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Abstract: New broadband (>1 MHz) pressure sensors are regularly reported in the literature to
measure the overpressure of blast waves. However, the frequency bandwidth needed to accurately
measure such overpressure has not yet been clearly discussed. In this article, we present a methodol-
ogy to determine the bandwidth required to estimate the overpressure magnitude at the front of a
blast wave, in order to obtain a desired estimation accuracy. The bandwidth is derived here by using
Kingery and Bulmash data.

Keywords: frequency bandwidth; pressure sensor; blast wave; Kingery and Bulmash data

1. Introduction

During an explosion, the measurement of the overpressure at the front of the generated
blast wave by using pressure sensors is a standard and well-controlled technique (see,
e.g., [1–8]). Assessing the magnitude of the overpressure peak is crucial to characterize
explosives, because this magnitude can be used to derive a plethora of physical quantities
at the blast wave front from the Rankine–Hugoniot relationships [9]. Due to the ultra-fast
variation in the overpressure generated during the explosion, the accurate measurement
of the peak magnitude is very challenging in practice [10] and often requires broadband
(>1 MHz) pressure sensors [1]. In order to overcome the frequency bandwidth limitations
of commercially available pressure transducers, new sensing devices are regularly reported
in the literature to measure the overpressure magnitude of blast waves (see, e.g., [11–15]).
Without giving any justification for the bandwidth specification for air blast experiments,
the authors have targeted the design of pressure sensors with a frequency bandwidth of,
e.g., 100 kHz [14] or 1 GHz [11]. However, the sensor bandwidth needed to accurately
estimate the magnitude of the overpressure peak has surprisingly not yet been derived.
According to [16,17], the bandwidth requirement differs in small-scale and large scale
experiments. In [15], the bandwidth is assumed to be 50 times larger than the attenuation
rate of the overpressure peak, but no method is provided to obtain the attenuation rate. To
date, the bandwidth requirement of pressure sensors has not been derived from physical
considerations on the blast wave to be characterized, while this requirement may be very
useful in selecting the appropriate sensor technology and minimize the fabrication cost.

The frequency bandwidth of pressure sensors used to measure the magnitude of the
overpressure peak at the front of a blast wave is the result of a trade-off. Indeed, if the
bandwidth is oversized then the pressure signal may be significantly affected by thermal
and/or shot noise (which degrades the estimation accuracy of the pressure), whereas an
undersized bandwidth would not allow the accurate estimation of the overpressure peak
magnitude due to the filtering of crucial high-frequency components of the signal. The
objective of the present study is to determine the bandwidth of pressure sensors required
to estimate the overpressure magnitude at the front of a blast wave, in order to achieve a
desired estimation accuracy. We show that both the TriNitroToluene (TNT) equivalent of
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explosives and the so-called scaled distance play a crucial role in the determination of this
frequency bandwidth.

The paper is organized as follows. In Section 2, we highlight and discuss the as-
sumptions applied throughout the paper to determine the frequency bandwidth of sensors
needed to estimate the overpressure magnitude at the front of a blast wave. Next, we
predict in Section 3 the sensor bandwidth needed to ensure a desired estimation accuracy
on the overpressure magnitude. The bandwidth is derived by using Kingery and Bulmash
data. For the sake of clarity, illustrative examples related to surface and free-air bursts are
analyzed. Conclusion and perspectives to this work are given in Section 4.

2. Materials and Methods
2.1. The Friedlander Waveform

During the detonation of an explosive load, the abrupt release of energy occurs and a
shockwave, namely a blast wave, is generated [18]. When the blast wave crosses a point in
space at time t = 0, the variation in the overpressure ∆P(t) at that point can be modeled
by the so-called modified Friedlander waveform (or signal) given by (see, e.g., [19]):

∆P(t) = ∆PMAX

(
1− t

t+

)
e−b t

t+ for t ≥ 0 (1a)

∆P(t) = 0 for t < 0 (1b)

where ∆PMAX, t+ and b denote, respectively, the magnitude of the overpressure peak,
the duration of the so-called positive phase, and the dimensionless decay coefficient of the
pressure signal [20] (see Figure 1). According to [1], as soon as the peak is reached, the
overpressure decays abruptly at a rate which depends on the scaled distance Z = R/ 3

√
mTNT ,

where R is the separation distance (in meters) between the center of the explosive load and
the pressure sensor, and mTNT is the equivalent mass of Trinitrotoluene (TNT) explosive (in
kg) that would yield to the same blast wave at the same scaled distance Z. (Note that the
Friedlander waveform of Equation (1) may be used to model the variation in many physical
features of blast waves [19], and consequently the results reported in this paper are valid not
only for the pressure measurement, but also for, e.g., gas density or velocity measurement).
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Figure 1. Typical variation in the overpressure at the front of a blast wave generated by the explosion
of a load.

