linear search that takes an initial depth H 0 as input and progressively increases or decreases this value depending on the result of solving P bdd (E, H). Given a set of examples E, find a BDD of depth H that maximises the number of examples in E that are correctly classified.We propose an initial SAT model for the decision problem P bdd (E, H). Then, we propose an improved version in tighter formula size. Finally, we show how the improved SAT model for P bdd (E, H) can be used effectively to solve the optimization problem P * bdd (E, H) with MaxSAT.

	Next, we consider another optimization problem for the
	classification with BDD in a limited depth.
	• P * bdd (E, H) :

• P bdd (E, H) : Given a set of examples E, is there a BDD of depth H that classifies correctly all examples in E? SAT Model for P bdd (E, H) As shown before, a BDD of depth H could be generated from the combination of a sequence of Boolean variables of size H: [x 1 , . . . , x H ], and a truth table of order H associated to a Boolean function. To solve the classification problem P bdd (E, H), we then have to find a sequence of binary features of size H that maps one-to-one the sequence of Boolean variables, and a truth table associated to a Boolean function that well-classified all examples. We denote the sequence of binary features found as feature ordering. Therefore, the SAT encoding consists of two parts: • Part 1: Constraints for selecting features of the dataset into the feature ordering of size H. • Part 2: Constraints for generating a truth table that classifies all examples of E correctly with the selected feature ordering.

Table 2 :

 2 Truth table solution forThe values of truth table found by the SAT model are shown in Table2, the feature ordering is [f 1 , f 2 ]. Moreover, Table

			f 1
		f 2
		1	0
	BDD of depth 2 classifying all ex-ample of E 0	Figure 4: The BDD found
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	car (1728/21)	3 88.40 87.41 5.08 2.2 89.25 87.45 12.68 7.18 4 89.84 88.54 6.84 3.44 91.62 89.68 20.36 16.25 5 91.13 89.91 9.6 5.58 93.78 92.77 29.56 39.0
		6 93.51 92.99 13.36 9.71 95.8 95.06 31.96 104.45
		2 97.84 97.84 4	9.27 97.84 97.84 5.96 18.22
	hypothyroid (3247/86)	3 98.09 98.04 5.12 14.28 98.14 97.82 9.72 40.3 4 98.27 98.13 6.72 20.01 98.38 98.01 15.40 88.55 5 98.30 98.05 9.28 27.4 98.45 98 20.04 201.63
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	mushroom (8124/112)	3 97.74 97.77 6.8 45.81 99.9 99.9 13.72 122.72 4 98.78 98.74 9 63.51 100 100 19.80 260.39 5 98.63 98.57 11.32 85.37 100 100 23.40 557.11
		6 97.28 97.10 14.6 116.59 100 100 27.56 1237.69
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 3 Comparison Results between MaxSAT-BDD and MaxSAT-DT.

The source code and the datasets are available online at https://gitlab.laas.fr/hhu/bddencoding

https://dtai.cs.kuleuven.be/CP4IM/datasets/