Following the approximation reported in [1,7,19], we assume here that the pressure
signal to be measured follows the Friedlander-type waveform of Equation (1), although
the measured signals may eventually differ in practice from this simple model. Moreover,
we assume that the magnitude of the overpressure peak is given by the highest value of
the measured pressure signal obtained during the direct data acquisition. In other words,
unlike the measurement technique applied in [7,19], the magnitude is not derived here
from fitting the measured data with a Friedlander waveform.
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In addition, we consider in this work the measurement by using sensors of both the
side-on and reflected pressures. The reflected pressure is measured when the direction
of the pressure flow is normal to the transducer surface, while the side-on pressure is
measured when the flow direction is tangential to this surface.

Main descriptors of this waveform (or signal) are the magnitude of the overpressure
peak (∆PMAX), the positive pressure impulse (I+), and the positive phase duration (t+).
The time of arrival of the blast wave will not be studied here and, consequently, the origin
(t = 0) indicates when the blast wave reaches the pressure sensor. Blast wave descriptors
depend on the explosive type (e.g., C4, Semtex, TNT, etc.), the equivalent mass of TNT
(mTNT) of the explosive load and the scaled distance Z = R/ 3

√
mTNT , where R is the

separation distance between the center of the explosive load and the sensor.

2.2. The Kingery and Bulmash Data

We assume here that any explosive load is equivalent to a mass mTNT of TNT explosive.
Based on the Kingery and Bulmash (K&B) data [2,21], blast wave descriptors can then be
related to the scaled distance Z and equivalent mass mTNT of TNT explosive. In our work,
we will use the simplified Kingery and Bulmash model reported in [22], where each of the
measured descriptors ∆PMAX, t+ and I+ of blast waves are conveniently given for both
side-on and reflected pressure measurement, and for hemispherical surface bursts and
spherical airbursts. K&B data are a reference standard [7] and are used, for example, in the
simulation software ConWep [23], in the LOAD_BLAST module of LS-DYNA [24] and in
many research works (see, e.g., [3,4,6,20]).

Moreover, we assume that the Hopkinson scaling law is valid. This law states that
during an explosion, the magnitude of the overpressure peak measured at the distance
R from the equivalent mass mTNT of TNT is identical to the magnitude measured at
the distance kR( f or any k > 1) from an equivalent mass k3mTNT of TNT. Moreover, the
positive phase duration t+ and the positive phase impulse I+ given by K&B data are
linearly dependent on 3

√
mTNT and, consequently, at a given scaled distance Z, they differ

by a factor 3
√

k for two different explosive loads with equivalent masses of mTNT and
k mTNT of TNT, respectively. According to [6], the accuracy of K&B data is questionable for
scaled distances Z smaller than 2 m/kg1/3, and other reference data may be more accurate
to estimate blast wave descriptors when, e.g., Semtex explosives are involved [8]. Keeping
in mind these limitations, we derive from K&B data in the next sections the bandwidth of
pressure sensors required to estimate the overpressure magnitude at the front of a blast
wave, in order to achieve a desired estimation accuracy.

2.3. Definitions of the Cut-off Frequency, Resonant Frequency and Frequency Bandwidth of
Pressure Sensors

A pressure sensor is usually modeled by a second-order low-pass filter, which exhibits
a high cut-off frequency fc and a resonant frequency f0. At the cut-off frequency, the
power of the signal at the output of the sensor is half of the power delivered at its nominal
operation. Because of its finite cut-off frequency fc, the sensor cannot instantaneously
provide the waveform applied at its input port. At the resonant frequency f0, the power at
the sensor output reaches its maximum value. This frequency is commonly specified in the
sensor datasheet (see, e.g., [25]) and reported in publications on pressure sensors dedicated
to blast wave experiments (see, e.g., [14]). When a blast wave impinges on the transducer
surface, the resonant frequency is usually excited [26,27]. In order to mitigate its impact on
the measured signal, a low-pass filtering is typically applied at the sensor output [28,29]
and, consequently, the actual bandwidth of a pressure sensing system is lower than the
resonant frequency (according to [30], the bandwidth is a fifth of the resonant frequency).

For the sake of simplicity, the frequency response of a pressure sensor is modeled here
by the transfer function H of a first-order low-pass filter, as follows:

H(s) =
v(s)
p(s)

= ks
ωc

s + ωc
(2)
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where v(s) is the Laplace transform of the voltage V(t) delivered at the sensor output, p(s)
is the Laplace transform of the overpressure ∆P(t) applied to the surface of the pressure
transducer (this overpressure is modeled here by the modified Friedlander waveform
of Equation (1)), kS denotes the sensitivity of the transducer, ωc = 2π fc is the cut-off
angular frequency of the first-order low-pass filter model, and s is the s-plane variable of
the Laplace transform. The frequency bandwidth of the sensor is then only limited by the
cut-off frequency fc.

3. Frequency Bandwidth of Pressure Sensors for Blast Experiments
3.1. Preliminary Obsevations on Large-Scale/Far-Field and Small-Scale/Near-Field Experiments

Consider two different Friedlander waveforms obtained respectively from large-scale
(mTNT = 1000 kg) and far-field (Z = 10 m/kg1/3) experiments, and a small-scale
(mTNT = 100 g) and near-field (Z = 0.3 m/kg1/3) experiment. Blast wave descriptors
derived from K&B data are ∆PMAX ∼= 15 kPa, t+ ∼= 48 ms, and I+ ∼= 310 kPa.ms (and
b ∼= 0.4) for the large-scale/far-field experiment, while ∆PMAX ∼= 10 MPa, t+ ∼= 100 µs,
and I+ ∼= 100 kPa.ms (and b ∼= 9) for the small-scale/near-field experiment. These two
Friedlander waveforms are applied to the input of first-order low-pass filters of different cut-
off frequencies fc ranging from 50 Hz to 500 kHz. The waveforms at the filters output are
displayed in Figure 2. It can be observed from Figure 2a that a sensor with the bandwidth
of 50 kHz placed at the distance of 100 m from an explosive load with equivalent TNT mass
of 1000 kg may be used to accurately estimate the magnitude of the overpressure peak.
However, according to Figure 2b, this sensor provides a poor estimation accuracy of the
peak magnitude when it is located at 15 cm from an explosive load with an equivalent TNT
mass of 100 g. These simple examples illustrate that near field and small-scale experiments
require a much larger sensor bandwidth than far field and large-scale experiments. In view
of this result, it is not surprising that the magnitude estimation of overpressure peak in the
near field and small-scale experiments reported in [3,4,6,15] is much less accurate than that
obtained from the large scale and far field experiments presented in [7,19].
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Figure 2. Friedlander waveform (in black) applied to the input of the first-order low-pass filter that
models the frequency response of a pressure sensor for the side-on pressure measurement, and the
waveform delivered at the output of the filter for various cut-off frequency fc (50 Hz in blue, 500 Hz
in orange, 5 kHz in green, 50 kHz in red and 500 kHz in purple): (a) far-field and large-scale surface
burst and side-on pressure measurement, and (b) small-scale and near-field surface burst and side-on
pressure measurement. The ordinate is the ratio ∆P(t)/∆PMAX .

3.2. Response Time of a Pressure Sensor Dedicated to Blast Wave Experiments

When a Friedlander waveform is applied to the sensor input at time t = 0, the voltage
at the sensor output reaches its maximum value after some delay τ called the response time
of the sensor. If the frequency bandwidth of the sensor had been infinite, then τ = 0
and at time t = 0, the voltage at the sensor output would have reached its maximum



Sensors 2022, 22, 3790 5 of 11

value ks∆PMAX, where ks is the sensitivity of the transducer. However, the bandwidth is
finite in practice and, consequently, after some delay τ( 6= 0), the output voltage reaches its
maximum, denoted by ∆VMAX, which differs from ks∆PMAX. Let us now determine the
response time τ.

The Laplace transform v(s) of the output voltage is derived from Equation (2). We obtain:

v(s) = ks
ωc

s + ωc
p(s) (3)

where the Laplace transform p(s) of the Friedlander waveform ∆P(t) of Equation (1) is
given by:

p(s) = ∆PMAX
s + b−1

t+(
s + b

t+

)2 (4)

and from Equation (3), we derive:

v(s) = ks∆PMAX

 s + b−1
t+(

s + b
t+

)2 +
(A− 1)s + B(

s + b
t+

)2 +
C

s + ωc

 (5)

where

A = ωc
ωc − b−1

t+(
ωc − b

t+

)2 = −C and B =

(
b

t+

)2 ωc − b−1
t+(

ωc − b
t+

)2 (6)

From the inverse Laplace transformation of Equation (5), the output voltage V(t) in
the time-domain (for t > 0) can be derived:

V(t) = ks∆PMAX

(
1− t

t+

)
e−b t

t+

+ks∆PMAX

[
(A− 1)

(
1− b t

t+

)
e−b t

t+ + Bte−b t
t+ + Ce−ωct

] (7)

At time τ, the magnitude of the output voltage V(t) reaches its maximum value and,
consequently, the time-derivative of this voltage cancels. The time τ is then the solution of
the following equation:

dV
dt

∣∣∣
t = τ

= 0 =−ks∆PMAX

[
1 + b

(
1− τ

t+

)]
e
−b τ

t+
t+

+ks∆PMAX

[
(1− A)

(
2− b τ

t+

)
b

t+ e−b τ
t+ + B

(
1− b τ

t+

)
e−b τ

t+

−ωcCe−ωcτ ]

(8)

In order to derive a closed-form expression for the response time, we assume now
that bτ � t+ and ωct+ � b (this assumption is often valid in practice but, for the sake of
generality, it will not be applied in Section 3.6 and a numerical solution for the bandwidth

will be derived). Therefore, A ∼= 1, C ∼= −1, ωcB ∼=
(

b
t+

)2
and Equation (8) can be

simplified as follows:

0 ∼= −e−b τ
t+

(
1 + b +

b2

t+ωc

)
+ ωct+e−ωcτ (9)

It follows that the response time τ of the sensor can be approximated from Equation (10):

τ ∼=
ln rωτ

ωc
with rωτ =

ωct+
1 + b

(10)
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As ωct+ � b, equation (10) is valid when τωτ � 1. As expected, τ → 0 when
ωc → ∞.

3.3. Accuracy of the Overpressure Peak Estimation from Pressure Sensor in Blast Experiments

At time τ, the voltage V(τ) at the output of the sensor reaches its maximum value
∆VMAX given by:

∆VMAX = ks∆P(τ) (11)

As a matter of fact, we derive from Equation (3) that:

sv(s) + ωcv(s) = ωcks p(s) (12)

and since V(0) = 0 at time t = 0 (see Equation (7)), the inverse Lapace transformation of
Equation (12) gives:

dV
dt

∣∣∣∣
t = τ

+ ωc∆VMAX = ωcks∆P(τ) (13)

from which Equation (11) can be derived, since dV
dt

∣∣∣
t = τ

= 0 and ωc 6= 0. Consequently,

according to Equations (1) and (11) we can estimate the voltage V(τ) as follows:

∆VMAX = ks∆PMAXe−b τ
t+

(
1− τ

t+

)
∼= ks∆PMAX

[
1− (b + 1)

τ

t+

]
(14)

where the response time τ is estimated by Equation (10). As expected, the voltage ∆VMAX
differs from ks∆PMAX for finite ωc ( ∆VMAX → ks∆PMAX as ωc → ∞) . From the direct
measurement of ∆VMAX and the knowledge of the transducer sensitivity ks, an estimation
∆P̂MAX of the overpressure peak can be obtained as follows:

∆P̂MAX =
∆VMAX

ks
(15)

From Equation (14), the estimation accuracy kmes of the overpressure peak is then
given by:

kmes =
∆PMAX − ∆P̂MAX

∆PMAX
∼= (b + 1)

τ

t+
∼=

ln rωτ

rωτ
for rωτ � 1 (16)

For the sake of illustration, Figure 3 displays the Friedlander waveform applied to
the input of two first-order low-pass filters with different frequency bandwidths and
the waveforms delivered at the filters output (note that bτ � t+ and ωct+ � b for
kmes < 5% and consequently, Equation (10) is valid). It can be concluded that a very good
estimation accuracy kmes of the ground truth overpressure peak ∆PMAX can be expected
from both sensor bandwidths, since kmes = 1% for fc = 4.8 MHz and kmes = 5% for
fc = 660 kHz. Nowadays, oscilloscopes with the frequency bandwidth of 100 MHz can
perform measurement with an accuracy of 1% [31]. Therefore, it is conceivable to design
sensors that achieve the estimation accuracy of 1% on the overpressure peak magnitude.
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Figure 3. Friedlander waveform (derived from K&B data with Z = 0.3 m.kg−1/3 and mTNT = 1 kg,
surface burst and side-on pressure measurement) applied to the input of two first-order low-pass
filters with different cut-off frequency fc (4.8 MHz and 660 kHz) and waveforms delivered at the
filters’ output. The ordinate is the ratio ∆P(t)/∆PMAX .

3.4. Sensor Bandwidth Needed to Ensure a Desired Estimation Accuracy on the
Overpressure Magnitude

From Equation (16), we can derive the sensor frequency bandwidth required to es-
timate the magnitude of the overpressure peak with the desired accuracy kmes. Since the
positive phase duration t+ depends linearly on 3

√
mTNT [1], the bandwidth varies as the

inverse of 3
√

mTNT at a given scaled distance and for a given estimation accuracy. For
example, if mTNT is multiplied by 1000, t+ is multiplied by 10, fc is divided by 10 and
consequently rωτ is unchanged. Figure 4 displays the frequency bandwidth of a sensor as a
function of the scaled distance Z. This bandwidth guarantees an estimation accuracy kmes
of 1% or 5% on the overpressure peak magnitude. In particular, for a sensor placed 0.5 m
from an explosive load of 1 kg equivalent mass of TNT (as, e.g., in the blast experiment
reported in [5]), the bandwidth of 3 MHz is sufficient to ensure the estimation accuracy of
1%, whereas only 30 kHz is needed if the sensor is placed at 30 m from the load.
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3.5. Minimal Distance between the Sensor and Explosive Load to Ensure a Desired Estimation
Accuracy on the Overpressure Peak Magnitude

In the example of Figure 2, we observe that a sensor with a frequency bandwidth of
50 kHz can be used to accurately estimate the overpressure peak ∆PMAX , if it is placed at
100 m from an explosive load of 1000 kg equivalent mass of TNT. However, this sensor fails
to accurately estimate the peak magnitude when it is placed 15 cm from a load of 100 g
equivalent mass of TNT.

To keep the estimation accuracy unchanged, the smaller the equivalent mass of TNT
explosive of the source of the blast wave, the wider the sensor bandwidth. In very large-
scale experiments, sensors with narrow bandwidth can be used to estimate the overpressure
peak with high accuracy, while broadband sensors are needed in very small-scale exper-
iments. In other words, when an explosive load is too small, pressure sensors cannot be
used to estimate the magnitude of the overpressure peak with a high accuracy of 5% or
less, whatever the distance between the sensors and load. Conversely, when the load is
very large, sensors can be placed at any distances from the load to accurately estimate the
peak. For intermediate explosive load of equivalent TNT mass mTNT , there is a minimal
distance dmin between the sensor and load to estimate the overpressure peak magnitude
with the desired estimation accuracy kmes. As a matter of fact, according to Equation (16), if
an estimation accuracy kmes on the magnitude of the overpressure peak is required, then
rωτ = ωct+/(1 + b) can be computed. As t+ depends linearly on 3

√
mTNT and, t+ and b

vary with the scaled distance Z = R/ 3
√

mTNT [20,21], the computed value of rωτ allows the
derivation of 3

√
mTNT fc, or equivalently mTNT f 3

c , from the scaled distance. Consequently, at
the given distance R = dmin where the estimation accuracy kmes must be achieved, mTNT f 3

c
can be derived from the value of dmin fc. For illustration purpose, dmin fc is displayed in
Figure 5 as a function of mTNT f 3

c for two estimation accuracies kmes. We observe that, at
the distance dmin from a pressure sensor of fixed frequency bandwidth, if the estimation
accuracy on the overpressure peak magnitude is 1% for an explosive load of equivalent
mass mTNT of TNT, then the accuracy will be 5% for an equivalent TNT mass of mTNT/100.
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The variation in the pressure at the front of a blast wave generated by the explosion
of 2× 106 kg of Ammonium Nitrate Fuel Oil (ANFO) is reported in [19]. If we assume that
the bandwidth sensor (not specified in [19]) is of 100 kHz, we derive that mTNT f 3

c is of
2× 103 kg.MHz3 and, consequently, it can be concluded from Figure 5 that there is no
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minimal distance dmin between the sensor and explosive load to estimate the overpressure
peak magnitude with the estimation accuracy kmes up to 1%. The explosive load is large
enough to place the sensor at any distances from the load and accurately estimate the
magnitude of the pressure peak. If we assume that the same sensor (bandwidth of 100 kHz)
is used in the experiment reported in [4], where the variation of the pressure at the front
of a blast wave generated by the explosion of mTNT = 60 mg of equivalent mass of TNT
is reported, then we obtain that mTNT f 3

c is of 6× 10−8 kg.MHz3. If the accuracy of 1% is
required in the magnitude estimation of the overpressure peak, there is again no minimal
distance dmin between the sensor and explosive load to estimate the overpressure peak
magnitude with the estimation accuracy kmes of 1%. The equivalent mass of TNT explosive
is too small for achieving the required accuracy, whatever the distance between the sensor
and load. However, if the estimation accuracy of 5% is desired, then it can be concluded
from Figure 5 that the load-to-sensor distance can be set to 1 m (in this case, the scaled
distance would be of 26 m.kg−

1
3 ).

3.6. Accuracy of the Overpressure Peak Estimation as a Function of the Sensor Bandwidth

The estimation accuracy kmes given in equation (16) is valid only for rωτ � 1. This
restriction allows the derivation of a convenient closed-form expression for kmes. We now
compute kmes = (∆PMAX − ∆P̂MAX)/∆PMAX as a function of the frequency bandwidth
without formulating such restriction.

The computation is organized as follows: (1) for each scaled distance Z and equivalent
TNT mass mTNT of explosive loads, we compute the blast wave descriptors ∆PMAX , I+ and
t+ from K&B data; (2) the resulting Friedlander waveforms are filtered by first-order low-
pass filters with different cutoff frequencies ranging from (b + 1)/t+ to 1000× (b + 1)/t+;
(3) the maximum voltage at each filter output is calculated and the estimation accuracy
(∆PMAX − ∆P̂MAX)/∆PMAX is finally computed. The proposed method predicts the sensor
bandwidth that allows estimating the overpressure magnitude at the front of a blast wave,
in order to obtain a desired estimation accuracy kmes.

As illustrated in Figure 6, the estimation accuracy of the side-on overpressure mag-
nitude can be conveniently displayed as a function of the scaled bandwidth 3

√
mTNT fc

for various scaled distances. It can be observed that the approximation provided by
Equation (16) is in good agreement with the computed accuracy for kmes up to 10%.
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4. Conclusions

In this paper, we have determined the frequency bandwidth of sensors required to
estimate the overpressure magnitude at the front of a blast wave generated by an explosion,
in order to obtain a desired estimation accuracy of this magnitude. The bandwidth depends
on the scaled distance and equivalent mass of TNT of the explosive load. Friedlander
waveforms were used to model the overpressure at the front of the blast wave. The
descriptors of this wave were provided by Kingery and Bulmash data. In addition, the
frequency response of pressure sensors was modelled by the transfer function of a first-
order low-pass filter. A closed-form expression of the bandwidth has been proposed.

Based on the analysis reported here, it can be concluded that it is not necessary to make
a breakthrough to design ultra-wideband pressure sensors in order to accurately estimate
the overpressure peak in the blast wave experiments reported in [19,32]. Available pressure
sensors (see, e.g., [25]) can actually be used in such experiments. However, pressure sensors
with a wider bandwidth of a tenth of MHz (see, e.g., [12,13]) are required in the experiment
of [5] to estimate the overpressure peak with an accuracy kmes up to 1%. For very small
explosive load experiments [4], we anticipate that a sensor bandwidth of a hundred MHz
is needed to achieve an estimation accuracy kmes of 1%.

As recently reported in [33], not only the pressure sensor but the whole measurement
chain may impact the estimation accuracy on the magnitude of the overpressure peak dur-
ing blast experiments. In particular, long coaxial cables between the pressure sensor and the
acquisition unit may significantly impact the bandwidth of the system and, consequently,
the measurement accuracy. Moreover, only the sensors have been considered in this work
to derive the bandwidth requirement for estimating the overpressure magnitude at the
front of a blast wave. However, the predicted estimation accuracy may not be obtained
in practice, due to the impact of other complex factors involved in blast experiments (see,
e.g., [10]).
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